Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Auke-Jan H Kok | 3266 | 70.69% | 1 | 1.54% |
Bruce W Allan | 923 | 19.98% | 45 | 69.23% |
Dave Graham | 212 | 4.59% | 1 | 1.54% |
Jeff Kirsher | 127 | 2.75% | 9 | 13.85% |
Matthew Vick | 49 | 1.06% | 2 | 3.08% |
Jacob E Keller | 18 | 0.39% | 1 | 1.54% |
Dave Ertman | 11 | 0.24% | 2 | 3.08% |
Jesse Brandeburg | 11 | 0.24% | 2 | 3.08% |
Hannes Eder | 2 | 0.04% | 1 | 1.54% |
Arjan van de Ven | 1 | 0.02% | 1 | 1.54% |
Total | 4620 | 65 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 1999 - 2018 Intel Corporation. */ /* 80003ES2LAN Gigabit Ethernet Controller (Copper) * 80003ES2LAN Gigabit Ethernet Controller (Serdes) */ #include "e1000.h" /* A table for the GG82563 cable length where the range is defined * with a lower bound at "index" and the upper bound at * "index + 5". */ static const u16 e1000_gg82563_cable_length_table[] = { 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF }; #define GG82563_CABLE_LENGTH_TABLE_SIZE \ ARRAY_SIZE(e1000_gg82563_cable_length_table) static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw); static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask); static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask); static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw); static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw); static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw); static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex); static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, u16 *data); static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, u16 data); static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw); /** * e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs. * @hw: pointer to the HW structure **/ static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; if (hw->phy.media_type != e1000_media_type_copper) { phy->type = e1000_phy_none; return 0; } else { phy->ops.power_up = e1000_power_up_phy_copper; phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan; } phy->addr = 1; phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; phy->reset_delay_us = 100; phy->type = e1000_phy_gg82563; /* This can only be done after all function pointers are setup. */ ret_val = e1000e_get_phy_id(hw); /* Verify phy id */ if (phy->id != GG82563_E_PHY_ID) return -E1000_ERR_PHY; return ret_val; } /** * e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs. * @hw: pointer to the HW structure **/ static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw) { struct e1000_nvm_info *nvm = &hw->nvm; u32 eecd = er32(EECD); u16 size; nvm->opcode_bits = 8; nvm->delay_usec = 1; switch (nvm->override) { case e1000_nvm_override_spi_large: nvm->page_size = 32; nvm->address_bits = 16; break; case e1000_nvm_override_spi_small: nvm->page_size = 8; nvm->address_bits = 8; break; default: nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; break; } nvm->type = e1000_nvm_eeprom_spi; size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> E1000_EECD_SIZE_EX_SHIFT); /* Added to a constant, "size" becomes the left-shift value * for setting word_size. */ size += NVM_WORD_SIZE_BASE_SHIFT; /* EEPROM access above 16k is unsupported */ if (size > 14) size = 14; nvm->word_size = BIT(size); return 0; } /** * e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs. * @hw: pointer to the HW structure **/ static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; /* Set media type and media-dependent function pointers */ switch (hw->adapter->pdev->device) { case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: hw->phy.media_type = e1000_media_type_internal_serdes; mac->ops.check_for_link = e1000e_check_for_serdes_link; mac->ops.setup_physical_interface = e1000e_setup_fiber_serdes_link; break; default: hw->phy.media_type = e1000_media_type_copper; mac->ops.check_for_link = e1000e_check_for_copper_link; mac->ops.setup_physical_interface = e1000_setup_copper_link_80003es2lan; break; } /* Set mta register count */ mac->mta_reg_count = 128; /* Set rar entry count */ mac->rar_entry_count = E1000_RAR_ENTRIES; /* FWSM register */ mac->has_fwsm = true; /* ARC supported; valid only if manageability features are enabled. */ mac->arc_subsystem_valid = !!(er32(FWSM) & E1000_FWSM_MODE_MASK); /* Adaptive IFS not supported */ mac->adaptive_ifs = false; /* set lan id for port to determine which phy lock to use */ hw->mac.ops.set_lan_id(hw); return 0; } static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; s32 rc; rc = e1000_init_mac_params_80003es2lan(hw); if (rc) return rc; rc = e1000_init_nvm_params_80003es2lan(hw); if (rc) return rc; rc = e1000_init_phy_params_80003es2lan(hw); if (rc) return rc; return 0; } /** * e1000_acquire_phy_80003es2lan - Acquire rights to access PHY * @hw: pointer to the HW structure * * A wrapper to acquire access rights to the correct PHY. **/ static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw) { u16 mask; mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM; return e1000_acquire_swfw_sync_80003es2lan(hw, mask); } /** * e1000_release_phy_80003es2lan - Release rights to access PHY * @hw: pointer to the HW structure * * A wrapper to release access rights to the correct PHY. **/ static void e1000_release_phy_80003es2lan(struct e1000_hw *hw) { u16 mask; mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM; e1000_release_swfw_sync_80003es2lan(hw, mask); } /** * e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register * @hw: pointer to the HW structure * * Acquire the semaphore to access the Kumeran interface. * **/ static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw) { u16 mask; mask = E1000_SWFW_CSR_SM; return e1000_acquire_swfw_sync_80003es2lan(hw, mask); } /** * e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register * @hw: pointer to the HW structure * * Release the semaphore used to access the Kumeran interface **/ static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw) { u16 mask; mask = E1000_SWFW_CSR_SM; e1000_release_swfw_sync_80003es2lan(hw, mask); } /** * e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM * @hw: pointer to the HW structure * * Acquire the semaphore to access the EEPROM. **/ static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw) { s32 ret_val; ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); if (ret_val) return ret_val; ret_val = e1000e_acquire_nvm(hw); if (ret_val) e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); return ret_val; } /** * e1000_release_nvm_80003es2lan - Relinquish rights to access NVM * @hw: pointer to the HW structure * * Release the semaphore used to access the EEPROM. **/ static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw) { e1000e_release_nvm(hw); e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); } /** * e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore * @hw: pointer to the HW structure * @mask: specifies which semaphore to acquire * * Acquire the SW/FW semaphore to access the PHY or NVM. The mask * will also specify which port we're acquiring the lock for. **/ static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask) { u32 swfw_sync; u32 swmask = mask; u32 fwmask = mask << 16; s32 i = 0; s32 timeout = 50; while (i < timeout) { if (e1000e_get_hw_semaphore(hw)) return -E1000_ERR_SWFW_SYNC; swfw_sync = er32(SW_FW_SYNC); if (!(swfw_sync & (fwmask | swmask))) break; /* Firmware currently using resource (fwmask) * or other software thread using resource (swmask) */ e1000e_put_hw_semaphore(hw); mdelay(5); i++; } if (i == timeout) { e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n"); return -E1000_ERR_SWFW_SYNC; } swfw_sync |= swmask; ew32(SW_FW_SYNC, swfw_sync); e1000e_put_hw_semaphore(hw); return 0; } /** * e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore * @hw: pointer to the HW structure * @mask: specifies which semaphore to acquire * * Release the SW/FW semaphore used to access the PHY or NVM. The mask * will also specify which port we're releasing the lock for. **/ static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask) { u32 swfw_sync; while (e1000e_get_hw_semaphore(hw) != 0) ; /* Empty */ swfw_sync = er32(SW_FW_SYNC); swfw_sync &= ~mask; ew32(SW_FW_SYNC, swfw_sync); e1000e_put_hw_semaphore(hw); } /** * e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register * @hw: pointer to the HW structure * @offset: offset of the register to read * @data: pointer to the data returned from the operation * * Read the GG82563 PHY register. **/ static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, u32 offset, u16 *data) { s32 ret_val; u32 page_select; u16 temp; ret_val = e1000_acquire_phy_80003es2lan(hw); if (ret_val) return ret_val; /* Select Configuration Page */ if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) { page_select = GG82563_PHY_PAGE_SELECT; } else { /* Use Alternative Page Select register to access * registers 30 and 31 */ page_select = GG82563_PHY_PAGE_SELECT_ALT; } temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT); ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp); if (ret_val) { e1000_release_phy_80003es2lan(hw); return ret_val; } if (hw->dev_spec.e80003es2lan.mdic_wa_enable) { /* The "ready" bit in the MDIC register may be incorrectly set * before the device has completed the "Page Select" MDI * transaction. So we wait 200us after each MDI command... */ usleep_range(200, 400); /* ...and verify the command was successful. */ ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp); if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) { e1000_release_phy_80003es2lan(hw); return -E1000_ERR_PHY; } usleep_range(200, 400); ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, data); usleep_range(200, 400); } else { ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, data); } e1000_release_phy_80003es2lan(hw); return ret_val; } /** * e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register * @hw: pointer to the HW structure * @offset: offset of the register to read * @data: value to write to the register * * Write to the GG82563 PHY register. **/ static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, u32 offset, u16 data) { s32 ret_val; u32 page_select; u16 temp; ret_val = e1000_acquire_phy_80003es2lan(hw); if (ret_val) return ret_val; /* Select Configuration Page */ if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) { page_select = GG82563_PHY_PAGE_SELECT; } else { /* Use Alternative Page Select register to access * registers 30 and 31 */ page_select = GG82563_PHY_PAGE_SELECT_ALT; } temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT); ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp); if (ret_val) { e1000_release_phy_80003es2lan(hw); return ret_val; } if (hw->dev_spec.e80003es2lan.mdic_wa_enable) { /* The "ready" bit in the MDIC register may be incorrectly set * before the device has completed the "Page Select" MDI * transaction. So we wait 200us after each MDI command... */ usleep_range(200, 400); /* ...and verify the command was successful. */ ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp); if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) { e1000_release_phy_80003es2lan(hw); return -E1000_ERR_PHY; } usleep_range(200, 400); ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, data); usleep_range(200, 400); } else { ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, data); } e1000_release_phy_80003es2lan(hw); return ret_val; } /** * e1000_write_nvm_80003es2lan - Write to ESB2 NVM * @hw: pointer to the HW structure * @offset: offset of the register to read * @words: number of words to write * @data: buffer of data to write to the NVM * * Write "words" of data to the ESB2 NVM. **/ static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { return e1000e_write_nvm_spi(hw, offset, words, data); } /** * e1000_get_cfg_done_80003es2lan - Wait for configuration to complete * @hw: pointer to the HW structure * * Wait a specific amount of time for manageability processes to complete. * This is a function pointer entry point called by the phy module. **/ static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw) { s32 timeout = PHY_CFG_TIMEOUT; u32 mask = E1000_NVM_CFG_DONE_PORT_0; if (hw->bus.func == 1) mask = E1000_NVM_CFG_DONE_PORT_1; while (timeout) { if (er32(EEMNGCTL) & mask) break; usleep_range(1000, 2000); timeout--; } if (!timeout) { e_dbg("MNG configuration cycle has not completed.\n"); return -E1000_ERR_RESET; } return 0; } /** * e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex * @hw: pointer to the HW structure * * Force the speed and duplex settings onto the PHY. This is a * function pointer entry point called by the phy module. **/ static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw) { s32 ret_val; u16 phy_data; bool link; /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI * forced whenever speed and duplex are forced. */ ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); if (ret_val) return ret_val; phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO; ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data); if (ret_val) return ret_val; e_dbg("GG82563 PSCR: %X\n", phy_data); ret_val = e1e_rphy(hw, MII_BMCR, &phy_data); if (ret_val) return ret_val; e1000e_phy_force_speed_duplex_setup(hw, &phy_data); /* Reset the phy to commit changes. */ phy_data |= BMCR_RESET; ret_val = e1e_wphy(hw, MII_BMCR, phy_data); if (ret_val) return ret_val; udelay(1); if (hw->phy.autoneg_wait_to_complete) { e_dbg("Waiting for forced speed/duplex link on GG82563 phy.\n"); ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 100000, &link); if (ret_val) return ret_val; if (!link) { /* We didn't get link. * Reset the DSP and cross our fingers. */ ret_val = e1000e_phy_reset_dsp(hw); if (ret_val) return ret_val; } /* Try once more */ ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, 100000, &link); if (ret_val) return ret_val; } ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data); if (ret_val) return ret_val; /* Resetting the phy means we need to verify the TX_CLK corresponds * to the link speed. 10Mbps -> 2.5MHz, else 25MHz. */ phy_data &= ~GG82563_MSCR_TX_CLK_MASK; if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED) phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5; else phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25; /* In addition, we must re-enable CRS on Tx for both half and full * duplex. */ phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data); return ret_val; } /** * e1000_get_cable_length_80003es2lan - Set approximate cable length * @hw: pointer to the HW structure * * Find the approximate cable length as measured by the GG82563 PHY. * This is a function pointer entry point called by the phy module. **/ static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_data, index; ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data); if (ret_val) return ret_val; index = phy_data & GG82563_DSPD_CABLE_LENGTH; if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5) return -E1000_ERR_PHY; phy->min_cable_length = e1000_gg82563_cable_length_table[index]; phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5]; phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; return 0; } /** * e1000_get_link_up_info_80003es2lan - Report speed and duplex * @hw: pointer to the HW structure * @speed: pointer to speed buffer * @duplex: pointer to duplex buffer * * Retrieve the current speed and duplex configuration. **/ static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed, u16 *duplex) { s32 ret_val; if (hw->phy.media_type == e1000_media_type_copper) { ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex); hw->phy.ops.cfg_on_link_up(hw); } else { ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw, speed, duplex); } return ret_val; } /** * e1000_reset_hw_80003es2lan - Reset the ESB2 controller * @hw: pointer to the HW structure * * Perform a global reset to the ESB2 controller. **/ static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw) { u32 ctrl; s32 ret_val; u16 kum_reg_data; /* Prevent the PCI-E bus from sticking if there is no TLP connection * on the last TLP read/write transaction when MAC is reset. */ ret_val = e1000e_disable_pcie_master(hw); if (ret_val) e_dbg("PCI-E Master disable polling has failed.\n"); e_dbg("Masking off all interrupts\n"); ew32(IMC, 0xffffffff); ew32(RCTL, 0); ew32(TCTL, E1000_TCTL_PSP); e1e_flush(); usleep_range(10000, 11000); ctrl = er32(CTRL); ret_val = e1000_acquire_phy_80003es2lan(hw); if (ret_val) return ret_val; e_dbg("Issuing a global reset to MAC\n"); ew32(CTRL, ctrl | E1000_CTRL_RST); e1000_release_phy_80003es2lan(hw); /* Disable IBIST slave mode (far-end loopback) */ ret_val = e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, &kum_reg_data); if (!ret_val) { kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE; ret_val = e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, kum_reg_data); if (ret_val) e_dbg("Error disabling far-end loopback\n"); } else { e_dbg("Error disabling far-end loopback\n"); } ret_val = e1000e_get_auto_rd_done(hw); if (ret_val) /* We don't want to continue accessing MAC registers. */ return ret_val; /* Clear any pending interrupt events. */ ew32(IMC, 0xffffffff); er32(ICR); return e1000_check_alt_mac_addr_generic(hw); } /** * e1000_init_hw_80003es2lan - Initialize the ESB2 controller * @hw: pointer to the HW structure * * Initialize the hw bits, LED, VFTA, MTA, link and hw counters. **/ static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; u32 reg_data; s32 ret_val; u16 kum_reg_data; u16 i; e1000_initialize_hw_bits_80003es2lan(hw); /* Initialize identification LED */ ret_val = mac->ops.id_led_init(hw); /* An error is not fatal and we should not stop init due to this */ if (ret_val) e_dbg("Error initializing identification LED\n"); /* Disabling VLAN filtering */ e_dbg("Initializing the IEEE VLAN\n"); mac->ops.clear_vfta(hw); /* Setup the receive address. */ e1000e_init_rx_addrs(hw, mac->rar_entry_count); /* Zero out the Multicast HASH table */ e_dbg("Zeroing the MTA\n"); for (i = 0; i < mac->mta_reg_count; i++) E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); /* Setup link and flow control */ ret_val = mac->ops.setup_link(hw); if (ret_val) return ret_val; /* Disable IBIST slave mode (far-end loopback) */ ret_val = e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, &kum_reg_data); if (!ret_val) { kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE; ret_val = e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, kum_reg_data); if (ret_val) e_dbg("Error disabling far-end loopback\n"); } else { e_dbg("Error disabling far-end loopback\n"); } /* Set the transmit descriptor write-back policy */ reg_data = er32(TXDCTL(0)); reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC); ew32(TXDCTL(0), reg_data); /* ...for both queues. */ reg_data = er32(TXDCTL(1)); reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC); ew32(TXDCTL(1), reg_data); /* Enable retransmit on late collisions */ reg_data = er32(TCTL); reg_data |= E1000_TCTL_RTLC; ew32(TCTL, reg_data); /* Configure Gigabit Carry Extend Padding */ reg_data = er32(TCTL_EXT); reg_data &= ~E1000_TCTL_EXT_GCEX_MASK; reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN; ew32(TCTL_EXT, reg_data); /* Configure Transmit Inter-Packet Gap */ reg_data = er32(TIPG); reg_data &= ~E1000_TIPG_IPGT_MASK; reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN; ew32(TIPG, reg_data); reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001); reg_data &= ~0x00100000; E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data); /* default to true to enable the MDIC W/A */ hw->dev_spec.e80003es2lan.mdic_wa_enable = true; ret_val = e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >> E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i); if (!ret_val) { if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) == E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO) hw->dev_spec.e80003es2lan.mdic_wa_enable = false; } /* Clear all of the statistics registers (clear on read). It is * important that we do this after we have tried to establish link * because the symbol error count will increment wildly if there * is no link. */ e1000_clear_hw_cntrs_80003es2lan(hw); return ret_val; } /** * e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2 * @hw: pointer to the HW structure * * Initializes required hardware-dependent bits needed for normal operation. **/ static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw) { u32 reg; /* Transmit Descriptor Control 0 */ reg = er32(TXDCTL(0)); reg |= BIT(22); ew32(TXDCTL(0), reg); /* Transmit Descriptor Control 1 */ reg = er32(TXDCTL(1)); reg |= BIT(22); ew32(TXDCTL(1), reg); /* Transmit Arbitration Control 0 */ reg = er32(TARC(0)); reg &= ~(0xF << 27); /* 30:27 */ if (hw->phy.media_type != e1000_media_type_copper) reg &= ~BIT(20); ew32(TARC(0), reg); /* Transmit Arbitration Control 1 */ reg = er32(TARC(1)); if (er32(TCTL) & E1000_TCTL_MULR) reg &= ~BIT(28); else reg |= BIT(28); ew32(TARC(1), reg); /* Disable IPv6 extension header parsing because some malformed * IPv6 headers can hang the Rx. */ reg = er32(RFCTL); reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS); ew32(RFCTL, reg); } /** * e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link * @hw: pointer to the HW structure * * Setup some GG82563 PHY registers for obtaining link **/ static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u32 reg; u16 data; ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data); if (ret_val) return ret_val; data |= GG82563_MSCR_ASSERT_CRS_ON_TX; /* Use 25MHz for both link down and 1000Base-T for Tx clock. */ data |= GG82563_MSCR_TX_CLK_1000MBPS_25; ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data); if (ret_val) return ret_val; /* Options: * MDI/MDI-X = 0 (default) * 0 - Auto for all speeds * 1 - MDI mode * 2 - MDI-X mode * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) */ ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data); if (ret_val) return ret_val; data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK; switch (phy->mdix) { case 1: data |= GG82563_PSCR_CROSSOVER_MODE_MDI; break; case 2: data |= GG82563_PSCR_CROSSOVER_MODE_MDIX; break; case 0: default: data |= GG82563_PSCR_CROSSOVER_MODE_AUTO; break; } /* Options: * disable_polarity_correction = 0 (default) * Automatic Correction for Reversed Cable Polarity * 0 - Disabled * 1 - Enabled */ data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE; if (phy->disable_polarity_correction) data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE; ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data); if (ret_val) return ret_val; /* SW Reset the PHY so all changes take effect */ ret_val = hw->phy.ops.commit(hw); if (ret_val) { e_dbg("Error Resetting the PHY\n"); return ret_val; } /* Bypass Rx and Tx FIFO's */ reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL; data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS | E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS); ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data); if (ret_val) return ret_val; reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE; ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data); if (ret_val) return ret_val; data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE; ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data); if (ret_val) return ret_val; ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data); if (ret_val) return ret_val; data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG; ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data); if (ret_val) return ret_val; reg = er32(CTRL_EXT); reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK; ew32(CTRL_EXT, reg); ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data); if (ret_val) return ret_val; /* Do not init these registers when the HW is in IAMT mode, since the * firmware will have already initialized them. We only initialize * them if the HW is not in IAMT mode. */ if (!hw->mac.ops.check_mng_mode(hw)) { /* Enable Electrical Idle on the PHY */ data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE; ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data); if (ret_val) return ret_val; ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data); if (ret_val) return ret_val; data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data); if (ret_val) return ret_val; } /* Workaround: Disable padding in Kumeran interface in the MAC * and in the PHY to avoid CRC errors. */ ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data); if (ret_val) return ret_val; data |= GG82563_ICR_DIS_PADDING; ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data); if (ret_val) return ret_val; return 0; } /** * e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2 * @hw: pointer to the HW structure * * Essentially a wrapper for setting up all things "copper" related. * This is a function pointer entry point called by the mac module. **/ static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw) { u32 ctrl; s32 ret_val; u16 reg_data; ctrl = er32(CTRL); ctrl |= E1000_CTRL_SLU; ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); ew32(CTRL, ctrl); /* Set the mac to wait the maximum time between each * iteration and increase the max iterations when * polling the phy; this fixes erroneous timeouts at 10Mbps. */ ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4), 0xFFFF); if (ret_val) return ret_val; ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9), ®_data); if (ret_val) return ret_val; reg_data |= 0x3F; ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9), reg_data); if (ret_val) return ret_val; ret_val = e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET_INB_CTRL, ®_data); if (ret_val) return ret_val; reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING; ret_val = e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET_INB_CTRL, reg_data); if (ret_val) return ret_val; ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw); if (ret_val) return ret_val; return e1000e_setup_copper_link(hw); } /** * e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up * @hw: pointer to the HW structure * @duplex: current duplex setting * * Configure the KMRN interface by applying last minute quirks for * 10/100 operation. **/ static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw) { s32 ret_val = 0; u16 speed; u16 duplex; if (hw->phy.media_type == e1000_media_type_copper) { ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex); if (ret_val) return ret_val; if (speed == SPEED_1000) ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw); else ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex); } return ret_val; } /** * e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation * @hw: pointer to the HW structure * @duplex: current duplex setting * * Configure the KMRN interface by applying last minute quirks for * 10/100 operation. **/ static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex) { s32 ret_val; u32 tipg; u32 i = 0; u16 reg_data, reg_data2; reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT; ret_val = e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET_HD_CTRL, reg_data); if (ret_val) return ret_val; /* Configure Transmit Inter-Packet Gap */ tipg = er32(TIPG); tipg &= ~E1000_TIPG_IPGT_MASK; tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN; ew32(TIPG, tipg); do { ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); if (ret_val) return ret_val; ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data2); if (ret_val) return ret_val; i++; } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY)); if (duplex == HALF_DUPLEX) reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER; else reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); } /** * e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation * @hw: pointer to the HW structure * * Configure the KMRN interface by applying last minute quirks for * gigabit operation. **/ static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw) { s32 ret_val; u16 reg_data, reg_data2; u32 tipg; u32 i = 0; reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT; ret_val = e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET_HD_CTRL, reg_data); if (ret_val) return ret_val; /* Configure Transmit Inter-Packet Gap */ tipg = er32(TIPG); tipg &= ~E1000_TIPG_IPGT_MASK; tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN; ew32(TIPG, tipg); do { ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); if (ret_val) return ret_val; ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data2); if (ret_val) return ret_val; i++; } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY)); reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); } /** * e1000_read_kmrn_reg_80003es2lan - Read kumeran register * @hw: pointer to the HW structure * @offset: register offset to be read * @data: pointer to the read data * * Acquire semaphore, then read the PHY register at offset * using the kumeran interface. The information retrieved is stored in data. * Release the semaphore before exiting. **/ static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, u16 *data) { u32 kmrnctrlsta; s32 ret_val; ret_val = e1000_acquire_mac_csr_80003es2lan(hw); if (ret_val) return ret_val; kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN; ew32(KMRNCTRLSTA, kmrnctrlsta); e1e_flush(); udelay(2); kmrnctrlsta = er32(KMRNCTRLSTA); *data = (u16)kmrnctrlsta; e1000_release_mac_csr_80003es2lan(hw); return ret_val; } /** * e1000_write_kmrn_reg_80003es2lan - Write kumeran register * @hw: pointer to the HW structure * @offset: register offset to write to * @data: data to write at register offset * * Acquire semaphore, then write the data to PHY register * at the offset using the kumeran interface. Release semaphore * before exiting. **/ static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, u16 data) { u32 kmrnctrlsta; s32 ret_val; ret_val = e1000_acquire_mac_csr_80003es2lan(hw); if (ret_val) return ret_val; kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & E1000_KMRNCTRLSTA_OFFSET) | data; ew32(KMRNCTRLSTA, kmrnctrlsta); e1e_flush(); udelay(2); e1000_release_mac_csr_80003es2lan(hw); return ret_val; } /** * e1000_read_mac_addr_80003es2lan - Read device MAC address * @hw: pointer to the HW structure **/ static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw) { s32 ret_val; /* If there's an alternate MAC address place it in RAR0 * so that it will override the Si installed default perm * address. */ ret_val = e1000_check_alt_mac_addr_generic(hw); if (ret_val) return ret_val; return e1000_read_mac_addr_generic(hw); } /** * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down * @hw: pointer to the HW structure * * In the case of a PHY power down to save power, or to turn off link during a * driver unload, or wake on lan is not enabled, remove the link. **/ static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw) { /* If the management interface is not enabled, then power down */ if (!(hw->mac.ops.check_mng_mode(hw) || hw->phy.ops.check_reset_block(hw))) e1000_power_down_phy_copper(hw); } /** * e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters * @hw: pointer to the HW structure * * Clears the hardware counters by reading the counter registers. **/ static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw) { e1000e_clear_hw_cntrs_base(hw); er32(PRC64); er32(PRC127); er32(PRC255); er32(PRC511); er32(PRC1023); er32(PRC1522); er32(PTC64); er32(PTC127); er32(PTC255); er32(PTC511); er32(PTC1023); er32(PTC1522); er32(ALGNERRC); er32(RXERRC); er32(TNCRS); er32(CEXTERR); er32(TSCTC); er32(TSCTFC); er32(MGTPRC); er32(MGTPDC); er32(MGTPTC); er32(IAC); er32(ICRXOC); er32(ICRXPTC); er32(ICRXATC); er32(ICTXPTC); er32(ICTXATC); er32(ICTXQEC); er32(ICTXQMTC); er32(ICRXDMTC); } static const struct e1000_mac_operations es2_mac_ops = { .read_mac_addr = e1000_read_mac_addr_80003es2lan, .id_led_init = e1000e_id_led_init_generic, .blink_led = e1000e_blink_led_generic, .check_mng_mode = e1000e_check_mng_mode_generic, /* check_for_link dependent on media type */ .cleanup_led = e1000e_cleanup_led_generic, .clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan, .get_bus_info = e1000e_get_bus_info_pcie, .set_lan_id = e1000_set_lan_id_multi_port_pcie, .get_link_up_info = e1000_get_link_up_info_80003es2lan, .led_on = e1000e_led_on_generic, .led_off = e1000e_led_off_generic, .update_mc_addr_list = e1000e_update_mc_addr_list_generic, .write_vfta = e1000_write_vfta_generic, .clear_vfta = e1000_clear_vfta_generic, .reset_hw = e1000_reset_hw_80003es2lan, .init_hw = e1000_init_hw_80003es2lan, .setup_link = e1000e_setup_link_generic, /* setup_physical_interface dependent on media type */ .setup_led = e1000e_setup_led_generic, .config_collision_dist = e1000e_config_collision_dist_generic, .rar_set = e1000e_rar_set_generic, .rar_get_count = e1000e_rar_get_count_generic, }; static const struct e1000_phy_operations es2_phy_ops = { .acquire = e1000_acquire_phy_80003es2lan, .check_polarity = e1000_check_polarity_m88, .check_reset_block = e1000e_check_reset_block_generic, .commit = e1000e_phy_sw_reset, .force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan, .get_cfg_done = e1000_get_cfg_done_80003es2lan, .get_cable_length = e1000_get_cable_length_80003es2lan, .get_info = e1000e_get_phy_info_m88, .read_reg = e1000_read_phy_reg_gg82563_80003es2lan, .release = e1000_release_phy_80003es2lan, .reset = e1000e_phy_hw_reset_generic, .set_d0_lplu_state = NULL, .set_d3_lplu_state = e1000e_set_d3_lplu_state, .write_reg = e1000_write_phy_reg_gg82563_80003es2lan, .cfg_on_link_up = e1000_cfg_on_link_up_80003es2lan, }; static const struct e1000_nvm_operations es2_nvm_ops = { .acquire = e1000_acquire_nvm_80003es2lan, .read = e1000e_read_nvm_eerd, .release = e1000_release_nvm_80003es2lan, .reload = e1000e_reload_nvm_generic, .update = e1000e_update_nvm_checksum_generic, .valid_led_default = e1000e_valid_led_default, .validate = e1000e_validate_nvm_checksum_generic, .write = e1000_write_nvm_80003es2lan, }; const struct e1000_info e1000_es2_info = { .mac = e1000_80003es2lan, .flags = FLAG_HAS_HW_VLAN_FILTER | FLAG_HAS_JUMBO_FRAMES | FLAG_HAS_WOL | FLAG_APME_IN_CTRL3 | FLAG_HAS_CTRLEXT_ON_LOAD | FLAG_RX_NEEDS_RESTART /* errata */ | FLAG_TARC_SET_BIT_ZERO /* errata */ | FLAG_APME_CHECK_PORT_B | FLAG_DISABLE_FC_PAUSE_TIME, /* errata */ .flags2 = FLAG2_DMA_BURST, .pba = 38, .max_hw_frame_size = DEFAULT_JUMBO, .get_variants = e1000_get_variants_80003es2lan, .mac_ops = &es2_mac_ops, .phy_ops = &es2_phy_ops, .nvm_ops = &es2_nvm_ops, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1