Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jean-Baptiste Maneyrol | 3238 | 100.00% | 1 | 100.00% |
Total | 3238 | 1 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2020 InvenSense, Inc. * * Driver for InvenSense ICP-1010xx barometric pressure and temperature sensor. * * Datasheet: * http://www.invensense.com/wp-content/uploads/2018/01/DS-000186-ICP-101xx-v1.2.pdf */ #include <linux/device.h> #include <linux/module.h> #include <linux/i2c.h> #include <linux/pm_runtime.h> #include <linux/crc8.h> #include <linux/mutex.h> #include <linux/delay.h> #include <linux/log2.h> #include <linux/math64.h> #include <linux/regulator/consumer.h> #include <linux/iio/iio.h> #define ICP10100_ID_REG_GET(_reg) ((_reg) & 0x003F) #define ICP10100_ID_REG 0x08 #define ICP10100_RESPONSE_WORD_LENGTH 3 #define ICP10100_CRC8_WORD_LENGTH 2 #define ICP10100_CRC8_POLYNOMIAL 0x31 #define ICP10100_CRC8_INIT 0xFF enum icp10100_mode { ICP10100_MODE_LP, /* Low power mode: 1x sampling */ ICP10100_MODE_N, /* Normal mode: 2x sampling */ ICP10100_MODE_LN, /* Low noise mode: 4x sampling */ ICP10100_MODE_ULN, /* Ultra low noise mode: 8x sampling */ ICP10100_MODE_NB, }; struct icp10100_state { struct mutex lock; struct i2c_client *client; struct regulator *vdd; enum icp10100_mode mode; int16_t cal[4]; }; struct icp10100_command { __be16 cmd; unsigned long wait_us; unsigned long wait_max_us; size_t response_word_nb; }; static const struct icp10100_command icp10100_cmd_soft_reset = { .cmd = cpu_to_be16(0x805D), .wait_us = 170, .wait_max_us = 200, .response_word_nb = 0, }; static const struct icp10100_command icp10100_cmd_read_id = { .cmd = cpu_to_be16(0xEFC8), .wait_us = 0, .response_word_nb = 1, }; static const struct icp10100_command icp10100_cmd_read_otp = { .cmd = cpu_to_be16(0xC7F7), .wait_us = 0, .response_word_nb = 1, }; static const struct icp10100_command icp10100_cmd_measure[] = { [ICP10100_MODE_LP] = { .cmd = cpu_to_be16(0x401A), .wait_us = 1800, .wait_max_us = 2000, .response_word_nb = 3, }, [ICP10100_MODE_N] = { .cmd = cpu_to_be16(0x48A3), .wait_us = 6300, .wait_max_us = 6500, .response_word_nb = 3, }, [ICP10100_MODE_LN] = { .cmd = cpu_to_be16(0x5059), .wait_us = 23800, .wait_max_us = 24000, .response_word_nb = 3, }, [ICP10100_MODE_ULN] = { .cmd = cpu_to_be16(0x58E0), .wait_us = 94500, .wait_max_us = 94700, .response_word_nb = 3, }, }; static const uint8_t icp10100_switch_mode_otp[] = {0xC5, 0x95, 0x00, 0x66, 0x9c}; DECLARE_CRC8_TABLE(icp10100_crc8_table); static inline int icp10100_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) { int ret; ret = i2c_transfer(adap, msgs, num); if (ret < 0) return ret; if (ret != num) return -EIO; return 0; } static int icp10100_send_cmd(struct icp10100_state *st, const struct icp10100_command *cmd, __be16 *buf, size_t buf_len) { size_t size = cmd->response_word_nb * ICP10100_RESPONSE_WORD_LENGTH; uint8_t data[16]; uint8_t *ptr; uint8_t *buf_ptr = (uint8_t *)buf; struct i2c_msg msgs[2] = { { .addr = st->client->addr, .flags = 0, .len = 2, .buf = (uint8_t *)&cmd->cmd, }, { .addr = st->client->addr, .flags = I2C_M_RD, .len = size, .buf = data, }, }; uint8_t crc; unsigned int i; int ret; if (size > sizeof(data)) return -EINVAL; if (cmd->response_word_nb > 0 && (buf == NULL || buf_len < (cmd->response_word_nb * 2))) return -EINVAL; dev_dbg(&st->client->dev, "sending cmd %#x\n", be16_to_cpu(cmd->cmd)); if (cmd->response_word_nb > 0 && cmd->wait_us == 0) { /* direct command-response without waiting */ ret = icp10100_i2c_xfer(st->client->adapter, msgs, ARRAY_SIZE(msgs)); if (ret) return ret; } else { /* transfer command write */ ret = icp10100_i2c_xfer(st->client->adapter, &msgs[0], 1); if (ret) return ret; if (cmd->wait_us > 0) usleep_range(cmd->wait_us, cmd->wait_max_us); /* transfer response read if needed */ if (cmd->response_word_nb > 0) { ret = icp10100_i2c_xfer(st->client->adapter, &msgs[1], 1); if (ret) return ret; } else { return 0; } } /* process read words with crc checking */ for (i = 0; i < cmd->response_word_nb; ++i) { ptr = &data[i * ICP10100_RESPONSE_WORD_LENGTH]; crc = crc8(icp10100_crc8_table, ptr, ICP10100_CRC8_WORD_LENGTH, ICP10100_CRC8_INIT); if (crc != ptr[ICP10100_CRC8_WORD_LENGTH]) { dev_err(&st->client->dev, "crc error recv=%#x calc=%#x\n", ptr[ICP10100_CRC8_WORD_LENGTH], crc); return -EIO; } *buf_ptr++ = ptr[0]; *buf_ptr++ = ptr[1]; } return 0; } static int icp10100_read_cal_otp(struct icp10100_state *st) { __be16 val; int i; int ret; /* switch into OTP read mode */ ret = i2c_master_send(st->client, icp10100_switch_mode_otp, ARRAY_SIZE(icp10100_switch_mode_otp)); if (ret < 0) return ret; if (ret != ARRAY_SIZE(icp10100_switch_mode_otp)) return -EIO; /* read 4 calibration values */ for (i = 0; i < 4; ++i) { ret = icp10100_send_cmd(st, &icp10100_cmd_read_otp, &val, sizeof(val)); if (ret) return ret; st->cal[i] = be16_to_cpu(val); dev_dbg(&st->client->dev, "cal[%d] = %d\n", i, st->cal[i]); } return 0; } static int icp10100_init_chip(struct icp10100_state *st) { __be16 val; uint16_t id; int ret; /* read and check id */ ret = icp10100_send_cmd(st, &icp10100_cmd_read_id, &val, sizeof(val)); if (ret) return ret; id = ICP10100_ID_REG_GET(be16_to_cpu(val)); if (id != ICP10100_ID_REG) { dev_err(&st->client->dev, "invalid id %#x\n", id); return -ENODEV; } /* read calibration data from OTP */ ret = icp10100_read_cal_otp(st); if (ret) return ret; /* reset chip */ return icp10100_send_cmd(st, &icp10100_cmd_soft_reset, NULL, 0); } static int icp10100_get_measures(struct icp10100_state *st, uint32_t *pressure, uint16_t *temperature) { const struct icp10100_command *cmd; __be16 measures[3]; int ret; pm_runtime_get_sync(&st->client->dev); mutex_lock(&st->lock); cmd = &icp10100_cmd_measure[st->mode]; ret = icp10100_send_cmd(st, cmd, measures, sizeof(measures)); mutex_unlock(&st->lock); if (ret) goto error_measure; *pressure = (be16_to_cpu(measures[0]) << 8) | (be16_to_cpu(measures[1]) >> 8); *temperature = be16_to_cpu(measures[2]); pm_runtime_mark_last_busy(&st->client->dev); error_measure: pm_runtime_put_autosuspend(&st->client->dev); return ret; } static uint32_t icp10100_get_pressure(struct icp10100_state *st, uint32_t raw_pressure, uint16_t raw_temp) { static int32_t p_calib[] = {45000, 80000, 105000}; static int32_t lut_lower = 3670016; static int32_t lut_upper = 12058624; static int32_t inv_quadr_factor = 16777216; static int32_t offset_factor = 2048; int64_t val1, val2; int32_t p_lut[3]; int32_t t, t_square; int64_t a, b, c; uint32_t pressure_mPa; dev_dbg(&st->client->dev, "raw: pressure = %u, temp = %u\n", raw_pressure, raw_temp); /* compute p_lut values */ t = (int32_t)raw_temp - 32768; t_square = t * t; val1 = (int64_t)st->cal[0] * (int64_t)t_square; p_lut[0] = lut_lower + (int32_t)div_s64(val1, inv_quadr_factor); val1 = (int64_t)st->cal[1] * (int64_t)t_square; p_lut[1] = offset_factor * st->cal[3] + (int32_t)div_s64(val1, inv_quadr_factor); val1 = (int64_t)st->cal[2] * (int64_t)t_square; p_lut[2] = lut_upper + (int32_t)div_s64(val1, inv_quadr_factor); dev_dbg(&st->client->dev, "p_lut = [%d, %d, %d]\n", p_lut[0], p_lut[1], p_lut[2]); /* compute a, b, c factors */ val1 = (int64_t)p_lut[0] * (int64_t)p_lut[1] * (int64_t)(p_calib[0] - p_calib[1]) + (int64_t)p_lut[1] * (int64_t)p_lut[2] * (int64_t)(p_calib[1] - p_calib[2]) + (int64_t)p_lut[2] * (int64_t)p_lut[0] * (int64_t)(p_calib[2] - p_calib[0]); val2 = (int64_t)p_lut[2] * (int64_t)(p_calib[0] - p_calib[1]) + (int64_t)p_lut[0] * (int64_t)(p_calib[1] - p_calib[2]) + (int64_t)p_lut[1] * (int64_t)(p_calib[2] - p_calib[0]); c = div64_s64(val1, val2); dev_dbg(&st->client->dev, "val1 = %lld, val2 = %lld, c = %lld\n", val1, val2, c); val1 = (int64_t)p_calib[0] * (int64_t)p_lut[0] - (int64_t)p_calib[1] * (int64_t)p_lut[1] - (int64_t)(p_calib[1] - p_calib[0]) * c; val2 = (int64_t)p_lut[0] - (int64_t)p_lut[1]; a = div64_s64(val1, val2); dev_dbg(&st->client->dev, "val1 = %lld, val2 = %lld, a = %lld\n", val1, val2, a); b = ((int64_t)p_calib[0] - a) * ((int64_t)p_lut[0] + c); dev_dbg(&st->client->dev, "b = %lld\n", b); /* * pressure_Pa = a + (b / (c + raw_pressure)) * pressure_mPa = 1000 * pressure_Pa */ pressure_mPa = 1000LL * a + div64_s64(1000LL * b, c + raw_pressure); return pressure_mPa; } static int icp10100_read_raw_measures(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2) { struct icp10100_state *st = iio_priv(indio_dev); uint32_t raw_pressure; uint16_t raw_temp; uint32_t pressure_mPa; int ret; ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; ret = icp10100_get_measures(st, &raw_pressure, &raw_temp); if (ret) goto error_release; switch (chan->type) { case IIO_PRESSURE: pressure_mPa = icp10100_get_pressure(st, raw_pressure, raw_temp); /* mPa to kPa */ *val = pressure_mPa / 1000000; *val2 = pressure_mPa % 1000000; ret = IIO_VAL_INT_PLUS_MICRO; break; case IIO_TEMP: *val = raw_temp; ret = IIO_VAL_INT; break; default: ret = -EINVAL; break; } error_release: iio_device_release_direct_mode(indio_dev); return ret; } static int icp10100_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct icp10100_state *st = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_RAW: case IIO_CHAN_INFO_PROCESSED: return icp10100_read_raw_measures(indio_dev, chan, val, val2); case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_TEMP: /* 1000 * 175°C / 65536 in m°C */ *val = 2; *val2 = 670288; return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } break; case IIO_CHAN_INFO_OFFSET: switch (chan->type) { case IIO_TEMP: /* 1000 * -45°C in m°C */ *val = -45000; return IIO_VAL_INT; default: return -EINVAL; } break; case IIO_CHAN_INFO_OVERSAMPLING_RATIO: mutex_lock(&st->lock); *val = 1 << st->mode; mutex_unlock(&st->lock); return IIO_VAL_INT; default: return -EINVAL; } } static int icp10100_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { static int oversamplings[] = {1, 2, 4, 8}; switch (mask) { case IIO_CHAN_INFO_OVERSAMPLING_RATIO: *vals = oversamplings; *type = IIO_VAL_INT; *length = ARRAY_SIZE(oversamplings); return IIO_AVAIL_LIST; default: return -EINVAL; } } static int icp10100_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct icp10100_state *st = iio_priv(indio_dev); unsigned int mode; int ret; switch (mask) { case IIO_CHAN_INFO_OVERSAMPLING_RATIO: /* oversampling is always positive and a power of 2 */ if (val <= 0 || !is_power_of_2(val)) return -EINVAL; mode = ilog2(val); if (mode >= ICP10100_MODE_NB) return -EINVAL; ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; mutex_lock(&st->lock); st->mode = mode; mutex_unlock(&st->lock); iio_device_release_direct_mode(indio_dev); return 0; default: return -EINVAL; } } static int icp10100_write_raw_get_fmt(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, long mask) { switch (mask) { case IIO_CHAN_INFO_OVERSAMPLING_RATIO: return IIO_VAL_INT; default: return -EINVAL; } } static const struct iio_info icp10100_info = { .read_raw = icp10100_read_raw, .read_avail = icp10100_read_avail, .write_raw = icp10100_write_raw, .write_raw_get_fmt = icp10100_write_raw_get_fmt, }; static const struct iio_chan_spec icp10100_channels[] = { { .type = IIO_PRESSURE, .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), .info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), }, { .type = IIO_TEMP, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_OFFSET), .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), .info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), }, }; static int icp10100_enable_regulator(struct icp10100_state *st) { int ret; ret = regulator_enable(st->vdd); if (ret) return ret; msleep(100); return 0; } static void icp10100_disable_regulator_action(void *data) { struct icp10100_state *st = data; int ret; ret = regulator_disable(st->vdd); if (ret) dev_err(&st->client->dev, "error %d disabling vdd\n", ret); } static void icp10100_pm_disable(void *data) { struct device *dev = data; pm_runtime_put_sync_suspend(dev); pm_runtime_disable(dev); } static int icp10100_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct iio_dev *indio_dev; struct icp10100_state *st; int ret; if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { dev_err(&client->dev, "plain i2c transactions not supported\n"); return -ENODEV; } indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*st)); if (!indio_dev) return -ENOMEM; i2c_set_clientdata(client, indio_dev); indio_dev->dev.parent = &client->dev; indio_dev->name = client->name; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = icp10100_channels; indio_dev->num_channels = ARRAY_SIZE(icp10100_channels); indio_dev->info = &icp10100_info; st = iio_priv(indio_dev); mutex_init(&st->lock); st->client = client; st->mode = ICP10100_MODE_N; st->vdd = devm_regulator_get(&client->dev, "vdd"); if (IS_ERR(st->vdd)) return PTR_ERR(st->vdd); ret = icp10100_enable_regulator(st); if (ret) return ret; ret = devm_add_action_or_reset(&client->dev, icp10100_disable_regulator_action, st); if (ret) return ret; /* has to be done before the first i2c communication */ crc8_populate_msb(icp10100_crc8_table, ICP10100_CRC8_POLYNOMIAL); ret = icp10100_init_chip(st); if (ret) { dev_err(&client->dev, "init chip error %d\n", ret); return ret; } /* enable runtime pm with autosuspend delay of 2s */ pm_runtime_get_noresume(&client->dev); pm_runtime_set_active(&client->dev); pm_runtime_enable(&client->dev); pm_runtime_set_autosuspend_delay(&client->dev, 2000); pm_runtime_use_autosuspend(&client->dev); pm_runtime_put(&client->dev); ret = devm_add_action_or_reset(&client->dev, icp10100_pm_disable, &client->dev); if (ret) return ret; return devm_iio_device_register(&client->dev, indio_dev); } static int __maybe_unused icp10100_suspend(struct device *dev) { struct icp10100_state *st = iio_priv(dev_get_drvdata(dev)); int ret; mutex_lock(&st->lock); ret = regulator_disable(st->vdd); mutex_unlock(&st->lock); return ret; } static int __maybe_unused icp10100_resume(struct device *dev) { struct icp10100_state *st = iio_priv(dev_get_drvdata(dev)); int ret; mutex_lock(&st->lock); ret = icp10100_enable_regulator(st); if (ret) goto out_unlock; /* reset chip */ ret = icp10100_send_cmd(st, &icp10100_cmd_soft_reset, NULL, 0); out_unlock: mutex_unlock(&st->lock); return ret; } static UNIVERSAL_DEV_PM_OPS(icp10100_pm, icp10100_suspend, icp10100_resume, NULL); static const struct of_device_id icp10100_of_match[] = { { .compatible = "invensense,icp10100", }, { } }; MODULE_DEVICE_TABLE(of, icp10100_of_match); static const struct i2c_device_id icp10100_id[] = { { "icp10100", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, icp10100_id); static struct i2c_driver icp10100_driver = { .driver = { .name = "icp10100", .pm = &icp10100_pm, .of_match_table = of_match_ptr(icp10100_of_match), }, .probe = icp10100_probe, .id_table = icp10100_id, }; module_i2c_driver(icp10100_driver); MODULE_AUTHOR("InvenSense, Inc."); MODULE_DESCRIPTION("InvenSense icp10100 driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1