Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Thierry Reding | 4341 | 72.05% | 1 | 1.37% |
Max Filippov | 626 | 10.39% | 7 | 9.59% |
Jonas Bonn | 496 | 8.23% | 12 | 16.44% |
Florian Fainelli | 197 | 3.27% | 6 | 8.22% |
Thomas Chou | 132 | 2.19% | 5 | 6.85% |
Jiri Pirko | 65 | 1.08% | 4 | 5.48% |
Tobias Klauser | 24 | 0.40% | 6 | 8.22% |
Vasiliy Kulikov | 20 | 0.33% | 1 | 1.37% |
Philippe Reynes | 20 | 0.33% | 2 | 2.74% |
Danny Kukawka | 14 | 0.23% | 1 | 1.37% |
Andrew Lunn | 13 | 0.22% | 2 | 2.74% |
Patrick McHardy | 10 | 0.17% | 1 | 1.37% |
Alexey Dobriyan | 9 | 0.15% | 3 | 4.11% |
Eric Dumazet | 8 | 0.13% | 2 | 2.74% |
Richard Cochran | 6 | 0.10% | 2 | 2.74% |
Colin Ian King | 5 | 0.08% | 1 | 1.37% |
Michael S. Tsirkin | 4 | 0.07% | 1 | 1.37% |
Petr Štetiar | 4 | 0.07% | 1 | 1.37% |
Adam Edvardsson | 4 | 0.07% | 1 | 1.37% |
Paul Gortmaker | 3 | 0.05% | 1 | 1.37% |
Barry Grussling | 3 | 0.05% | 1 | 1.37% |
Tejun Heo | 3 | 0.05% | 1 | 1.37% |
Axel Lin | 2 | 0.03% | 1 | 1.37% |
Grant C. Likely | 2 | 0.03% | 1 | 1.37% |
Christoph Hellwig | 2 | 0.03% | 1 | 1.37% |
David S. Miller | 2 | 0.03% | 1 | 1.37% |
Ben Hutchings | 2 | 0.03% | 1 | 1.37% |
Kees Cook | 2 | 0.03% | 1 | 1.37% |
Thomas Gleixner | 2 | 0.03% | 1 | 1.37% |
Julia Lawall | 1 | 0.02% | 1 | 1.37% |
Stephen Hemminger | 1 | 0.02% | 1 | 1.37% |
Lucas De Marchi | 1 | 0.02% | 1 | 1.37% |
Fabian Frederick | 1 | 0.02% | 1 | 1.37% |
Total | 6025 | 73 |
// SPDX-License-Identifier: GPL-2.0-only /* * linux/drivers/net/ethernet/ethoc.c * * Copyright (C) 2007-2008 Avionic Design Development GmbH * Copyright (C) 2008-2009 Avionic Design GmbH * * Written by Thierry Reding <thierry.reding@avionic-design.de> */ #include <linux/dma-mapping.h> #include <linux/etherdevice.h> #include <linux/clk.h> #include <linux/crc32.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/mii.h> #include <linux/phy.h> #include <linux/platform_device.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/of.h> #include <linux/of_net.h> #include <linux/module.h> #include <net/ethoc.h> static int buffer_size = 0x8000; /* 32 KBytes */ module_param(buffer_size, int, 0); MODULE_PARM_DESC(buffer_size, "DMA buffer allocation size"); /* register offsets */ #define MODER 0x00 #define INT_SOURCE 0x04 #define INT_MASK 0x08 #define IPGT 0x0c #define IPGR1 0x10 #define IPGR2 0x14 #define PACKETLEN 0x18 #define COLLCONF 0x1c #define TX_BD_NUM 0x20 #define CTRLMODER 0x24 #define MIIMODER 0x28 #define MIICOMMAND 0x2c #define MIIADDRESS 0x30 #define MIITX_DATA 0x34 #define MIIRX_DATA 0x38 #define MIISTATUS 0x3c #define MAC_ADDR0 0x40 #define MAC_ADDR1 0x44 #define ETH_HASH0 0x48 #define ETH_HASH1 0x4c #define ETH_TXCTRL 0x50 #define ETH_END 0x54 /* mode register */ #define MODER_RXEN (1 << 0) /* receive enable */ #define MODER_TXEN (1 << 1) /* transmit enable */ #define MODER_NOPRE (1 << 2) /* no preamble */ #define MODER_BRO (1 << 3) /* broadcast address */ #define MODER_IAM (1 << 4) /* individual address mode */ #define MODER_PRO (1 << 5) /* promiscuous mode */ #define MODER_IFG (1 << 6) /* interframe gap for incoming frames */ #define MODER_LOOP (1 << 7) /* loopback */ #define MODER_NBO (1 << 8) /* no back-off */ #define MODER_EDE (1 << 9) /* excess defer enable */ #define MODER_FULLD (1 << 10) /* full duplex */ #define MODER_RESET (1 << 11) /* FIXME: reset (undocumented) */ #define MODER_DCRC (1 << 12) /* delayed CRC enable */ #define MODER_CRC (1 << 13) /* CRC enable */ #define MODER_HUGE (1 << 14) /* huge packets enable */ #define MODER_PAD (1 << 15) /* padding enabled */ #define MODER_RSM (1 << 16) /* receive small packets */ /* interrupt source and mask registers */ #define INT_MASK_TXF (1 << 0) /* transmit frame */ #define INT_MASK_TXE (1 << 1) /* transmit error */ #define INT_MASK_RXF (1 << 2) /* receive frame */ #define INT_MASK_RXE (1 << 3) /* receive error */ #define INT_MASK_BUSY (1 << 4) #define INT_MASK_TXC (1 << 5) /* transmit control frame */ #define INT_MASK_RXC (1 << 6) /* receive control frame */ #define INT_MASK_TX (INT_MASK_TXF | INT_MASK_TXE) #define INT_MASK_RX (INT_MASK_RXF | INT_MASK_RXE) #define INT_MASK_ALL ( \ INT_MASK_TXF | INT_MASK_TXE | \ INT_MASK_RXF | INT_MASK_RXE | \ INT_MASK_TXC | INT_MASK_RXC | \ INT_MASK_BUSY \ ) /* packet length register */ #define PACKETLEN_MIN(min) (((min) & 0xffff) << 16) #define PACKETLEN_MAX(max) (((max) & 0xffff) << 0) #define PACKETLEN_MIN_MAX(min, max) (PACKETLEN_MIN(min) | \ PACKETLEN_MAX(max)) /* transmit buffer number register */ #define TX_BD_NUM_VAL(x) (((x) <= 0x80) ? (x) : 0x80) /* control module mode register */ #define CTRLMODER_PASSALL (1 << 0) /* pass all receive frames */ #define CTRLMODER_RXFLOW (1 << 1) /* receive control flow */ #define CTRLMODER_TXFLOW (1 << 2) /* transmit control flow */ /* MII mode register */ #define MIIMODER_CLKDIV(x) ((x) & 0xfe) /* needs to be an even number */ #define MIIMODER_NOPRE (1 << 8) /* no preamble */ /* MII command register */ #define MIICOMMAND_SCAN (1 << 0) /* scan status */ #define MIICOMMAND_READ (1 << 1) /* read status */ #define MIICOMMAND_WRITE (1 << 2) /* write control data */ /* MII address register */ #define MIIADDRESS_FIAD(x) (((x) & 0x1f) << 0) #define MIIADDRESS_RGAD(x) (((x) & 0x1f) << 8) #define MIIADDRESS_ADDR(phy, reg) (MIIADDRESS_FIAD(phy) | \ MIIADDRESS_RGAD(reg)) /* MII transmit data register */ #define MIITX_DATA_VAL(x) ((x) & 0xffff) /* MII receive data register */ #define MIIRX_DATA_VAL(x) ((x) & 0xffff) /* MII status register */ #define MIISTATUS_LINKFAIL (1 << 0) #define MIISTATUS_BUSY (1 << 1) #define MIISTATUS_INVALID (1 << 2) /* TX buffer descriptor */ #define TX_BD_CS (1 << 0) /* carrier sense lost */ #define TX_BD_DF (1 << 1) /* defer indication */ #define TX_BD_LC (1 << 2) /* late collision */ #define TX_BD_RL (1 << 3) /* retransmission limit */ #define TX_BD_RETRY_MASK (0x00f0) #define TX_BD_RETRY(x) (((x) & 0x00f0) >> 4) #define TX_BD_UR (1 << 8) /* transmitter underrun */ #define TX_BD_CRC (1 << 11) /* TX CRC enable */ #define TX_BD_PAD (1 << 12) /* pad enable for short packets */ #define TX_BD_WRAP (1 << 13) #define TX_BD_IRQ (1 << 14) /* interrupt request enable */ #define TX_BD_READY (1 << 15) /* TX buffer ready */ #define TX_BD_LEN(x) (((x) & 0xffff) << 16) #define TX_BD_LEN_MASK (0xffff << 16) #define TX_BD_STATS (TX_BD_CS | TX_BD_DF | TX_BD_LC | \ TX_BD_RL | TX_BD_RETRY_MASK | TX_BD_UR) /* RX buffer descriptor */ #define RX_BD_LC (1 << 0) /* late collision */ #define RX_BD_CRC (1 << 1) /* RX CRC error */ #define RX_BD_SF (1 << 2) /* short frame */ #define RX_BD_TL (1 << 3) /* too long */ #define RX_BD_DN (1 << 4) /* dribble nibble */ #define RX_BD_IS (1 << 5) /* invalid symbol */ #define RX_BD_OR (1 << 6) /* receiver overrun */ #define RX_BD_MISS (1 << 7) #define RX_BD_CF (1 << 8) /* control frame */ #define RX_BD_WRAP (1 << 13) #define RX_BD_IRQ (1 << 14) /* interrupt request enable */ #define RX_BD_EMPTY (1 << 15) #define RX_BD_LEN(x) (((x) & 0xffff) << 16) #define RX_BD_STATS (RX_BD_LC | RX_BD_CRC | RX_BD_SF | RX_BD_TL | \ RX_BD_DN | RX_BD_IS | RX_BD_OR | RX_BD_MISS) #define ETHOC_BUFSIZ 1536 #define ETHOC_ZLEN 64 #define ETHOC_BD_BASE 0x400 #define ETHOC_TIMEOUT (HZ / 2) #define ETHOC_MII_TIMEOUT (1 + (HZ / 5)) /** * struct ethoc - driver-private device structure * @iobase: pointer to I/O memory region * @membase: pointer to buffer memory region * @num_bd: number of buffer descriptors * @num_tx: number of send buffers * @cur_tx: last send buffer written * @dty_tx: last buffer actually sent * @num_rx: number of receive buffers * @cur_rx: current receive buffer * @vma: pointer to array of virtual memory addresses for buffers * @netdev: pointer to network device structure * @napi: NAPI structure * @msg_enable: device state flags * @lock: device lock * @mdio: MDIO bus for PHY access * @phy_id: address of attached PHY */ struct ethoc { void __iomem *iobase; void __iomem *membase; bool big_endian; unsigned int num_bd; unsigned int num_tx; unsigned int cur_tx; unsigned int dty_tx; unsigned int num_rx; unsigned int cur_rx; void **vma; struct net_device *netdev; struct napi_struct napi; u32 msg_enable; spinlock_t lock; struct mii_bus *mdio; struct clk *clk; s8 phy_id; int old_link; int old_duplex; }; /** * struct ethoc_bd - buffer descriptor * @stat: buffer statistics * @addr: physical memory address */ struct ethoc_bd { u32 stat; u32 addr; }; static inline u32 ethoc_read(struct ethoc *dev, loff_t offset) { if (dev->big_endian) return ioread32be(dev->iobase + offset); else return ioread32(dev->iobase + offset); } static inline void ethoc_write(struct ethoc *dev, loff_t offset, u32 data) { if (dev->big_endian) iowrite32be(data, dev->iobase + offset); else iowrite32(data, dev->iobase + offset); } static inline void ethoc_read_bd(struct ethoc *dev, int index, struct ethoc_bd *bd) { loff_t offset = ETHOC_BD_BASE + (index * sizeof(struct ethoc_bd)); bd->stat = ethoc_read(dev, offset + 0); bd->addr = ethoc_read(dev, offset + 4); } static inline void ethoc_write_bd(struct ethoc *dev, int index, const struct ethoc_bd *bd) { loff_t offset = ETHOC_BD_BASE + (index * sizeof(struct ethoc_bd)); ethoc_write(dev, offset + 0, bd->stat); ethoc_write(dev, offset + 4, bd->addr); } static inline void ethoc_enable_irq(struct ethoc *dev, u32 mask) { u32 imask = ethoc_read(dev, INT_MASK); imask |= mask; ethoc_write(dev, INT_MASK, imask); } static inline void ethoc_disable_irq(struct ethoc *dev, u32 mask) { u32 imask = ethoc_read(dev, INT_MASK); imask &= ~mask; ethoc_write(dev, INT_MASK, imask); } static inline void ethoc_ack_irq(struct ethoc *dev, u32 mask) { ethoc_write(dev, INT_SOURCE, mask); } static inline void ethoc_enable_rx_and_tx(struct ethoc *dev) { u32 mode = ethoc_read(dev, MODER); mode |= MODER_RXEN | MODER_TXEN; ethoc_write(dev, MODER, mode); } static inline void ethoc_disable_rx_and_tx(struct ethoc *dev) { u32 mode = ethoc_read(dev, MODER); mode &= ~(MODER_RXEN | MODER_TXEN); ethoc_write(dev, MODER, mode); } static int ethoc_init_ring(struct ethoc *dev, unsigned long mem_start) { struct ethoc_bd bd; int i; void *vma; dev->cur_tx = 0; dev->dty_tx = 0; dev->cur_rx = 0; ethoc_write(dev, TX_BD_NUM, dev->num_tx); /* setup transmission buffers */ bd.addr = mem_start; bd.stat = TX_BD_IRQ | TX_BD_CRC; vma = dev->membase; for (i = 0; i < dev->num_tx; i++) { if (i == dev->num_tx - 1) bd.stat |= TX_BD_WRAP; ethoc_write_bd(dev, i, &bd); bd.addr += ETHOC_BUFSIZ; dev->vma[i] = vma; vma += ETHOC_BUFSIZ; } bd.stat = RX_BD_EMPTY | RX_BD_IRQ; for (i = 0; i < dev->num_rx; i++) { if (i == dev->num_rx - 1) bd.stat |= RX_BD_WRAP; ethoc_write_bd(dev, dev->num_tx + i, &bd); bd.addr += ETHOC_BUFSIZ; dev->vma[dev->num_tx + i] = vma; vma += ETHOC_BUFSIZ; } return 0; } static int ethoc_reset(struct ethoc *dev) { u32 mode; /* TODO: reset controller? */ ethoc_disable_rx_and_tx(dev); /* TODO: setup registers */ /* enable FCS generation and automatic padding */ mode = ethoc_read(dev, MODER); mode |= MODER_CRC | MODER_PAD; ethoc_write(dev, MODER, mode); /* set full-duplex mode */ mode = ethoc_read(dev, MODER); mode |= MODER_FULLD; ethoc_write(dev, MODER, mode); ethoc_write(dev, IPGT, 0x15); ethoc_ack_irq(dev, INT_MASK_ALL); ethoc_enable_irq(dev, INT_MASK_ALL); ethoc_enable_rx_and_tx(dev); return 0; } static unsigned int ethoc_update_rx_stats(struct ethoc *dev, struct ethoc_bd *bd) { struct net_device *netdev = dev->netdev; unsigned int ret = 0; if (bd->stat & RX_BD_TL) { dev_err(&netdev->dev, "RX: frame too long\n"); netdev->stats.rx_length_errors++; ret++; } if (bd->stat & RX_BD_SF) { dev_err(&netdev->dev, "RX: frame too short\n"); netdev->stats.rx_length_errors++; ret++; } if (bd->stat & RX_BD_DN) { dev_err(&netdev->dev, "RX: dribble nibble\n"); netdev->stats.rx_frame_errors++; } if (bd->stat & RX_BD_CRC) { dev_err(&netdev->dev, "RX: wrong CRC\n"); netdev->stats.rx_crc_errors++; ret++; } if (bd->stat & RX_BD_OR) { dev_err(&netdev->dev, "RX: overrun\n"); netdev->stats.rx_over_errors++; ret++; } if (bd->stat & RX_BD_MISS) netdev->stats.rx_missed_errors++; if (bd->stat & RX_BD_LC) { dev_err(&netdev->dev, "RX: late collision\n"); netdev->stats.collisions++; ret++; } return ret; } static int ethoc_rx(struct net_device *dev, int limit) { struct ethoc *priv = netdev_priv(dev); int count; for (count = 0; count < limit; ++count) { unsigned int entry; struct ethoc_bd bd; entry = priv->num_tx + priv->cur_rx; ethoc_read_bd(priv, entry, &bd); if (bd.stat & RX_BD_EMPTY) { ethoc_ack_irq(priv, INT_MASK_RX); /* If packet (interrupt) came in between checking * BD_EMTPY and clearing the interrupt source, then we * risk missing the packet as the RX interrupt won't * trigger right away when we reenable it; hence, check * BD_EMTPY here again to make sure there isn't such a * packet waiting for us... */ ethoc_read_bd(priv, entry, &bd); if (bd.stat & RX_BD_EMPTY) break; } if (ethoc_update_rx_stats(priv, &bd) == 0) { int size = bd.stat >> 16; struct sk_buff *skb; size -= 4; /* strip the CRC */ skb = netdev_alloc_skb_ip_align(dev, size); if (likely(skb)) { void *src = priv->vma[entry]; memcpy_fromio(skb_put(skb, size), src, size); skb->protocol = eth_type_trans(skb, dev); dev->stats.rx_packets++; dev->stats.rx_bytes += size; netif_receive_skb(skb); } else { if (net_ratelimit()) dev_warn(&dev->dev, "low on memory - packet dropped\n"); dev->stats.rx_dropped++; break; } } /* clear the buffer descriptor so it can be reused */ bd.stat &= ~RX_BD_STATS; bd.stat |= RX_BD_EMPTY; ethoc_write_bd(priv, entry, &bd); if (++priv->cur_rx == priv->num_rx) priv->cur_rx = 0; } return count; } static void ethoc_update_tx_stats(struct ethoc *dev, struct ethoc_bd *bd) { struct net_device *netdev = dev->netdev; if (bd->stat & TX_BD_LC) { dev_err(&netdev->dev, "TX: late collision\n"); netdev->stats.tx_window_errors++; } if (bd->stat & TX_BD_RL) { dev_err(&netdev->dev, "TX: retransmit limit\n"); netdev->stats.tx_aborted_errors++; } if (bd->stat & TX_BD_UR) { dev_err(&netdev->dev, "TX: underrun\n"); netdev->stats.tx_fifo_errors++; } if (bd->stat & TX_BD_CS) { dev_err(&netdev->dev, "TX: carrier sense lost\n"); netdev->stats.tx_carrier_errors++; } if (bd->stat & TX_BD_STATS) netdev->stats.tx_errors++; netdev->stats.collisions += (bd->stat >> 4) & 0xf; netdev->stats.tx_bytes += bd->stat >> 16; netdev->stats.tx_packets++; } static int ethoc_tx(struct net_device *dev, int limit) { struct ethoc *priv = netdev_priv(dev); int count; struct ethoc_bd bd; for (count = 0; count < limit; ++count) { unsigned int entry; entry = priv->dty_tx & (priv->num_tx-1); ethoc_read_bd(priv, entry, &bd); if (bd.stat & TX_BD_READY || (priv->dty_tx == priv->cur_tx)) { ethoc_ack_irq(priv, INT_MASK_TX); /* If interrupt came in between reading in the BD * and clearing the interrupt source, then we risk * missing the event as the TX interrupt won't trigger * right away when we reenable it; hence, check * BD_EMPTY here again to make sure there isn't such an * event pending... */ ethoc_read_bd(priv, entry, &bd); if (bd.stat & TX_BD_READY || (priv->dty_tx == priv->cur_tx)) break; } ethoc_update_tx_stats(priv, &bd); priv->dty_tx++; } if ((priv->cur_tx - priv->dty_tx) <= (priv->num_tx / 2)) netif_wake_queue(dev); return count; } static irqreturn_t ethoc_interrupt(int irq, void *dev_id) { struct net_device *dev = dev_id; struct ethoc *priv = netdev_priv(dev); u32 pending; u32 mask; /* Figure out what triggered the interrupt... * The tricky bit here is that the interrupt source bits get * set in INT_SOURCE for an event regardless of whether that * event is masked or not. Thus, in order to figure out what * triggered the interrupt, we need to remove the sources * for all events that are currently masked. This behaviour * is not particularly well documented but reasonable... */ mask = ethoc_read(priv, INT_MASK); pending = ethoc_read(priv, INT_SOURCE); pending &= mask; if (unlikely(pending == 0)) return IRQ_NONE; ethoc_ack_irq(priv, pending); /* We always handle the dropped packet interrupt */ if (pending & INT_MASK_BUSY) { dev_dbg(&dev->dev, "packet dropped\n"); dev->stats.rx_dropped++; } /* Handle receive/transmit event by switching to polling */ if (pending & (INT_MASK_TX | INT_MASK_RX)) { ethoc_disable_irq(priv, INT_MASK_TX | INT_MASK_RX); napi_schedule(&priv->napi); } return IRQ_HANDLED; } static int ethoc_get_mac_address(struct net_device *dev, void *addr) { struct ethoc *priv = netdev_priv(dev); u8 *mac = (u8 *)addr; u32 reg; reg = ethoc_read(priv, MAC_ADDR0); mac[2] = (reg >> 24) & 0xff; mac[3] = (reg >> 16) & 0xff; mac[4] = (reg >> 8) & 0xff; mac[5] = (reg >> 0) & 0xff; reg = ethoc_read(priv, MAC_ADDR1); mac[0] = (reg >> 8) & 0xff; mac[1] = (reg >> 0) & 0xff; return 0; } static int ethoc_poll(struct napi_struct *napi, int budget) { struct ethoc *priv = container_of(napi, struct ethoc, napi); int rx_work_done = 0; int tx_work_done = 0; rx_work_done = ethoc_rx(priv->netdev, budget); tx_work_done = ethoc_tx(priv->netdev, budget); if (rx_work_done < budget && tx_work_done < budget) { napi_complete_done(napi, rx_work_done); ethoc_enable_irq(priv, INT_MASK_TX | INT_MASK_RX); } return rx_work_done; } static int ethoc_mdio_read(struct mii_bus *bus, int phy, int reg) { struct ethoc *priv = bus->priv; int i; ethoc_write(priv, MIIADDRESS, MIIADDRESS_ADDR(phy, reg)); ethoc_write(priv, MIICOMMAND, MIICOMMAND_READ); for (i = 0; i < 5; i++) { u32 status = ethoc_read(priv, MIISTATUS); if (!(status & MIISTATUS_BUSY)) { u32 data = ethoc_read(priv, MIIRX_DATA); /* reset MII command register */ ethoc_write(priv, MIICOMMAND, 0); return data; } usleep_range(100, 200); } return -EBUSY; } static int ethoc_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val) { struct ethoc *priv = bus->priv; int i; ethoc_write(priv, MIIADDRESS, MIIADDRESS_ADDR(phy, reg)); ethoc_write(priv, MIITX_DATA, val); ethoc_write(priv, MIICOMMAND, MIICOMMAND_WRITE); for (i = 0; i < 5; i++) { u32 stat = ethoc_read(priv, MIISTATUS); if (!(stat & MIISTATUS_BUSY)) { /* reset MII command register */ ethoc_write(priv, MIICOMMAND, 0); return 0; } usleep_range(100, 200); } return -EBUSY; } static void ethoc_mdio_poll(struct net_device *dev) { struct ethoc *priv = netdev_priv(dev); struct phy_device *phydev = dev->phydev; bool changed = false; u32 mode; if (priv->old_link != phydev->link) { changed = true; priv->old_link = phydev->link; } if (priv->old_duplex != phydev->duplex) { changed = true; priv->old_duplex = phydev->duplex; } if (!changed) return; mode = ethoc_read(priv, MODER); if (phydev->duplex == DUPLEX_FULL) mode |= MODER_FULLD; else mode &= ~MODER_FULLD; ethoc_write(priv, MODER, mode); phy_print_status(phydev); } static int ethoc_mdio_probe(struct net_device *dev) { struct ethoc *priv = netdev_priv(dev); struct phy_device *phy; int err; if (priv->phy_id != -1) phy = mdiobus_get_phy(priv->mdio, priv->phy_id); else phy = phy_find_first(priv->mdio); if (!phy) { dev_err(&dev->dev, "no PHY found\n"); return -ENXIO; } priv->old_duplex = -1; priv->old_link = -1; err = phy_connect_direct(dev, phy, ethoc_mdio_poll, PHY_INTERFACE_MODE_GMII); if (err) { dev_err(&dev->dev, "could not attach to PHY\n"); return err; } phy_set_max_speed(phy, SPEED_100); return 0; } static int ethoc_open(struct net_device *dev) { struct ethoc *priv = netdev_priv(dev); int ret; ret = request_irq(dev->irq, ethoc_interrupt, IRQF_SHARED, dev->name, dev); if (ret) return ret; napi_enable(&priv->napi); ethoc_init_ring(priv, dev->mem_start); ethoc_reset(priv); if (netif_queue_stopped(dev)) { dev_dbg(&dev->dev, " resuming queue\n"); netif_wake_queue(dev); } else { dev_dbg(&dev->dev, " starting queue\n"); netif_start_queue(dev); } priv->old_link = -1; priv->old_duplex = -1; phy_start(dev->phydev); if (netif_msg_ifup(priv)) { dev_info(&dev->dev, "I/O: %08lx Memory: %08lx-%08lx\n", dev->base_addr, dev->mem_start, dev->mem_end); } return 0; } static int ethoc_stop(struct net_device *dev) { struct ethoc *priv = netdev_priv(dev); napi_disable(&priv->napi); if (dev->phydev) phy_stop(dev->phydev); ethoc_disable_rx_and_tx(priv); free_irq(dev->irq, dev); if (!netif_queue_stopped(dev)) netif_stop_queue(dev); return 0; } static int ethoc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { struct ethoc *priv = netdev_priv(dev); struct mii_ioctl_data *mdio = if_mii(ifr); struct phy_device *phy = NULL; if (!netif_running(dev)) return -EINVAL; if (cmd != SIOCGMIIPHY) { if (mdio->phy_id >= PHY_MAX_ADDR) return -ERANGE; phy = mdiobus_get_phy(priv->mdio, mdio->phy_id); if (!phy) return -ENODEV; } else { phy = dev->phydev; } return phy_mii_ioctl(phy, ifr, cmd); } static void ethoc_do_set_mac_address(struct net_device *dev) { struct ethoc *priv = netdev_priv(dev); unsigned char *mac = dev->dev_addr; ethoc_write(priv, MAC_ADDR0, (mac[2] << 24) | (mac[3] << 16) | (mac[4] << 8) | (mac[5] << 0)); ethoc_write(priv, MAC_ADDR1, (mac[0] << 8) | (mac[1] << 0)); } static int ethoc_set_mac_address(struct net_device *dev, void *p) { const struct sockaddr *addr = p; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN); ethoc_do_set_mac_address(dev); return 0; } static void ethoc_set_multicast_list(struct net_device *dev) { struct ethoc *priv = netdev_priv(dev); u32 mode = ethoc_read(priv, MODER); struct netdev_hw_addr *ha; u32 hash[2] = { 0, 0 }; /* set loopback mode if requested */ if (dev->flags & IFF_LOOPBACK) mode |= MODER_LOOP; else mode &= ~MODER_LOOP; /* receive broadcast frames if requested */ if (dev->flags & IFF_BROADCAST) mode &= ~MODER_BRO; else mode |= MODER_BRO; /* enable promiscuous mode if requested */ if (dev->flags & IFF_PROMISC) mode |= MODER_PRO; else mode &= ~MODER_PRO; ethoc_write(priv, MODER, mode); /* receive multicast frames */ if (dev->flags & IFF_ALLMULTI) { hash[0] = 0xffffffff; hash[1] = 0xffffffff; } else { netdev_for_each_mc_addr(ha, dev) { u32 crc = ether_crc(ETH_ALEN, ha->addr); int bit = (crc >> 26) & 0x3f; hash[bit >> 5] |= 1 << (bit & 0x1f); } } ethoc_write(priv, ETH_HASH0, hash[0]); ethoc_write(priv, ETH_HASH1, hash[1]); } static int ethoc_change_mtu(struct net_device *dev, int new_mtu) { return -ENOSYS; } static void ethoc_tx_timeout(struct net_device *dev, unsigned int txqueue) { struct ethoc *priv = netdev_priv(dev); u32 pending = ethoc_read(priv, INT_SOURCE); if (likely(pending)) ethoc_interrupt(dev->irq, dev); } static netdev_tx_t ethoc_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct ethoc *priv = netdev_priv(dev); struct ethoc_bd bd; unsigned int entry; void *dest; if (skb_put_padto(skb, ETHOC_ZLEN)) { dev->stats.tx_errors++; goto out_no_free; } if (unlikely(skb->len > ETHOC_BUFSIZ)) { dev->stats.tx_errors++; goto out; } entry = priv->cur_tx % priv->num_tx; spin_lock_irq(&priv->lock); priv->cur_tx++; ethoc_read_bd(priv, entry, &bd); if (unlikely(skb->len < ETHOC_ZLEN)) bd.stat |= TX_BD_PAD; else bd.stat &= ~TX_BD_PAD; dest = priv->vma[entry]; memcpy_toio(dest, skb->data, skb->len); bd.stat &= ~(TX_BD_STATS | TX_BD_LEN_MASK); bd.stat |= TX_BD_LEN(skb->len); ethoc_write_bd(priv, entry, &bd); bd.stat |= TX_BD_READY; ethoc_write_bd(priv, entry, &bd); if (priv->cur_tx == (priv->dty_tx + priv->num_tx)) { dev_dbg(&dev->dev, "stopping queue\n"); netif_stop_queue(dev); } spin_unlock_irq(&priv->lock); skb_tx_timestamp(skb); out: dev_kfree_skb(skb); out_no_free: return NETDEV_TX_OK; } static int ethoc_get_regs_len(struct net_device *netdev) { return ETH_END; } static void ethoc_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *p) { struct ethoc *priv = netdev_priv(dev); u32 *regs_buff = p; unsigned i; regs->version = 0; for (i = 0; i < ETH_END / sizeof(u32); ++i) regs_buff[i] = ethoc_read(priv, i * sizeof(u32)); } static void ethoc_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ring) { struct ethoc *priv = netdev_priv(dev); ring->rx_max_pending = priv->num_bd - 1; ring->rx_mini_max_pending = 0; ring->rx_jumbo_max_pending = 0; ring->tx_max_pending = priv->num_bd - 1; ring->rx_pending = priv->num_rx; ring->rx_mini_pending = 0; ring->rx_jumbo_pending = 0; ring->tx_pending = priv->num_tx; } static int ethoc_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ring) { struct ethoc *priv = netdev_priv(dev); if (ring->tx_pending < 1 || ring->rx_pending < 1 || ring->tx_pending + ring->rx_pending > priv->num_bd) return -EINVAL; if (ring->rx_mini_pending || ring->rx_jumbo_pending) return -EINVAL; if (netif_running(dev)) { netif_tx_disable(dev); ethoc_disable_rx_and_tx(priv); ethoc_disable_irq(priv, INT_MASK_TX | INT_MASK_RX); synchronize_irq(dev->irq); } priv->num_tx = rounddown_pow_of_two(ring->tx_pending); priv->num_rx = ring->rx_pending; ethoc_init_ring(priv, dev->mem_start); if (netif_running(dev)) { ethoc_enable_irq(priv, INT_MASK_TX | INT_MASK_RX); ethoc_enable_rx_and_tx(priv); netif_wake_queue(dev); } return 0; } static const struct ethtool_ops ethoc_ethtool_ops = { .get_regs_len = ethoc_get_regs_len, .get_regs = ethoc_get_regs, .nway_reset = phy_ethtool_nway_reset, .get_link = ethtool_op_get_link, .get_ringparam = ethoc_get_ringparam, .set_ringparam = ethoc_set_ringparam, .get_ts_info = ethtool_op_get_ts_info, .get_link_ksettings = phy_ethtool_get_link_ksettings, .set_link_ksettings = phy_ethtool_set_link_ksettings, }; static const struct net_device_ops ethoc_netdev_ops = { .ndo_open = ethoc_open, .ndo_stop = ethoc_stop, .ndo_do_ioctl = ethoc_ioctl, .ndo_set_mac_address = ethoc_set_mac_address, .ndo_set_rx_mode = ethoc_set_multicast_list, .ndo_change_mtu = ethoc_change_mtu, .ndo_tx_timeout = ethoc_tx_timeout, .ndo_start_xmit = ethoc_start_xmit, }; /** * ethoc_probe - initialize OpenCores ethernet MAC * pdev: platform device */ static int ethoc_probe(struct platform_device *pdev) { struct net_device *netdev = NULL; struct resource *res = NULL; struct resource *mmio = NULL; struct resource *mem = NULL; struct ethoc *priv = NULL; int num_bd; int ret = 0; struct ethoc_platform_data *pdata = dev_get_platdata(&pdev->dev); u32 eth_clkfreq = pdata ? pdata->eth_clkfreq : 0; /* allocate networking device */ netdev = alloc_etherdev(sizeof(struct ethoc)); if (!netdev) { ret = -ENOMEM; goto out; } SET_NETDEV_DEV(netdev, &pdev->dev); platform_set_drvdata(pdev, netdev); /* obtain I/O memory space */ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { dev_err(&pdev->dev, "cannot obtain I/O memory space\n"); ret = -ENXIO; goto free; } mmio = devm_request_mem_region(&pdev->dev, res->start, resource_size(res), res->name); if (!mmio) { dev_err(&pdev->dev, "cannot request I/O memory space\n"); ret = -ENXIO; goto free; } netdev->base_addr = mmio->start; /* obtain buffer memory space */ res = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (res) { mem = devm_request_mem_region(&pdev->dev, res->start, resource_size(res), res->name); if (!mem) { dev_err(&pdev->dev, "cannot request memory space\n"); ret = -ENXIO; goto free; } netdev->mem_start = mem->start; netdev->mem_end = mem->end; } /* obtain device IRQ number */ res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); if (!res) { dev_err(&pdev->dev, "cannot obtain IRQ\n"); ret = -ENXIO; goto free; } netdev->irq = res->start; /* setup driver-private data */ priv = netdev_priv(netdev); priv->netdev = netdev; priv->iobase = devm_ioremap(&pdev->dev, netdev->base_addr, resource_size(mmio)); if (!priv->iobase) { dev_err(&pdev->dev, "cannot remap I/O memory space\n"); ret = -ENXIO; goto free; } if (netdev->mem_end) { priv->membase = devm_ioremap(&pdev->dev, netdev->mem_start, resource_size(mem)); if (!priv->membase) { dev_err(&pdev->dev, "cannot remap memory space\n"); ret = -ENXIO; goto free; } } else { /* Allocate buffer memory */ priv->membase = dmam_alloc_coherent(&pdev->dev, buffer_size, (void *)&netdev->mem_start, GFP_KERNEL); if (!priv->membase) { dev_err(&pdev->dev, "cannot allocate %dB buffer\n", buffer_size); ret = -ENOMEM; goto free; } netdev->mem_end = netdev->mem_start + buffer_size; } priv->big_endian = pdata ? pdata->big_endian : of_device_is_big_endian(pdev->dev.of_node); /* calculate the number of TX/RX buffers, maximum 128 supported */ num_bd = min_t(unsigned int, 128, (netdev->mem_end - netdev->mem_start + 1) / ETHOC_BUFSIZ); if (num_bd < 4) { ret = -ENODEV; goto free; } priv->num_bd = num_bd; /* num_tx must be a power of two */ priv->num_tx = rounddown_pow_of_two(num_bd >> 1); priv->num_rx = num_bd - priv->num_tx; dev_dbg(&pdev->dev, "ethoc: num_tx: %d num_rx: %d\n", priv->num_tx, priv->num_rx); priv->vma = devm_kcalloc(&pdev->dev, num_bd, sizeof(void *), GFP_KERNEL); if (!priv->vma) { ret = -ENOMEM; goto free; } /* Allow the platform setup code to pass in a MAC address. */ if (pdata) { ether_addr_copy(netdev->dev_addr, pdata->hwaddr); priv->phy_id = pdata->phy_id; } else { const void *mac; mac = of_get_mac_address(pdev->dev.of_node); if (!IS_ERR(mac)) ether_addr_copy(netdev->dev_addr, mac); priv->phy_id = -1; } /* Check that the given MAC address is valid. If it isn't, read the * current MAC from the controller. */ if (!is_valid_ether_addr(netdev->dev_addr)) ethoc_get_mac_address(netdev, netdev->dev_addr); /* Check the MAC again for validity, if it still isn't choose and * program a random one. */ if (!is_valid_ether_addr(netdev->dev_addr)) eth_hw_addr_random(netdev); ethoc_do_set_mac_address(netdev); /* Allow the platform setup code to adjust MII management bus clock. */ if (!eth_clkfreq) { struct clk *clk = devm_clk_get(&pdev->dev, NULL); if (!IS_ERR(clk)) { priv->clk = clk; clk_prepare_enable(clk); eth_clkfreq = clk_get_rate(clk); } } if (eth_clkfreq) { u32 clkdiv = MIIMODER_CLKDIV(eth_clkfreq / 2500000 + 1); if (!clkdiv) clkdiv = 2; dev_dbg(&pdev->dev, "setting MII clkdiv to %u\n", clkdiv); ethoc_write(priv, MIIMODER, (ethoc_read(priv, MIIMODER) & MIIMODER_NOPRE) | clkdiv); } /* register MII bus */ priv->mdio = mdiobus_alloc(); if (!priv->mdio) { ret = -ENOMEM; goto free2; } priv->mdio->name = "ethoc-mdio"; snprintf(priv->mdio->id, MII_BUS_ID_SIZE, "%s-%d", priv->mdio->name, pdev->id); priv->mdio->read = ethoc_mdio_read; priv->mdio->write = ethoc_mdio_write; priv->mdio->priv = priv; ret = mdiobus_register(priv->mdio); if (ret) { dev_err(&netdev->dev, "failed to register MDIO bus\n"); goto free2; } ret = ethoc_mdio_probe(netdev); if (ret) { dev_err(&netdev->dev, "failed to probe MDIO bus\n"); goto error; } /* setup the net_device structure */ netdev->netdev_ops = ðoc_netdev_ops; netdev->watchdog_timeo = ETHOC_TIMEOUT; netdev->features |= 0; netdev->ethtool_ops = ðoc_ethtool_ops; /* setup NAPI */ netif_napi_add(netdev, &priv->napi, ethoc_poll, 64); spin_lock_init(&priv->lock); ret = register_netdev(netdev); if (ret < 0) { dev_err(&netdev->dev, "failed to register interface\n"); goto error2; } goto out; error2: netif_napi_del(&priv->napi); error: mdiobus_unregister(priv->mdio); mdiobus_free(priv->mdio); free2: clk_disable_unprepare(priv->clk); free: free_netdev(netdev); out: return ret; } /** * ethoc_remove - shutdown OpenCores ethernet MAC * @pdev: platform device */ static int ethoc_remove(struct platform_device *pdev) { struct net_device *netdev = platform_get_drvdata(pdev); struct ethoc *priv = netdev_priv(netdev); if (netdev) { netif_napi_del(&priv->napi); phy_disconnect(netdev->phydev); if (priv->mdio) { mdiobus_unregister(priv->mdio); mdiobus_free(priv->mdio); } clk_disable_unprepare(priv->clk); unregister_netdev(netdev); free_netdev(netdev); } return 0; } #ifdef CONFIG_PM static int ethoc_suspend(struct platform_device *pdev, pm_message_t state) { return -ENOSYS; } static int ethoc_resume(struct platform_device *pdev) { return -ENOSYS; } #else # define ethoc_suspend NULL # define ethoc_resume NULL #endif static const struct of_device_id ethoc_match[] = { { .compatible = "opencores,ethoc", }, {}, }; MODULE_DEVICE_TABLE(of, ethoc_match); static struct platform_driver ethoc_driver = { .probe = ethoc_probe, .remove = ethoc_remove, .suspend = ethoc_suspend, .resume = ethoc_resume, .driver = { .name = "ethoc", .of_match_table = ethoc_match, }, }; module_platform_driver(ethoc_driver); MODULE_AUTHOR("Thierry Reding <thierry.reding@avionic-design.de>"); MODULE_DESCRIPTION("OpenCores Ethernet MAC driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1