Contributors: 19
Author Tokens Token Proportion Commits Commit Proportion
Rob Herring 8737 98.77% 24 55.81%
Philippe Reynes 28 0.32% 1 2.33%
Jarod Wilson 16 0.18% 1 2.33%
Andreas Herrmann 12 0.14% 1 2.33%
Joe Perches 10 0.11% 1 2.33%
Ben Dooks 6 0.07% 1 2.33%
Kees Cook 6 0.07% 1 2.33%
Michael S. Tsirkin 4 0.05% 1 2.33%
Matthew Wilcox 3 0.03% 1 2.33%
Eric Dumazet 3 0.03% 1 2.33%
Randy Dunlap 3 0.03% 1 2.33%
Wilfried Klaebe 3 0.03% 1 2.33%
Eric W. Biedermann 3 0.03% 1 2.33%
Stephen Hemminger 3 0.03% 2 4.65%
Fabio Estevam 3 0.03% 1 2.33%
Thomas Gleixner 2 0.02% 1 2.33%
Fuqian Huang 2 0.02% 1 2.33%
Danny Kukawka 1 0.01% 1 2.33%
Dan Carpenter 1 0.01% 1 2.33%
Total 8846 43


// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright 2010-2011 Calxeda, Inc.
 */
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/kernel.h>
#include <linux/circ_buf.h>
#include <linux/interrupt.h>
#include <linux/etherdevice.h>
#include <linux/platform_device.h>
#include <linux/skbuff.h>
#include <linux/ethtool.h>
#include <linux/if.h>
#include <linux/crc32.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>

/* XGMAC Register definitions */
#define XGMAC_CONTROL		0x00000000	/* MAC Configuration */
#define XGMAC_FRAME_FILTER	0x00000004	/* MAC Frame Filter */
#define XGMAC_FLOW_CTRL		0x00000018	/* MAC Flow Control */
#define XGMAC_VLAN_TAG		0x0000001C	/* VLAN Tags */
#define XGMAC_VERSION		0x00000020	/* Version */
#define XGMAC_VLAN_INCL		0x00000024	/* VLAN tag for tx frames */
#define XGMAC_LPI_CTRL		0x00000028	/* LPI Control and Status */
#define XGMAC_LPI_TIMER		0x0000002C	/* LPI Timers Control */
#define XGMAC_TX_PACE		0x00000030	/* Transmit Pace and Stretch */
#define XGMAC_VLAN_HASH		0x00000034	/* VLAN Hash Table */
#define XGMAC_DEBUG		0x00000038	/* Debug */
#define XGMAC_INT_STAT		0x0000003C	/* Interrupt and Control */
#define XGMAC_ADDR_HIGH(reg)	(0x00000040 + ((reg) * 8))
#define XGMAC_ADDR_LOW(reg)	(0x00000044 + ((reg) * 8))
#define XGMAC_HASH(n)		(0x00000300 + (n) * 4) /* HASH table regs */
#define XGMAC_NUM_HASH		16
#define XGMAC_OMR		0x00000400
#define XGMAC_REMOTE_WAKE	0x00000700	/* Remote Wake-Up Frm Filter */
#define XGMAC_PMT		0x00000704	/* PMT Control and Status */
#define XGMAC_MMC_CTRL		0x00000800	/* XGMAC MMC Control */
#define XGMAC_MMC_INTR_RX	0x00000804	/* Receive Interrupt */
#define XGMAC_MMC_INTR_TX	0x00000808	/* Transmit Interrupt */
#define XGMAC_MMC_INTR_MASK_RX	0x0000080c	/* Receive Interrupt Mask */
#define XGMAC_MMC_INTR_MASK_TX	0x00000810	/* Transmit Interrupt Mask */

/* Hardware TX Statistics Counters */
#define XGMAC_MMC_TXOCTET_GB_LO	0x00000814
#define XGMAC_MMC_TXOCTET_GB_HI	0x00000818
#define XGMAC_MMC_TXFRAME_GB_LO	0x0000081C
#define XGMAC_MMC_TXFRAME_GB_HI	0x00000820
#define XGMAC_MMC_TXBCFRAME_G	0x00000824
#define XGMAC_MMC_TXMCFRAME_G	0x0000082C
#define XGMAC_MMC_TXUCFRAME_GB	0x00000864
#define XGMAC_MMC_TXMCFRAME_GB	0x0000086C
#define XGMAC_MMC_TXBCFRAME_GB	0x00000874
#define XGMAC_MMC_TXUNDERFLOW	0x0000087C
#define XGMAC_MMC_TXOCTET_G_LO	0x00000884
#define XGMAC_MMC_TXOCTET_G_HI	0x00000888
#define XGMAC_MMC_TXFRAME_G_LO	0x0000088C
#define XGMAC_MMC_TXFRAME_G_HI	0x00000890
#define XGMAC_MMC_TXPAUSEFRAME	0x00000894
#define XGMAC_MMC_TXVLANFRAME	0x0000089C

/* Hardware RX Statistics Counters */
#define XGMAC_MMC_RXFRAME_GB_LO	0x00000900
#define XGMAC_MMC_RXFRAME_GB_HI	0x00000904
#define XGMAC_MMC_RXOCTET_GB_LO	0x00000908
#define XGMAC_MMC_RXOCTET_GB_HI	0x0000090C
#define XGMAC_MMC_RXOCTET_G_LO	0x00000910
#define XGMAC_MMC_RXOCTET_G_HI	0x00000914
#define XGMAC_MMC_RXBCFRAME_G	0x00000918
#define XGMAC_MMC_RXMCFRAME_G	0x00000920
#define XGMAC_MMC_RXCRCERR	0x00000928
#define XGMAC_MMC_RXRUNT	0x00000930
#define XGMAC_MMC_RXJABBER	0x00000934
#define XGMAC_MMC_RXUCFRAME_G	0x00000970
#define XGMAC_MMC_RXLENGTHERR	0x00000978
#define XGMAC_MMC_RXPAUSEFRAME	0x00000988
#define XGMAC_MMC_RXOVERFLOW	0x00000990
#define XGMAC_MMC_RXVLANFRAME	0x00000998
#define XGMAC_MMC_RXWATCHDOG	0x000009a0

/* DMA Control and Status Registers */
#define XGMAC_DMA_BUS_MODE	0x00000f00	/* Bus Mode */
#define XGMAC_DMA_TX_POLL	0x00000f04	/* Transmit Poll Demand */
#define XGMAC_DMA_RX_POLL	0x00000f08	/* Received Poll Demand */
#define XGMAC_DMA_RX_BASE_ADDR	0x00000f0c	/* Receive List Base */
#define XGMAC_DMA_TX_BASE_ADDR	0x00000f10	/* Transmit List Base */
#define XGMAC_DMA_STATUS	0x00000f14	/* Status Register */
#define XGMAC_DMA_CONTROL	0x00000f18	/* Ctrl (Operational Mode) */
#define XGMAC_DMA_INTR_ENA	0x00000f1c	/* Interrupt Enable */
#define XGMAC_DMA_MISS_FRAME_CTR 0x00000f20	/* Missed Frame Counter */
#define XGMAC_DMA_RI_WDOG_TIMER	0x00000f24	/* RX Intr Watchdog Timer */
#define XGMAC_DMA_AXI_BUS	0x00000f28	/* AXI Bus Mode */
#define XGMAC_DMA_AXI_STATUS	0x00000f2C	/* AXI Status */
#define XGMAC_DMA_HW_FEATURE	0x00000f58	/* Enabled Hardware Features */

#define XGMAC_ADDR_AE		0x80000000

/* PMT Control and Status */
#define XGMAC_PMT_POINTER_RESET	0x80000000
#define XGMAC_PMT_GLBL_UNICAST	0x00000200
#define XGMAC_PMT_WAKEUP_RX_FRM	0x00000040
#define XGMAC_PMT_MAGIC_PKT	0x00000020
#define XGMAC_PMT_WAKEUP_FRM_EN	0x00000004
#define XGMAC_PMT_MAGIC_PKT_EN	0x00000002
#define XGMAC_PMT_POWERDOWN	0x00000001

#define XGMAC_CONTROL_SPD	0x40000000	/* Speed control */
#define XGMAC_CONTROL_SPD_MASK	0x60000000
#define XGMAC_CONTROL_SPD_1G	0x60000000
#define XGMAC_CONTROL_SPD_2_5G	0x40000000
#define XGMAC_CONTROL_SPD_10G	0x00000000
#define XGMAC_CONTROL_SARC	0x10000000	/* Source Addr Insert/Replace */
#define XGMAC_CONTROL_SARK_MASK	0x18000000
#define XGMAC_CONTROL_CAR	0x04000000	/* CRC Addition/Replacement */
#define XGMAC_CONTROL_CAR_MASK	0x06000000
#define XGMAC_CONTROL_DP	0x01000000	/* Disable Padding */
#define XGMAC_CONTROL_WD	0x00800000	/* Disable Watchdog on rx */
#define XGMAC_CONTROL_JD	0x00400000	/* Jabber disable */
#define XGMAC_CONTROL_JE	0x00100000	/* Jumbo frame */
#define XGMAC_CONTROL_LM	0x00001000	/* Loop-back mode */
#define XGMAC_CONTROL_IPC	0x00000400	/* Checksum Offload */
#define XGMAC_CONTROL_ACS	0x00000080	/* Automatic Pad/FCS Strip */
#define XGMAC_CONTROL_DDIC	0x00000010	/* Disable Deficit Idle Count */
#define XGMAC_CONTROL_TE	0x00000008	/* Transmitter Enable */
#define XGMAC_CONTROL_RE	0x00000004	/* Receiver Enable */

/* XGMAC Frame Filter defines */
#define XGMAC_FRAME_FILTER_PR	0x00000001	/* Promiscuous Mode */
#define XGMAC_FRAME_FILTER_HUC	0x00000002	/* Hash Unicast */
#define XGMAC_FRAME_FILTER_HMC	0x00000004	/* Hash Multicast */
#define XGMAC_FRAME_FILTER_DAIF	0x00000008	/* DA Inverse Filtering */
#define XGMAC_FRAME_FILTER_PM	0x00000010	/* Pass all multicast */
#define XGMAC_FRAME_FILTER_DBF	0x00000020	/* Disable Broadcast frames */
#define XGMAC_FRAME_FILTER_SAIF	0x00000100	/* Inverse Filtering */
#define XGMAC_FRAME_FILTER_SAF	0x00000200	/* Source Address Filter */
#define XGMAC_FRAME_FILTER_HPF	0x00000400	/* Hash or perfect Filter */
#define XGMAC_FRAME_FILTER_VHF	0x00000800	/* VLAN Hash Filter */
#define XGMAC_FRAME_FILTER_VPF	0x00001000	/* VLAN Perfect Filter */
#define XGMAC_FRAME_FILTER_RA	0x80000000	/* Receive all mode */

/* XGMAC FLOW CTRL defines */
#define XGMAC_FLOW_CTRL_PT_MASK	0xffff0000	/* Pause Time Mask */
#define XGMAC_FLOW_CTRL_PT_SHIFT	16
#define XGMAC_FLOW_CTRL_DZQP	0x00000080	/* Disable Zero-Quanta Phase */
#define XGMAC_FLOW_CTRL_PLT	0x00000020	/* Pause Low Threshold */
#define XGMAC_FLOW_CTRL_PLT_MASK 0x00000030	/* PLT MASK */
#define XGMAC_FLOW_CTRL_UP	0x00000008	/* Unicast Pause Frame Detect */
#define XGMAC_FLOW_CTRL_RFE	0x00000004	/* Rx Flow Control Enable */
#define XGMAC_FLOW_CTRL_TFE	0x00000002	/* Tx Flow Control Enable */
#define XGMAC_FLOW_CTRL_FCB_BPA	0x00000001	/* Flow Control Busy ... */

/* XGMAC_INT_STAT reg */
#define XGMAC_INT_STAT_PMTIM	0x00800000	/* PMT Interrupt Mask */
#define XGMAC_INT_STAT_PMT	0x0080		/* PMT Interrupt Status */
#define XGMAC_INT_STAT_LPI	0x0040		/* LPI Interrupt Status */

/* DMA Bus Mode register defines */
#define DMA_BUS_MODE_SFT_RESET	0x00000001	/* Software Reset */
#define DMA_BUS_MODE_DSL_MASK	0x0000007c	/* Descriptor Skip Length */
#define DMA_BUS_MODE_DSL_SHIFT	2		/* (in DWORDS) */
#define DMA_BUS_MODE_ATDS	0x00000080	/* Alternate Descriptor Size */

/* Programmable burst length */
#define DMA_BUS_MODE_PBL_MASK	0x00003f00	/* Programmable Burst Len */
#define DMA_BUS_MODE_PBL_SHIFT	8
#define DMA_BUS_MODE_FB		0x00010000	/* Fixed burst */
#define DMA_BUS_MODE_RPBL_MASK	0x003e0000	/* Rx-Programmable Burst Len */
#define DMA_BUS_MODE_RPBL_SHIFT	17
#define DMA_BUS_MODE_USP	0x00800000
#define DMA_BUS_MODE_8PBL	0x01000000
#define DMA_BUS_MODE_AAL	0x02000000

/* DMA Bus Mode register defines */
#define DMA_BUS_PR_RATIO_MASK	0x0000c000	/* Rx/Tx priority ratio */
#define DMA_BUS_PR_RATIO_SHIFT	14
#define DMA_BUS_FB		0x00010000	/* Fixed Burst */

/* DMA Control register defines */
#define DMA_CONTROL_ST		0x00002000	/* Start/Stop Transmission */
#define DMA_CONTROL_SR		0x00000002	/* Start/Stop Receive */
#define DMA_CONTROL_DFF		0x01000000	/* Disable flush of rx frames */
#define DMA_CONTROL_OSF		0x00000004	/* Operate on 2nd tx frame */

/* DMA Normal interrupt */
#define DMA_INTR_ENA_NIE	0x00010000	/* Normal Summary */
#define DMA_INTR_ENA_AIE	0x00008000	/* Abnormal Summary */
#define DMA_INTR_ENA_ERE	0x00004000	/* Early Receive */
#define DMA_INTR_ENA_FBE	0x00002000	/* Fatal Bus Error */
#define DMA_INTR_ENA_ETE	0x00000400	/* Early Transmit */
#define DMA_INTR_ENA_RWE	0x00000200	/* Receive Watchdog */
#define DMA_INTR_ENA_RSE	0x00000100	/* Receive Stopped */
#define DMA_INTR_ENA_RUE	0x00000080	/* Receive Buffer Unavailable */
#define DMA_INTR_ENA_RIE	0x00000040	/* Receive Interrupt */
#define DMA_INTR_ENA_UNE	0x00000020	/* Tx Underflow */
#define DMA_INTR_ENA_OVE	0x00000010	/* Receive Overflow */
#define DMA_INTR_ENA_TJE	0x00000008	/* Transmit Jabber */
#define DMA_INTR_ENA_TUE	0x00000004	/* Transmit Buffer Unavail */
#define DMA_INTR_ENA_TSE	0x00000002	/* Transmit Stopped */
#define DMA_INTR_ENA_TIE	0x00000001	/* Transmit Interrupt */

#define DMA_INTR_NORMAL		(DMA_INTR_ENA_NIE | DMA_INTR_ENA_RIE | \
				 DMA_INTR_ENA_TUE | DMA_INTR_ENA_TIE)

#define DMA_INTR_ABNORMAL	(DMA_INTR_ENA_AIE | DMA_INTR_ENA_FBE | \
				 DMA_INTR_ENA_RWE | DMA_INTR_ENA_RSE | \
				 DMA_INTR_ENA_RUE | DMA_INTR_ENA_UNE | \
				 DMA_INTR_ENA_OVE | DMA_INTR_ENA_TJE | \
				 DMA_INTR_ENA_TSE)

/* DMA default interrupt mask */
#define DMA_INTR_DEFAULT_MASK	(DMA_INTR_NORMAL | DMA_INTR_ABNORMAL)

/* DMA Status register defines */
#define DMA_STATUS_GMI		0x08000000	/* MMC interrupt */
#define DMA_STATUS_GLI		0x04000000	/* GMAC Line interface int */
#define DMA_STATUS_EB_MASK	0x00380000	/* Error Bits Mask */
#define DMA_STATUS_EB_TX_ABORT	0x00080000	/* Error Bits - TX Abort */
#define DMA_STATUS_EB_RX_ABORT	0x00100000	/* Error Bits - RX Abort */
#define DMA_STATUS_TS_MASK	0x00700000	/* Transmit Process State */
#define DMA_STATUS_TS_SHIFT	20
#define DMA_STATUS_RS_MASK	0x000e0000	/* Receive Process State */
#define DMA_STATUS_RS_SHIFT	17
#define DMA_STATUS_NIS		0x00010000	/* Normal Interrupt Summary */
#define DMA_STATUS_AIS		0x00008000	/* Abnormal Interrupt Summary */
#define DMA_STATUS_ERI		0x00004000	/* Early Receive Interrupt */
#define DMA_STATUS_FBI		0x00002000	/* Fatal Bus Error Interrupt */
#define DMA_STATUS_ETI		0x00000400	/* Early Transmit Interrupt */
#define DMA_STATUS_RWT		0x00000200	/* Receive Watchdog Timeout */
#define DMA_STATUS_RPS		0x00000100	/* Receive Process Stopped */
#define DMA_STATUS_RU		0x00000080	/* Receive Buffer Unavailable */
#define DMA_STATUS_RI		0x00000040	/* Receive Interrupt */
#define DMA_STATUS_UNF		0x00000020	/* Transmit Underflow */
#define DMA_STATUS_OVF		0x00000010	/* Receive Overflow */
#define DMA_STATUS_TJT		0x00000008	/* Transmit Jabber Timeout */
#define DMA_STATUS_TU		0x00000004	/* Transmit Buffer Unavail */
#define DMA_STATUS_TPS		0x00000002	/* Transmit Process Stopped */
#define DMA_STATUS_TI		0x00000001	/* Transmit Interrupt */

/* Common MAC defines */
#define MAC_ENABLE_TX		0x00000008	/* Transmitter Enable */
#define MAC_ENABLE_RX		0x00000004	/* Receiver Enable */

/* XGMAC Operation Mode Register */
#define XGMAC_OMR_TSF		0x00200000	/* TX FIFO Store and Forward */
#define XGMAC_OMR_FTF		0x00100000	/* Flush Transmit FIFO */
#define XGMAC_OMR_TTC		0x00020000	/* Transmit Threshold Ctrl */
#define XGMAC_OMR_TTC_MASK	0x00030000
#define XGMAC_OMR_RFD		0x00006000	/* FC Deactivation Threshold */
#define XGMAC_OMR_RFD_MASK	0x00007000	/* FC Deact Threshold MASK */
#define XGMAC_OMR_RFA		0x00000600	/* FC Activation Threshold */
#define XGMAC_OMR_RFA_MASK	0x00000E00	/* FC Act Threshold MASK */
#define XGMAC_OMR_EFC		0x00000100	/* Enable Hardware FC */
#define XGMAC_OMR_FEF		0x00000080	/* Forward Error Frames */
#define XGMAC_OMR_DT		0x00000040	/* Drop TCP/IP csum Errors */
#define XGMAC_OMR_RSF		0x00000020	/* RX FIFO Store and Forward */
#define XGMAC_OMR_RTC_256	0x00000018	/* RX Threshold Ctrl */
#define XGMAC_OMR_RTC_MASK	0x00000018	/* RX Threshold Ctrl MASK */

/* XGMAC HW Features Register */
#define DMA_HW_FEAT_TXCOESEL	0x00010000	/* TX Checksum offload */

#define XGMAC_MMC_CTRL_CNT_FRZ	0x00000008

/* XGMAC Descriptor Defines */
#define MAX_DESC_BUF_SZ		(0x2000 - 8)

#define RXDESC_EXT_STATUS	0x00000001
#define RXDESC_CRC_ERR		0x00000002
#define RXDESC_RX_ERR		0x00000008
#define RXDESC_RX_WDOG		0x00000010
#define RXDESC_FRAME_TYPE	0x00000020
#define RXDESC_GIANT_FRAME	0x00000080
#define RXDESC_LAST_SEG		0x00000100
#define RXDESC_FIRST_SEG	0x00000200
#define RXDESC_VLAN_FRAME	0x00000400
#define RXDESC_OVERFLOW_ERR	0x00000800
#define RXDESC_LENGTH_ERR	0x00001000
#define RXDESC_SA_FILTER_FAIL	0x00002000
#define RXDESC_DESCRIPTOR_ERR	0x00004000
#define RXDESC_ERROR_SUMMARY	0x00008000
#define RXDESC_FRAME_LEN_OFFSET	16
#define RXDESC_FRAME_LEN_MASK	0x3fff0000
#define RXDESC_DA_FILTER_FAIL	0x40000000

#define RXDESC1_END_RING	0x00008000

#define RXDESC_IP_PAYLOAD_MASK	0x00000003
#define RXDESC_IP_PAYLOAD_UDP	0x00000001
#define RXDESC_IP_PAYLOAD_TCP	0x00000002
#define RXDESC_IP_PAYLOAD_ICMP	0x00000003
#define RXDESC_IP_HEADER_ERR	0x00000008
#define RXDESC_IP_PAYLOAD_ERR	0x00000010
#define RXDESC_IPV4_PACKET	0x00000040
#define RXDESC_IPV6_PACKET	0x00000080
#define TXDESC_UNDERFLOW_ERR	0x00000001
#define TXDESC_JABBER_TIMEOUT	0x00000002
#define TXDESC_LOCAL_FAULT	0x00000004
#define TXDESC_REMOTE_FAULT	0x00000008
#define TXDESC_VLAN_FRAME	0x00000010
#define TXDESC_FRAME_FLUSHED	0x00000020
#define TXDESC_IP_HEADER_ERR	0x00000040
#define TXDESC_PAYLOAD_CSUM_ERR	0x00000080
#define TXDESC_ERROR_SUMMARY	0x00008000
#define TXDESC_SA_CTRL_INSERT	0x00040000
#define TXDESC_SA_CTRL_REPLACE	0x00080000
#define TXDESC_2ND_ADDR_CHAINED	0x00100000
#define TXDESC_END_RING		0x00200000
#define TXDESC_CSUM_IP		0x00400000
#define TXDESC_CSUM_IP_PAYLD	0x00800000
#define TXDESC_CSUM_ALL		0x00C00000
#define TXDESC_CRC_EN_REPLACE	0x01000000
#define TXDESC_CRC_EN_APPEND	0x02000000
#define TXDESC_DISABLE_PAD	0x04000000
#define TXDESC_FIRST_SEG	0x10000000
#define TXDESC_LAST_SEG		0x20000000
#define TXDESC_INTERRUPT	0x40000000

#define DESC_OWN		0x80000000
#define DESC_BUFFER1_SZ_MASK	0x00001fff
#define DESC_BUFFER2_SZ_MASK	0x1fff0000
#define DESC_BUFFER2_SZ_OFFSET	16

struct xgmac_dma_desc {
	__le32 flags;
	__le32 buf_size;
	__le32 buf1_addr;		/* Buffer 1 Address Pointer */
	__le32 buf2_addr;		/* Buffer 2 Address Pointer */
	__le32 ext_status;
	__le32 res[3];
};

struct xgmac_extra_stats {
	/* Transmit errors */
	unsigned long tx_jabber;
	unsigned long tx_frame_flushed;
	unsigned long tx_payload_error;
	unsigned long tx_ip_header_error;
	unsigned long tx_local_fault;
	unsigned long tx_remote_fault;
	/* Receive errors */
	unsigned long rx_watchdog;
	unsigned long rx_da_filter_fail;
	unsigned long rx_payload_error;
	unsigned long rx_ip_header_error;
	/* Tx/Rx IRQ errors */
	unsigned long tx_process_stopped;
	unsigned long rx_buf_unav;
	unsigned long rx_process_stopped;
	unsigned long tx_early;
	unsigned long fatal_bus_error;
};

struct xgmac_priv {
	struct xgmac_dma_desc *dma_rx;
	struct sk_buff **rx_skbuff;
	unsigned int rx_tail;
	unsigned int rx_head;

	struct xgmac_dma_desc *dma_tx;
	struct sk_buff **tx_skbuff;
	unsigned int tx_head;
	unsigned int tx_tail;
	int tx_irq_cnt;

	void __iomem *base;
	unsigned int dma_buf_sz;
	dma_addr_t dma_rx_phy;
	dma_addr_t dma_tx_phy;

	struct net_device *dev;
	struct device *device;
	struct napi_struct napi;

	int max_macs;
	struct xgmac_extra_stats xstats;

	spinlock_t stats_lock;
	int pmt_irq;
	char rx_pause;
	char tx_pause;
	int wolopts;
	struct work_struct tx_timeout_work;
};

/* XGMAC Configuration Settings */
#define XGMAC_MAX_MTU		9000
#define PAUSE_TIME		0x400

#define DMA_RX_RING_SZ		256
#define DMA_TX_RING_SZ		128
/* minimum number of free TX descriptors required to wake up TX process */
#define TX_THRESH		(DMA_TX_RING_SZ/4)

/* DMA descriptor ring helpers */
#define dma_ring_incr(n, s)	(((n) + 1) & ((s) - 1))
#define dma_ring_space(h, t, s)	CIRC_SPACE(h, t, s)
#define dma_ring_cnt(h, t, s)	CIRC_CNT(h, t, s)

#define tx_dma_ring_space(p) \
	dma_ring_space((p)->tx_head, (p)->tx_tail, DMA_TX_RING_SZ)

/* XGMAC Descriptor Access Helpers */
static inline void desc_set_buf_len(struct xgmac_dma_desc *p, u32 buf_sz)
{
	if (buf_sz > MAX_DESC_BUF_SZ)
		p->buf_size = cpu_to_le32(MAX_DESC_BUF_SZ |
			(buf_sz - MAX_DESC_BUF_SZ) << DESC_BUFFER2_SZ_OFFSET);
	else
		p->buf_size = cpu_to_le32(buf_sz);
}

static inline int desc_get_buf_len(struct xgmac_dma_desc *p)
{
	u32 len = le32_to_cpu(p->buf_size);
	return (len & DESC_BUFFER1_SZ_MASK) +
		((len & DESC_BUFFER2_SZ_MASK) >> DESC_BUFFER2_SZ_OFFSET);
}

static inline void desc_init_rx_desc(struct xgmac_dma_desc *p, int ring_size,
				     int buf_sz)
{
	struct xgmac_dma_desc *end = p + ring_size - 1;

	memset(p, 0, sizeof(*p) * ring_size);

	for (; p <= end; p++)
		desc_set_buf_len(p, buf_sz);

	end->buf_size |= cpu_to_le32(RXDESC1_END_RING);
}

static inline void desc_init_tx_desc(struct xgmac_dma_desc *p, u32 ring_size)
{
	memset(p, 0, sizeof(*p) * ring_size);
	p[ring_size - 1].flags = cpu_to_le32(TXDESC_END_RING);
}

static inline int desc_get_owner(struct xgmac_dma_desc *p)
{
	return le32_to_cpu(p->flags) & DESC_OWN;
}

static inline void desc_set_rx_owner(struct xgmac_dma_desc *p)
{
	/* Clear all fields and set the owner */
	p->flags = cpu_to_le32(DESC_OWN);
}

static inline void desc_set_tx_owner(struct xgmac_dma_desc *p, u32 flags)
{
	u32 tmpflags = le32_to_cpu(p->flags);
	tmpflags &= TXDESC_END_RING;
	tmpflags |= flags | DESC_OWN;
	p->flags = cpu_to_le32(tmpflags);
}

static inline void desc_clear_tx_owner(struct xgmac_dma_desc *p)
{
	u32 tmpflags = le32_to_cpu(p->flags);
	tmpflags &= TXDESC_END_RING;
	p->flags = cpu_to_le32(tmpflags);
}

static inline int desc_get_tx_ls(struct xgmac_dma_desc *p)
{
	return le32_to_cpu(p->flags) & TXDESC_LAST_SEG;
}

static inline int desc_get_tx_fs(struct xgmac_dma_desc *p)
{
	return le32_to_cpu(p->flags) & TXDESC_FIRST_SEG;
}

static inline u32 desc_get_buf_addr(struct xgmac_dma_desc *p)
{
	return le32_to_cpu(p->buf1_addr);
}

static inline void desc_set_buf_addr(struct xgmac_dma_desc *p,
				     u32 paddr, int len)
{
	p->buf1_addr = cpu_to_le32(paddr);
	if (len > MAX_DESC_BUF_SZ)
		p->buf2_addr = cpu_to_le32(paddr + MAX_DESC_BUF_SZ);
}

static inline void desc_set_buf_addr_and_size(struct xgmac_dma_desc *p,
					      u32 paddr, int len)
{
	desc_set_buf_len(p, len);
	desc_set_buf_addr(p, paddr, len);
}

static inline int desc_get_rx_frame_len(struct xgmac_dma_desc *p)
{
	u32 data = le32_to_cpu(p->flags);
	u32 len = (data & RXDESC_FRAME_LEN_MASK) >> RXDESC_FRAME_LEN_OFFSET;
	if (data & RXDESC_FRAME_TYPE)
		len -= ETH_FCS_LEN;

	return len;
}

static void xgmac_dma_flush_tx_fifo(void __iomem *ioaddr)
{
	int timeout = 1000;
	u32 reg = readl(ioaddr + XGMAC_OMR);
	writel(reg | XGMAC_OMR_FTF, ioaddr + XGMAC_OMR);

	while ((timeout-- > 0) && readl(ioaddr + XGMAC_OMR) & XGMAC_OMR_FTF)
		udelay(1);
}

static int desc_get_tx_status(struct xgmac_priv *priv, struct xgmac_dma_desc *p)
{
	struct xgmac_extra_stats *x = &priv->xstats;
	u32 status = le32_to_cpu(p->flags);

	if (!(status & TXDESC_ERROR_SUMMARY))
		return 0;

	netdev_dbg(priv->dev, "tx desc error = 0x%08x\n", status);
	if (status & TXDESC_JABBER_TIMEOUT)
		x->tx_jabber++;
	if (status & TXDESC_FRAME_FLUSHED)
		x->tx_frame_flushed++;
	if (status & TXDESC_UNDERFLOW_ERR)
		xgmac_dma_flush_tx_fifo(priv->base);
	if (status & TXDESC_IP_HEADER_ERR)
		x->tx_ip_header_error++;
	if (status & TXDESC_LOCAL_FAULT)
		x->tx_local_fault++;
	if (status & TXDESC_REMOTE_FAULT)
		x->tx_remote_fault++;
	if (status & TXDESC_PAYLOAD_CSUM_ERR)
		x->tx_payload_error++;

	return -1;
}

static int desc_get_rx_status(struct xgmac_priv *priv, struct xgmac_dma_desc *p)
{
	struct xgmac_extra_stats *x = &priv->xstats;
	int ret = CHECKSUM_UNNECESSARY;
	u32 status = le32_to_cpu(p->flags);
	u32 ext_status = le32_to_cpu(p->ext_status);

	if (status & RXDESC_DA_FILTER_FAIL) {
		netdev_dbg(priv->dev, "XGMAC RX : Dest Address filter fail\n");
		x->rx_da_filter_fail++;
		return -1;
	}

	/* All frames should fit into a single buffer */
	if (!(status & RXDESC_FIRST_SEG) || !(status & RXDESC_LAST_SEG))
		return -1;

	/* Check if packet has checksum already */
	if ((status & RXDESC_FRAME_TYPE) && (status & RXDESC_EXT_STATUS) &&
		!(ext_status & RXDESC_IP_PAYLOAD_MASK))
		ret = CHECKSUM_NONE;

	netdev_dbg(priv->dev, "rx status - frame type=%d, csum = %d, ext stat %08x\n",
		   (status & RXDESC_FRAME_TYPE) ? 1 : 0, ret, ext_status);

	if (!(status & RXDESC_ERROR_SUMMARY))
		return ret;

	/* Handle any errors */
	if (status & (RXDESC_DESCRIPTOR_ERR | RXDESC_OVERFLOW_ERR |
		RXDESC_GIANT_FRAME | RXDESC_LENGTH_ERR | RXDESC_CRC_ERR))
		return -1;

	if (status & RXDESC_EXT_STATUS) {
		if (ext_status & RXDESC_IP_HEADER_ERR)
			x->rx_ip_header_error++;
		if (ext_status & RXDESC_IP_PAYLOAD_ERR)
			x->rx_payload_error++;
		netdev_dbg(priv->dev, "IP checksum error - stat %08x\n",
			   ext_status);
		return CHECKSUM_NONE;
	}

	return ret;
}

static inline void xgmac_mac_enable(void __iomem *ioaddr)
{
	u32 value = readl(ioaddr + XGMAC_CONTROL);
	value |= MAC_ENABLE_RX | MAC_ENABLE_TX;
	writel(value, ioaddr + XGMAC_CONTROL);

	value = readl(ioaddr + XGMAC_DMA_CONTROL);
	value |= DMA_CONTROL_ST | DMA_CONTROL_SR;
	writel(value, ioaddr + XGMAC_DMA_CONTROL);
}

static inline void xgmac_mac_disable(void __iomem *ioaddr)
{
	u32 value = readl(ioaddr + XGMAC_DMA_CONTROL);
	value &= ~(DMA_CONTROL_ST | DMA_CONTROL_SR);
	writel(value, ioaddr + XGMAC_DMA_CONTROL);

	value = readl(ioaddr + XGMAC_CONTROL);
	value &= ~(MAC_ENABLE_TX | MAC_ENABLE_RX);
	writel(value, ioaddr + XGMAC_CONTROL);
}

static void xgmac_set_mac_addr(void __iomem *ioaddr, unsigned char *addr,
			       int num)
{
	u32 data;

	if (addr) {
		data = (addr[5] << 8) | addr[4] | (num ? XGMAC_ADDR_AE : 0);
		writel(data, ioaddr + XGMAC_ADDR_HIGH(num));
		data = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0];
		writel(data, ioaddr + XGMAC_ADDR_LOW(num));
	} else {
		writel(0, ioaddr + XGMAC_ADDR_HIGH(num));
		writel(0, ioaddr + XGMAC_ADDR_LOW(num));
	}
}

static void xgmac_get_mac_addr(void __iomem *ioaddr, unsigned char *addr,
			       int num)
{
	u32 hi_addr, lo_addr;

	/* Read the MAC address from the hardware */
	hi_addr = readl(ioaddr + XGMAC_ADDR_HIGH(num));
	lo_addr = readl(ioaddr + XGMAC_ADDR_LOW(num));

	/* Extract the MAC address from the high and low words */
	addr[0] = lo_addr & 0xff;
	addr[1] = (lo_addr >> 8) & 0xff;
	addr[2] = (lo_addr >> 16) & 0xff;
	addr[3] = (lo_addr >> 24) & 0xff;
	addr[4] = hi_addr & 0xff;
	addr[5] = (hi_addr >> 8) & 0xff;
}

static int xgmac_set_flow_ctrl(struct xgmac_priv *priv, int rx, int tx)
{
	u32 reg;
	unsigned int flow = 0;

	priv->rx_pause = rx;
	priv->tx_pause = tx;

	if (rx || tx) {
		if (rx)
			flow |= XGMAC_FLOW_CTRL_RFE;
		if (tx)
			flow |= XGMAC_FLOW_CTRL_TFE;

		flow |= XGMAC_FLOW_CTRL_PLT | XGMAC_FLOW_CTRL_UP;
		flow |= (PAUSE_TIME << XGMAC_FLOW_CTRL_PT_SHIFT);

		writel(flow, priv->base + XGMAC_FLOW_CTRL);

		reg = readl(priv->base + XGMAC_OMR);
		reg |= XGMAC_OMR_EFC;
		writel(reg, priv->base + XGMAC_OMR);
	} else {
		writel(0, priv->base + XGMAC_FLOW_CTRL);

		reg = readl(priv->base + XGMAC_OMR);
		reg &= ~XGMAC_OMR_EFC;
		writel(reg, priv->base + XGMAC_OMR);
	}

	return 0;
}

static void xgmac_rx_refill(struct xgmac_priv *priv)
{
	struct xgmac_dma_desc *p;
	dma_addr_t paddr;
	int bufsz = priv->dev->mtu + ETH_HLEN + ETH_FCS_LEN;

	while (dma_ring_space(priv->rx_head, priv->rx_tail, DMA_RX_RING_SZ) > 1) {
		int entry = priv->rx_head;
		struct sk_buff *skb;

		p = priv->dma_rx + entry;

		if (priv->rx_skbuff[entry] == NULL) {
			skb = netdev_alloc_skb_ip_align(priv->dev, bufsz);
			if (unlikely(skb == NULL))
				break;

			paddr = dma_map_single(priv->device, skb->data,
					       priv->dma_buf_sz - NET_IP_ALIGN,
					       DMA_FROM_DEVICE);
			if (dma_mapping_error(priv->device, paddr)) {
				dev_kfree_skb_any(skb);
				break;
			}
			priv->rx_skbuff[entry] = skb;
			desc_set_buf_addr(p, paddr, priv->dma_buf_sz);
		}

		netdev_dbg(priv->dev, "rx ring: head %d, tail %d\n",
			priv->rx_head, priv->rx_tail);

		priv->rx_head = dma_ring_incr(priv->rx_head, DMA_RX_RING_SZ);
		desc_set_rx_owner(p);
	}
}

/**
 * init_xgmac_dma_desc_rings - init the RX/TX descriptor rings
 * @dev: net device structure
 * Description:  this function initializes the DMA RX/TX descriptors
 * and allocates the socket buffers.
 */
static int xgmac_dma_desc_rings_init(struct net_device *dev)
{
	struct xgmac_priv *priv = netdev_priv(dev);
	unsigned int bfsize;

	/* Set the Buffer size according to the MTU;
	 * The total buffer size including any IP offset must be a multiple
	 * of 8 bytes.
	 */
	bfsize = ALIGN(dev->mtu + ETH_HLEN + ETH_FCS_LEN + NET_IP_ALIGN, 8);

	netdev_dbg(priv->dev, "mtu [%d] bfsize [%d]\n", dev->mtu, bfsize);

	priv->rx_skbuff = kcalloc(DMA_RX_RING_SZ, sizeof(struct sk_buff *),
				  GFP_KERNEL);
	if (!priv->rx_skbuff)
		return -ENOMEM;

	priv->dma_rx = dma_alloc_coherent(priv->device,
					  DMA_RX_RING_SZ *
					  sizeof(struct xgmac_dma_desc),
					  &priv->dma_rx_phy,
					  GFP_KERNEL);
	if (!priv->dma_rx)
		goto err_dma_rx;

	priv->tx_skbuff = kcalloc(DMA_TX_RING_SZ, sizeof(struct sk_buff *),
				  GFP_KERNEL);
	if (!priv->tx_skbuff)
		goto err_tx_skb;

	priv->dma_tx = dma_alloc_coherent(priv->device,
					  DMA_TX_RING_SZ *
					  sizeof(struct xgmac_dma_desc),
					  &priv->dma_tx_phy,
					  GFP_KERNEL);
	if (!priv->dma_tx)
		goto err_dma_tx;

	netdev_dbg(priv->dev, "DMA desc rings: virt addr (Rx %p, "
	    "Tx %p)\n\tDMA phy addr (Rx 0x%08x, Tx 0x%08x)\n",
	    priv->dma_rx, priv->dma_tx,
	    (unsigned int)priv->dma_rx_phy, (unsigned int)priv->dma_tx_phy);

	priv->rx_tail = 0;
	priv->rx_head = 0;
	priv->dma_buf_sz = bfsize;
	desc_init_rx_desc(priv->dma_rx, DMA_RX_RING_SZ, priv->dma_buf_sz);
	xgmac_rx_refill(priv);

	priv->tx_tail = 0;
	priv->tx_head = 0;
	desc_init_tx_desc(priv->dma_tx, DMA_TX_RING_SZ);

	writel(priv->dma_tx_phy, priv->base + XGMAC_DMA_TX_BASE_ADDR);
	writel(priv->dma_rx_phy, priv->base + XGMAC_DMA_RX_BASE_ADDR);

	return 0;

err_dma_tx:
	kfree(priv->tx_skbuff);
err_tx_skb:
	dma_free_coherent(priv->device,
			  DMA_RX_RING_SZ * sizeof(struct xgmac_dma_desc),
			  priv->dma_rx, priv->dma_rx_phy);
err_dma_rx:
	kfree(priv->rx_skbuff);
	return -ENOMEM;
}

static void xgmac_free_rx_skbufs(struct xgmac_priv *priv)
{
	int i;
	struct xgmac_dma_desc *p;

	if (!priv->rx_skbuff)
		return;

	for (i = 0; i < DMA_RX_RING_SZ; i++) {
		struct sk_buff *skb = priv->rx_skbuff[i];
		if (skb == NULL)
			continue;

		p = priv->dma_rx + i;
		dma_unmap_single(priv->device, desc_get_buf_addr(p),
				 priv->dma_buf_sz - NET_IP_ALIGN, DMA_FROM_DEVICE);
		dev_kfree_skb_any(skb);
		priv->rx_skbuff[i] = NULL;
	}
}

static void xgmac_free_tx_skbufs(struct xgmac_priv *priv)
{
	int i;
	struct xgmac_dma_desc *p;

	if (!priv->tx_skbuff)
		return;

	for (i = 0; i < DMA_TX_RING_SZ; i++) {
		if (priv->tx_skbuff[i] == NULL)
			continue;

		p = priv->dma_tx + i;
		if (desc_get_tx_fs(p))
			dma_unmap_single(priv->device, desc_get_buf_addr(p),
					 desc_get_buf_len(p), DMA_TO_DEVICE);
		else
			dma_unmap_page(priv->device, desc_get_buf_addr(p),
				       desc_get_buf_len(p), DMA_TO_DEVICE);

		if (desc_get_tx_ls(p))
			dev_kfree_skb_any(priv->tx_skbuff[i]);
		priv->tx_skbuff[i] = NULL;
	}
}

static void xgmac_free_dma_desc_rings(struct xgmac_priv *priv)
{
	/* Release the DMA TX/RX socket buffers */
	xgmac_free_rx_skbufs(priv);
	xgmac_free_tx_skbufs(priv);

	/* Free the consistent memory allocated for descriptor rings */
	if (priv->dma_tx) {
		dma_free_coherent(priv->device,
				  DMA_TX_RING_SZ * sizeof(struct xgmac_dma_desc),
				  priv->dma_tx, priv->dma_tx_phy);
		priv->dma_tx = NULL;
	}
	if (priv->dma_rx) {
		dma_free_coherent(priv->device,
				  DMA_RX_RING_SZ * sizeof(struct xgmac_dma_desc),
				  priv->dma_rx, priv->dma_rx_phy);
		priv->dma_rx = NULL;
	}
	kfree(priv->rx_skbuff);
	priv->rx_skbuff = NULL;
	kfree(priv->tx_skbuff);
	priv->tx_skbuff = NULL;
}

/**
 * xgmac_tx:
 * @priv: private driver structure
 * Description: it reclaims resources after transmission completes.
 */
static void xgmac_tx_complete(struct xgmac_priv *priv)
{
	while (dma_ring_cnt(priv->tx_head, priv->tx_tail, DMA_TX_RING_SZ)) {
		unsigned int entry = priv->tx_tail;
		struct sk_buff *skb = priv->tx_skbuff[entry];
		struct xgmac_dma_desc *p = priv->dma_tx + entry;

		/* Check if the descriptor is owned by the DMA. */
		if (desc_get_owner(p))
			break;

		netdev_dbg(priv->dev, "tx ring: curr %d, dirty %d\n",
			priv->tx_head, priv->tx_tail);

		if (desc_get_tx_fs(p))
			dma_unmap_single(priv->device, desc_get_buf_addr(p),
					 desc_get_buf_len(p), DMA_TO_DEVICE);
		else
			dma_unmap_page(priv->device, desc_get_buf_addr(p),
				       desc_get_buf_len(p), DMA_TO_DEVICE);

		/* Check tx error on the last segment */
		if (desc_get_tx_ls(p)) {
			desc_get_tx_status(priv, p);
			dev_consume_skb_any(skb);
		}

		priv->tx_skbuff[entry] = NULL;
		priv->tx_tail = dma_ring_incr(entry, DMA_TX_RING_SZ);
	}

	/* Ensure tx_tail is visible to xgmac_xmit */
	smp_mb();
	if (unlikely(netif_queue_stopped(priv->dev) &&
	    (tx_dma_ring_space(priv) > MAX_SKB_FRAGS)))
		netif_wake_queue(priv->dev);
}

static void xgmac_tx_timeout_work(struct work_struct *work)
{
	u32 reg, value;
	struct xgmac_priv *priv =
		container_of(work, struct xgmac_priv, tx_timeout_work);

	napi_disable(&priv->napi);

	writel(0, priv->base + XGMAC_DMA_INTR_ENA);

	netif_tx_lock(priv->dev);

	reg = readl(priv->base + XGMAC_DMA_CONTROL);
	writel(reg & ~DMA_CONTROL_ST, priv->base + XGMAC_DMA_CONTROL);
	do {
		value = readl(priv->base + XGMAC_DMA_STATUS) & 0x700000;
	} while (value && (value != 0x600000));

	xgmac_free_tx_skbufs(priv);
	desc_init_tx_desc(priv->dma_tx, DMA_TX_RING_SZ);
	priv->tx_tail = 0;
	priv->tx_head = 0;
	writel(priv->dma_tx_phy, priv->base + XGMAC_DMA_TX_BASE_ADDR);
	writel(reg | DMA_CONTROL_ST, priv->base + XGMAC_DMA_CONTROL);

	writel(DMA_STATUS_TU | DMA_STATUS_TPS | DMA_STATUS_NIS | DMA_STATUS_AIS,
		priv->base + XGMAC_DMA_STATUS);

	netif_tx_unlock(priv->dev);
	netif_wake_queue(priv->dev);

	napi_enable(&priv->napi);

	/* Enable interrupts */
	writel(DMA_INTR_DEFAULT_MASK, priv->base + XGMAC_DMA_STATUS);
	writel(DMA_INTR_DEFAULT_MASK, priv->base + XGMAC_DMA_INTR_ENA);
}

static int xgmac_hw_init(struct net_device *dev)
{
	u32 value, ctrl;
	int limit;
	struct xgmac_priv *priv = netdev_priv(dev);
	void __iomem *ioaddr = priv->base;

	/* Save the ctrl register value */
	ctrl = readl(ioaddr + XGMAC_CONTROL) & XGMAC_CONTROL_SPD_MASK;

	/* SW reset */
	value = DMA_BUS_MODE_SFT_RESET;
	writel(value, ioaddr + XGMAC_DMA_BUS_MODE);
	limit = 15000;
	while (limit-- &&
		(readl(ioaddr + XGMAC_DMA_BUS_MODE) & DMA_BUS_MODE_SFT_RESET))
		cpu_relax();
	if (limit < 0)
		return -EBUSY;

	value = (0x10 << DMA_BUS_MODE_PBL_SHIFT) |
		(0x10 << DMA_BUS_MODE_RPBL_SHIFT) |
		DMA_BUS_MODE_FB | DMA_BUS_MODE_ATDS | DMA_BUS_MODE_AAL;
	writel(value, ioaddr + XGMAC_DMA_BUS_MODE);

	writel(0, ioaddr + XGMAC_DMA_INTR_ENA);

	/* Mask power mgt interrupt */
	writel(XGMAC_INT_STAT_PMTIM, ioaddr + XGMAC_INT_STAT);

	/* XGMAC requires AXI bus init. This is a 'magic number' for now */
	writel(0x0077000E, ioaddr + XGMAC_DMA_AXI_BUS);

	ctrl |= XGMAC_CONTROL_DDIC | XGMAC_CONTROL_JE | XGMAC_CONTROL_ACS |
		XGMAC_CONTROL_CAR;
	if (dev->features & NETIF_F_RXCSUM)
		ctrl |= XGMAC_CONTROL_IPC;
	writel(ctrl, ioaddr + XGMAC_CONTROL);

	writel(DMA_CONTROL_OSF, ioaddr + XGMAC_DMA_CONTROL);

	/* Set the HW DMA mode and the COE */
	writel(XGMAC_OMR_TSF | XGMAC_OMR_RFD | XGMAC_OMR_RFA |
		XGMAC_OMR_RTC_256,
		ioaddr + XGMAC_OMR);

	/* Reset the MMC counters */
	writel(1, ioaddr + XGMAC_MMC_CTRL);
	return 0;
}

/**
 *  xgmac_open - open entry point of the driver
 *  @dev : pointer to the device structure.
 *  Description:
 *  This function is the open entry point of the driver.
 *  Return value:
 *  0 on success and an appropriate (-)ve integer as defined in errno.h
 *  file on failure.
 */
static int xgmac_open(struct net_device *dev)
{
	int ret;
	struct xgmac_priv *priv = netdev_priv(dev);
	void __iomem *ioaddr = priv->base;

	/* Check that the MAC address is valid.  If its not, refuse
	 * to bring the device up. The user must specify an
	 * address using the following linux command:
	 *      ifconfig eth0 hw ether xx:xx:xx:xx:xx:xx  */
	if (!is_valid_ether_addr(dev->dev_addr)) {
		eth_hw_addr_random(dev);
		netdev_dbg(priv->dev, "generated random MAC address %pM\n",
			dev->dev_addr);
	}

	memset(&priv->xstats, 0, sizeof(struct xgmac_extra_stats));

	/* Initialize the XGMAC and descriptors */
	xgmac_hw_init(dev);
	xgmac_set_mac_addr(ioaddr, dev->dev_addr, 0);
	xgmac_set_flow_ctrl(priv, priv->rx_pause, priv->tx_pause);

	ret = xgmac_dma_desc_rings_init(dev);
	if (ret < 0)
		return ret;

	/* Enable the MAC Rx/Tx */
	xgmac_mac_enable(ioaddr);

	napi_enable(&priv->napi);
	netif_start_queue(dev);

	/* Enable interrupts */
	writel(DMA_INTR_DEFAULT_MASK, ioaddr + XGMAC_DMA_STATUS);
	writel(DMA_INTR_DEFAULT_MASK, ioaddr + XGMAC_DMA_INTR_ENA);

	return 0;
}

/**
 *  xgmac_release - close entry point of the driver
 *  @dev : device pointer.
 *  Description:
 *  This is the stop entry point of the driver.
 */
static int xgmac_stop(struct net_device *dev)
{
	struct xgmac_priv *priv = netdev_priv(dev);

	if (readl(priv->base + XGMAC_DMA_INTR_ENA))
		napi_disable(&priv->napi);

	writel(0, priv->base + XGMAC_DMA_INTR_ENA);

	netif_tx_disable(dev);

	/* Disable the MAC core */
	xgmac_mac_disable(priv->base);

	/* Release and free the Rx/Tx resources */
	xgmac_free_dma_desc_rings(priv);

	return 0;
}

/**
 *  xgmac_xmit:
 *  @skb : the socket buffer
 *  @dev : device pointer
 *  Description : Tx entry point of the driver.
 */
static netdev_tx_t xgmac_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct xgmac_priv *priv = netdev_priv(dev);
	unsigned int entry;
	int i;
	u32 irq_flag;
	int nfrags = skb_shinfo(skb)->nr_frags;
	struct xgmac_dma_desc *desc, *first;
	unsigned int desc_flags;
	unsigned int len;
	dma_addr_t paddr;

	priv->tx_irq_cnt = (priv->tx_irq_cnt + 1) & (DMA_TX_RING_SZ/4 - 1);
	irq_flag = priv->tx_irq_cnt ? 0 : TXDESC_INTERRUPT;

	desc_flags = (skb->ip_summed == CHECKSUM_PARTIAL) ?
		TXDESC_CSUM_ALL : 0;
	entry = priv->tx_head;
	desc = priv->dma_tx + entry;
	first = desc;

	len = skb_headlen(skb);
	paddr = dma_map_single(priv->device, skb->data, len, DMA_TO_DEVICE);
	if (dma_mapping_error(priv->device, paddr)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}
	priv->tx_skbuff[entry] = skb;
	desc_set_buf_addr_and_size(desc, paddr, len);

	for (i = 0; i < nfrags; i++) {
		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];

		len = skb_frag_size(frag);

		paddr = skb_frag_dma_map(priv->device, frag, 0, len,
					 DMA_TO_DEVICE);
		if (dma_mapping_error(priv->device, paddr))
			goto dma_err;

		entry = dma_ring_incr(entry, DMA_TX_RING_SZ);
		desc = priv->dma_tx + entry;
		priv->tx_skbuff[entry] = skb;

		desc_set_buf_addr_and_size(desc, paddr, len);
		if (i < (nfrags - 1))
			desc_set_tx_owner(desc, desc_flags);
	}

	/* Interrupt on completition only for the latest segment */
	if (desc != first)
		desc_set_tx_owner(desc, desc_flags |
			TXDESC_LAST_SEG | irq_flag);
	else
		desc_flags |= TXDESC_LAST_SEG | irq_flag;

	/* Set owner on first desc last to avoid race condition */
	wmb();
	desc_set_tx_owner(first, desc_flags | TXDESC_FIRST_SEG);

	writel(1, priv->base + XGMAC_DMA_TX_POLL);

	priv->tx_head = dma_ring_incr(entry, DMA_TX_RING_SZ);

	/* Ensure tx_head update is visible to tx completion */
	smp_mb();
	if (unlikely(tx_dma_ring_space(priv) <= MAX_SKB_FRAGS)) {
		netif_stop_queue(dev);
		/* Ensure netif_stop_queue is visible to tx completion */
		smp_mb();
		if (tx_dma_ring_space(priv) > MAX_SKB_FRAGS)
			netif_start_queue(dev);
	}
	return NETDEV_TX_OK;

dma_err:
	entry = priv->tx_head;
	for ( ; i > 0; i--) {
		entry = dma_ring_incr(entry, DMA_TX_RING_SZ);
		desc = priv->dma_tx + entry;
		priv->tx_skbuff[entry] = NULL;
		dma_unmap_page(priv->device, desc_get_buf_addr(desc),
			       desc_get_buf_len(desc), DMA_TO_DEVICE);
		desc_clear_tx_owner(desc);
	}
	desc = first;
	dma_unmap_single(priv->device, desc_get_buf_addr(desc),
			 desc_get_buf_len(desc), DMA_TO_DEVICE);
	dev_kfree_skb_any(skb);
	return NETDEV_TX_OK;
}

static int xgmac_rx(struct xgmac_priv *priv, int limit)
{
	unsigned int entry;
	unsigned int count = 0;
	struct xgmac_dma_desc *p;

	while (count < limit) {
		int ip_checksum;
		struct sk_buff *skb;
		int frame_len;

		if (!dma_ring_cnt(priv->rx_head, priv->rx_tail, DMA_RX_RING_SZ))
			break;

		entry = priv->rx_tail;
		p = priv->dma_rx + entry;
		if (desc_get_owner(p))
			break;

		count++;
		priv->rx_tail = dma_ring_incr(priv->rx_tail, DMA_RX_RING_SZ);

		/* read the status of the incoming frame */
		ip_checksum = desc_get_rx_status(priv, p);
		if (ip_checksum < 0)
			continue;

		skb = priv->rx_skbuff[entry];
		if (unlikely(!skb)) {
			netdev_err(priv->dev, "Inconsistent Rx descriptor chain\n");
			break;
		}
		priv->rx_skbuff[entry] = NULL;

		frame_len = desc_get_rx_frame_len(p);
		netdev_dbg(priv->dev, "RX frame size %d, COE status: %d\n",
			frame_len, ip_checksum);

		skb_put(skb, frame_len);
		dma_unmap_single(priv->device, desc_get_buf_addr(p),
				 priv->dma_buf_sz - NET_IP_ALIGN, DMA_FROM_DEVICE);

		skb->protocol = eth_type_trans(skb, priv->dev);
		skb->ip_summed = ip_checksum;
		if (ip_checksum == CHECKSUM_NONE)
			netif_receive_skb(skb);
		else
			napi_gro_receive(&priv->napi, skb);
	}

	xgmac_rx_refill(priv);

	return count;
}

/**
 *  xgmac_poll - xgmac poll method (NAPI)
 *  @napi : pointer to the napi structure.
 *  @budget : maximum number of packets that the current CPU can receive from
 *	      all interfaces.
 *  Description :
 *   This function implements the the reception process.
 *   Also it runs the TX completion thread
 */
static int xgmac_poll(struct napi_struct *napi, int budget)
{
	struct xgmac_priv *priv = container_of(napi,
				       struct xgmac_priv, napi);
	int work_done = 0;

	xgmac_tx_complete(priv);
	work_done = xgmac_rx(priv, budget);

	if (work_done < budget) {
		napi_complete_done(napi, work_done);
		__raw_writel(DMA_INTR_DEFAULT_MASK, priv->base + XGMAC_DMA_INTR_ENA);
	}
	return work_done;
}

/**
 *  xgmac_tx_timeout
 *  @dev : Pointer to net device structure
 *  Description: this function is called when a packet transmission fails to
 *   complete within a reasonable tmrate. The driver will mark the error in the
 *   netdev structure and arrange for the device to be reset to a sane state
 *   in order to transmit a new packet.
 */
static void xgmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
{
	struct xgmac_priv *priv = netdev_priv(dev);
	schedule_work(&priv->tx_timeout_work);
}

/**
 *  xgmac_set_rx_mode - entry point for multicast addressing
 *  @dev : pointer to the device structure
 *  Description:
 *  This function is a driver entry point which gets called by the kernel
 *  whenever multicast addresses must be enabled/disabled.
 *  Return value:
 *  void.
 */
static void xgmac_set_rx_mode(struct net_device *dev)
{
	int i;
	struct xgmac_priv *priv = netdev_priv(dev);
	void __iomem *ioaddr = priv->base;
	unsigned int value = 0;
	u32 hash_filter[XGMAC_NUM_HASH];
	int reg = 1;
	struct netdev_hw_addr *ha;
	bool use_hash = false;

	netdev_dbg(priv->dev, "# mcasts %d, # unicast %d\n",
		 netdev_mc_count(dev), netdev_uc_count(dev));

	if (dev->flags & IFF_PROMISC)
		value |= XGMAC_FRAME_FILTER_PR;

	memset(hash_filter, 0, sizeof(hash_filter));

	if (netdev_uc_count(dev) > priv->max_macs) {
		use_hash = true;
		value |= XGMAC_FRAME_FILTER_HUC | XGMAC_FRAME_FILTER_HPF;
	}
	netdev_for_each_uc_addr(ha, dev) {
		if (use_hash) {
			u32 bit_nr = ~ether_crc(ETH_ALEN, ha->addr) >> 23;

			/* The most significant 4 bits determine the register to
			 * use (H/L) while the other 5 bits determine the bit
			 * within the register. */
			hash_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
		} else {
			xgmac_set_mac_addr(ioaddr, ha->addr, reg);
			reg++;
		}
	}

	if (dev->flags & IFF_ALLMULTI) {
		value |= XGMAC_FRAME_FILTER_PM;
		goto out;
	}

	if ((netdev_mc_count(dev) + reg - 1) > priv->max_macs) {
		use_hash = true;
		value |= XGMAC_FRAME_FILTER_HMC | XGMAC_FRAME_FILTER_HPF;
	} else {
		use_hash = false;
	}
	netdev_for_each_mc_addr(ha, dev) {
		if (use_hash) {
			u32 bit_nr = ~ether_crc(ETH_ALEN, ha->addr) >> 23;

			/* The most significant 4 bits determine the register to
			 * use (H/L) while the other 5 bits determine the bit
			 * within the register. */
			hash_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
		} else {
			xgmac_set_mac_addr(ioaddr, ha->addr, reg);
			reg++;
		}
	}

out:
	for (i = reg; i <= priv->max_macs; i++)
		xgmac_set_mac_addr(ioaddr, NULL, i);
	for (i = 0; i < XGMAC_NUM_HASH; i++)
		writel(hash_filter[i], ioaddr + XGMAC_HASH(i));

	writel(value, ioaddr + XGMAC_FRAME_FILTER);
}

/**
 *  xgmac_change_mtu - entry point to change MTU size for the device.
 *  @dev : device pointer.
 *  @new_mtu : the new MTU size for the device.
 *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
 *  to drive packet transmission. Ethernet has an MTU of 1500 octets
 *  (ETH_DATA_LEN). This value can be changed with ifconfig.
 *  Return value:
 *  0 on success and an appropriate (-)ve integer as defined in errno.h
 *  file on failure.
 */
static int xgmac_change_mtu(struct net_device *dev, int new_mtu)
{
	/* Stop everything, get ready to change the MTU */
	if (!netif_running(dev))
		return 0;

	/* Bring interface down, change mtu and bring interface back up */
	xgmac_stop(dev);
	dev->mtu = new_mtu;
	return xgmac_open(dev);
}

static irqreturn_t xgmac_pmt_interrupt(int irq, void *dev_id)
{
	u32 intr_status;
	struct net_device *dev = (struct net_device *)dev_id;
	struct xgmac_priv *priv = netdev_priv(dev);
	void __iomem *ioaddr = priv->base;

	intr_status = __raw_readl(ioaddr + XGMAC_INT_STAT);
	if (intr_status & XGMAC_INT_STAT_PMT) {
		netdev_dbg(priv->dev, "received Magic frame\n");
		/* clear the PMT bits 5 and 6 by reading the PMT */
		readl(ioaddr + XGMAC_PMT);
	}
	return IRQ_HANDLED;
}

static irqreturn_t xgmac_interrupt(int irq, void *dev_id)
{
	u32 intr_status;
	struct net_device *dev = (struct net_device *)dev_id;
	struct xgmac_priv *priv = netdev_priv(dev);
	struct xgmac_extra_stats *x = &priv->xstats;

	/* read the status register (CSR5) */
	intr_status = __raw_readl(priv->base + XGMAC_DMA_STATUS);
	intr_status &= __raw_readl(priv->base + XGMAC_DMA_INTR_ENA);
	__raw_writel(intr_status, priv->base + XGMAC_DMA_STATUS);

	/* It displays the DMA process states (CSR5 register) */
	/* ABNORMAL interrupts */
	if (unlikely(intr_status & DMA_STATUS_AIS)) {
		if (intr_status & DMA_STATUS_TJT) {
			netdev_err(priv->dev, "transmit jabber\n");
			x->tx_jabber++;
		}
		if (intr_status & DMA_STATUS_RU)
			x->rx_buf_unav++;
		if (intr_status & DMA_STATUS_RPS) {
			netdev_err(priv->dev, "receive process stopped\n");
			x->rx_process_stopped++;
		}
		if (intr_status & DMA_STATUS_ETI) {
			netdev_err(priv->dev, "transmit early interrupt\n");
			x->tx_early++;
		}
		if (intr_status & DMA_STATUS_TPS) {
			netdev_err(priv->dev, "transmit process stopped\n");
			x->tx_process_stopped++;
			schedule_work(&priv->tx_timeout_work);
		}
		if (intr_status & DMA_STATUS_FBI) {
			netdev_err(priv->dev, "fatal bus error\n");
			x->fatal_bus_error++;
		}
	}

	/* TX/RX NORMAL interrupts */
	if (intr_status & (DMA_STATUS_RI | DMA_STATUS_TU | DMA_STATUS_TI)) {
		__raw_writel(DMA_INTR_ABNORMAL, priv->base + XGMAC_DMA_INTR_ENA);
		napi_schedule(&priv->napi);
	}

	return IRQ_HANDLED;
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/* Polling receive - used by NETCONSOLE and other diagnostic tools
 * to allow network I/O with interrupts disabled. */
static void xgmac_poll_controller(struct net_device *dev)
{
	disable_irq(dev->irq);
	xgmac_interrupt(dev->irq, dev);
	enable_irq(dev->irq);
}
#endif

static void
xgmac_get_stats64(struct net_device *dev,
		  struct rtnl_link_stats64 *storage)
{
	struct xgmac_priv *priv = netdev_priv(dev);
	void __iomem *base = priv->base;
	u32 count;

	spin_lock_bh(&priv->stats_lock);
	writel(XGMAC_MMC_CTRL_CNT_FRZ, base + XGMAC_MMC_CTRL);

	storage->rx_bytes = readl(base + XGMAC_MMC_RXOCTET_G_LO);
	storage->rx_bytes |= (u64)(readl(base + XGMAC_MMC_RXOCTET_G_HI)) << 32;

	storage->rx_packets = readl(base + XGMAC_MMC_RXFRAME_GB_LO);
	storage->multicast = readl(base + XGMAC_MMC_RXMCFRAME_G);
	storage->rx_crc_errors = readl(base + XGMAC_MMC_RXCRCERR);
	storage->rx_length_errors = readl(base + XGMAC_MMC_RXLENGTHERR);
	storage->rx_missed_errors = readl(base + XGMAC_MMC_RXOVERFLOW);

	storage->tx_bytes = readl(base + XGMAC_MMC_TXOCTET_G_LO);
	storage->tx_bytes |= (u64)(readl(base + XGMAC_MMC_TXOCTET_G_HI)) << 32;

	count = readl(base + XGMAC_MMC_TXFRAME_GB_LO);
	storage->tx_errors = count - readl(base + XGMAC_MMC_TXFRAME_G_LO);
	storage->tx_packets = count;
	storage->tx_fifo_errors = readl(base + XGMAC_MMC_TXUNDERFLOW);

	writel(0, base + XGMAC_MMC_CTRL);
	spin_unlock_bh(&priv->stats_lock);
}

static int xgmac_set_mac_address(struct net_device *dev, void *p)
{
	struct xgmac_priv *priv = netdev_priv(dev);
	void __iomem *ioaddr = priv->base;
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);

	xgmac_set_mac_addr(ioaddr, dev->dev_addr, 0);

	return 0;
}

static int xgmac_set_features(struct net_device *dev, netdev_features_t features)
{
	u32 ctrl;
	struct xgmac_priv *priv = netdev_priv(dev);
	void __iomem *ioaddr = priv->base;
	netdev_features_t changed = dev->features ^ features;

	if (!(changed & NETIF_F_RXCSUM))
		return 0;

	ctrl = readl(ioaddr + XGMAC_CONTROL);
	if (features & NETIF_F_RXCSUM)
		ctrl |= XGMAC_CONTROL_IPC;
	else
		ctrl &= ~XGMAC_CONTROL_IPC;
	writel(ctrl, ioaddr + XGMAC_CONTROL);

	return 0;
}

static const struct net_device_ops xgmac_netdev_ops = {
	.ndo_open = xgmac_open,
	.ndo_start_xmit = xgmac_xmit,
	.ndo_stop = xgmac_stop,
	.ndo_change_mtu = xgmac_change_mtu,
	.ndo_set_rx_mode = xgmac_set_rx_mode,
	.ndo_tx_timeout = xgmac_tx_timeout,
	.ndo_get_stats64 = xgmac_get_stats64,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = xgmac_poll_controller,
#endif
	.ndo_set_mac_address = xgmac_set_mac_address,
	.ndo_set_features = xgmac_set_features,
};

static int xgmac_ethtool_get_link_ksettings(struct net_device *dev,
					    struct ethtool_link_ksettings *cmd)
{
	cmd->base.autoneg = 0;
	cmd->base.duplex = DUPLEX_FULL;
	cmd->base.speed = 10000;
	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 0);
	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 0);
	return 0;
}

static void xgmac_get_pauseparam(struct net_device *netdev,
				      struct ethtool_pauseparam *pause)
{
	struct xgmac_priv *priv = netdev_priv(netdev);

	pause->rx_pause = priv->rx_pause;
	pause->tx_pause = priv->tx_pause;
}

static int xgmac_set_pauseparam(struct net_device *netdev,
				     struct ethtool_pauseparam *pause)
{
	struct xgmac_priv *priv = netdev_priv(netdev);

	if (pause->autoneg)
		return -EINVAL;

	return xgmac_set_flow_ctrl(priv, pause->rx_pause, pause->tx_pause);
}

struct xgmac_stats {
	char stat_string[ETH_GSTRING_LEN];
	int stat_offset;
	bool is_reg;
};

#define XGMAC_STAT(m)	\
	{ #m, offsetof(struct xgmac_priv, xstats.m), false }
#define XGMAC_HW_STAT(m, reg_offset)	\
	{ #m, reg_offset, true }

static const struct xgmac_stats xgmac_gstrings_stats[] = {
	XGMAC_STAT(tx_frame_flushed),
	XGMAC_STAT(tx_payload_error),
	XGMAC_STAT(tx_ip_header_error),
	XGMAC_STAT(tx_local_fault),
	XGMAC_STAT(tx_remote_fault),
	XGMAC_STAT(tx_early),
	XGMAC_STAT(tx_process_stopped),
	XGMAC_STAT(tx_jabber),
	XGMAC_STAT(rx_buf_unav),
	XGMAC_STAT(rx_process_stopped),
	XGMAC_STAT(rx_payload_error),
	XGMAC_STAT(rx_ip_header_error),
	XGMAC_STAT(rx_da_filter_fail),
	XGMAC_STAT(fatal_bus_error),
	XGMAC_HW_STAT(rx_watchdog, XGMAC_MMC_RXWATCHDOG),
	XGMAC_HW_STAT(tx_vlan, XGMAC_MMC_TXVLANFRAME),
	XGMAC_HW_STAT(rx_vlan, XGMAC_MMC_RXVLANFRAME),
	XGMAC_HW_STAT(tx_pause, XGMAC_MMC_TXPAUSEFRAME),
	XGMAC_HW_STAT(rx_pause, XGMAC_MMC_RXPAUSEFRAME),
};
#define XGMAC_STATS_LEN ARRAY_SIZE(xgmac_gstrings_stats)

static void xgmac_get_ethtool_stats(struct net_device *dev,
					 struct ethtool_stats *dummy,
					 u64 *data)
{
	struct xgmac_priv *priv = netdev_priv(dev);
	void *p = priv;
	int i;

	for (i = 0; i < XGMAC_STATS_LEN; i++) {
		if (xgmac_gstrings_stats[i].is_reg)
			*data++ = readl(priv->base +
				xgmac_gstrings_stats[i].stat_offset);
		else
			*data++ = *(u32 *)(p +
				xgmac_gstrings_stats[i].stat_offset);
	}
}

static int xgmac_get_sset_count(struct net_device *netdev, int sset)
{
	switch (sset) {
	case ETH_SS_STATS:
		return XGMAC_STATS_LEN;
	default:
		return -EINVAL;
	}
}

static void xgmac_get_strings(struct net_device *dev, u32 stringset,
				   u8 *data)
{
	int i;
	u8 *p = data;

	switch (stringset) {
	case ETH_SS_STATS:
		for (i = 0; i < XGMAC_STATS_LEN; i++) {
			memcpy(p, xgmac_gstrings_stats[i].stat_string,
			       ETH_GSTRING_LEN);
			p += ETH_GSTRING_LEN;
		}
		break;
	default:
		WARN_ON(1);
		break;
	}
}

static void xgmac_get_wol(struct net_device *dev,
			       struct ethtool_wolinfo *wol)
{
	struct xgmac_priv *priv = netdev_priv(dev);

	if (device_can_wakeup(priv->device)) {
		wol->supported = WAKE_MAGIC | WAKE_UCAST;
		wol->wolopts = priv->wolopts;
	}
}

static int xgmac_set_wol(struct net_device *dev,
			      struct ethtool_wolinfo *wol)
{
	struct xgmac_priv *priv = netdev_priv(dev);
	u32 support = WAKE_MAGIC | WAKE_UCAST;

	if (!device_can_wakeup(priv->device))
		return -ENOTSUPP;

	if (wol->wolopts & ~support)
		return -EINVAL;

	priv->wolopts = wol->wolopts;

	if (wol->wolopts) {
		device_set_wakeup_enable(priv->device, 1);
		enable_irq_wake(dev->irq);
	} else {
		device_set_wakeup_enable(priv->device, 0);
		disable_irq_wake(dev->irq);
	}

	return 0;
}

static const struct ethtool_ops xgmac_ethtool_ops = {
	.get_link = ethtool_op_get_link,
	.get_pauseparam = xgmac_get_pauseparam,
	.set_pauseparam = xgmac_set_pauseparam,
	.get_ethtool_stats = xgmac_get_ethtool_stats,
	.get_strings = xgmac_get_strings,
	.get_wol = xgmac_get_wol,
	.set_wol = xgmac_set_wol,
	.get_sset_count = xgmac_get_sset_count,
	.get_link_ksettings = xgmac_ethtool_get_link_ksettings,
};

/**
 * xgmac_probe
 * @pdev: platform device pointer
 * Description: the driver is initialized through platform_device.
 */
static int xgmac_probe(struct platform_device *pdev)
{
	int ret = 0;
	struct resource *res;
	struct net_device *ndev = NULL;
	struct xgmac_priv *priv = NULL;
	u32 uid;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res)
		return -ENODEV;

	if (!request_mem_region(res->start, resource_size(res), pdev->name))
		return -EBUSY;

	ndev = alloc_etherdev(sizeof(struct xgmac_priv));
	if (!ndev) {
		ret = -ENOMEM;
		goto err_alloc;
	}

	SET_NETDEV_DEV(ndev, &pdev->dev);
	priv = netdev_priv(ndev);
	platform_set_drvdata(pdev, ndev);
	ndev->netdev_ops = &xgmac_netdev_ops;
	ndev->ethtool_ops = &xgmac_ethtool_ops;
	spin_lock_init(&priv->stats_lock);
	INIT_WORK(&priv->tx_timeout_work, xgmac_tx_timeout_work);

	priv->device = &pdev->dev;
	priv->dev = ndev;
	priv->rx_pause = 1;
	priv->tx_pause = 1;

	priv->base = ioremap(res->start, resource_size(res));
	if (!priv->base) {
		netdev_err(ndev, "ioremap failed\n");
		ret = -ENOMEM;
		goto err_io;
	}

	uid = readl(priv->base + XGMAC_VERSION);
	netdev_info(ndev, "h/w version is 0x%x\n", uid);

	/* Figure out how many valid mac address filter registers we have */
	writel(1, priv->base + XGMAC_ADDR_HIGH(31));
	if (readl(priv->base + XGMAC_ADDR_HIGH(31)) == 1)
		priv->max_macs = 31;
	else
		priv->max_macs = 7;

	writel(0, priv->base + XGMAC_DMA_INTR_ENA);
	ndev->irq = platform_get_irq(pdev, 0);
	if (ndev->irq == -ENXIO) {
		netdev_err(ndev, "No irq resource\n");
		ret = ndev->irq;
		goto err_irq;
	}

	ret = request_irq(ndev->irq, xgmac_interrupt, 0,
			  dev_name(&pdev->dev), ndev);
	if (ret < 0) {
		netdev_err(ndev, "Could not request irq %d - ret %d)\n",
			ndev->irq, ret);
		goto err_irq;
	}

	priv->pmt_irq = platform_get_irq(pdev, 1);
	if (priv->pmt_irq == -ENXIO) {
		netdev_err(ndev, "No pmt irq resource\n");
		ret = priv->pmt_irq;
		goto err_pmt_irq;
	}

	ret = request_irq(priv->pmt_irq, xgmac_pmt_interrupt, 0,
			  dev_name(&pdev->dev), ndev);
	if (ret < 0) {
		netdev_err(ndev, "Could not request irq %d - ret %d)\n",
			priv->pmt_irq, ret);
		goto err_pmt_irq;
	}

	device_set_wakeup_capable(&pdev->dev, 1);
	if (device_can_wakeup(priv->device))
		priv->wolopts = WAKE_MAGIC;	/* Magic Frame as default */

	ndev->hw_features = NETIF_F_SG | NETIF_F_HIGHDMA;
	if (readl(priv->base + XGMAC_DMA_HW_FEATURE) & DMA_HW_FEAT_TXCOESEL)
		ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
				     NETIF_F_RXCSUM;
	ndev->features |= ndev->hw_features;
	ndev->priv_flags |= IFF_UNICAST_FLT;

	/* MTU range: 46 - 9000 */
	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
	ndev->max_mtu = XGMAC_MAX_MTU;

	/* Get the MAC address */
	xgmac_get_mac_addr(priv->base, ndev->dev_addr, 0);
	if (!is_valid_ether_addr(ndev->dev_addr))
		netdev_warn(ndev, "MAC address %pM not valid",
			 ndev->dev_addr);

	netif_napi_add(ndev, &priv->napi, xgmac_poll, 64);
	ret = register_netdev(ndev);
	if (ret)
		goto err_reg;

	return 0;

err_reg:
	netif_napi_del(&priv->napi);
	free_irq(priv->pmt_irq, ndev);
err_pmt_irq:
	free_irq(ndev->irq, ndev);
err_irq:
	iounmap(priv->base);
err_io:
	free_netdev(ndev);
err_alloc:
	release_mem_region(res->start, resource_size(res));
	return ret;
}

/**
 * xgmac_dvr_remove
 * @pdev: platform device pointer
 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
 * changes the link status, releases the DMA descriptor rings,
 * unregisters the MDIO bus and unmaps the allocated memory.
 */
static int xgmac_remove(struct platform_device *pdev)
{
	struct net_device *ndev = platform_get_drvdata(pdev);
	struct xgmac_priv *priv = netdev_priv(ndev);
	struct resource *res;

	xgmac_mac_disable(priv->base);

	/* Free the IRQ lines */
	free_irq(ndev->irq, ndev);
	free_irq(priv->pmt_irq, ndev);

	unregister_netdev(ndev);
	netif_napi_del(&priv->napi);

	iounmap(priv->base);
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	release_mem_region(res->start, resource_size(res));

	free_netdev(ndev);

	return 0;
}

#ifdef CONFIG_PM_SLEEP
static void xgmac_pmt(void __iomem *ioaddr, unsigned long mode)
{
	unsigned int pmt = 0;

	if (mode & WAKE_MAGIC)
		pmt |= XGMAC_PMT_POWERDOWN | XGMAC_PMT_MAGIC_PKT_EN;
	if (mode & WAKE_UCAST)
		pmt |= XGMAC_PMT_POWERDOWN | XGMAC_PMT_GLBL_UNICAST;

	writel(pmt, ioaddr + XGMAC_PMT);
}

static int xgmac_suspend(struct device *dev)
{
	struct net_device *ndev = dev_get_drvdata(dev);
	struct xgmac_priv *priv = netdev_priv(ndev);
	u32 value;

	if (!ndev || !netif_running(ndev))
		return 0;

	netif_device_detach(ndev);
	napi_disable(&priv->napi);
	writel(0, priv->base + XGMAC_DMA_INTR_ENA);

	if (device_may_wakeup(priv->device)) {
		/* Stop TX/RX DMA Only */
		value = readl(priv->base + XGMAC_DMA_CONTROL);
		value &= ~(DMA_CONTROL_ST | DMA_CONTROL_SR);
		writel(value, priv->base + XGMAC_DMA_CONTROL);

		xgmac_pmt(priv->base, priv->wolopts);
	} else
		xgmac_mac_disable(priv->base);

	return 0;
}

static int xgmac_resume(struct device *dev)
{
	struct net_device *ndev = dev_get_drvdata(dev);
	struct xgmac_priv *priv = netdev_priv(ndev);
	void __iomem *ioaddr = priv->base;

	if (!netif_running(ndev))
		return 0;

	xgmac_pmt(ioaddr, 0);

	/* Enable the MAC and DMA */
	xgmac_mac_enable(ioaddr);
	writel(DMA_INTR_DEFAULT_MASK, ioaddr + XGMAC_DMA_STATUS);
	writel(DMA_INTR_DEFAULT_MASK, ioaddr + XGMAC_DMA_INTR_ENA);

	netif_device_attach(ndev);
	napi_enable(&priv->napi);

	return 0;
}
#endif /* CONFIG_PM_SLEEP */

static SIMPLE_DEV_PM_OPS(xgmac_pm_ops, xgmac_suspend, xgmac_resume);

static const struct of_device_id xgmac_of_match[] = {
	{ .compatible = "calxeda,hb-xgmac", },
	{},
};
MODULE_DEVICE_TABLE(of, xgmac_of_match);

static struct platform_driver xgmac_driver = {
	.driver = {
		.name = "calxedaxgmac",
		.of_match_table = xgmac_of_match,
		.pm = &xgmac_pm_ops,
	},
	.probe = xgmac_probe,
	.remove = xgmac_remove,
};

module_platform_driver(xgmac_driver);

MODULE_AUTHOR("Calxeda, Inc.");
MODULE_DESCRIPTION("Calxeda 10G XGMAC driver");
MODULE_LICENSE("GPL v2");