Contributors: 14
Author Tokens Token Proportion Commits Commit Proportion
Alexander Duyck 5154 77.47% 19 30.16%
Jacob E Keller 1195 17.96% 19 30.16%
Ngai-Mint Kwan 110 1.65% 3 4.76%
Matthew Vick 60 0.90% 3 4.76%
Jeff Kirsher 50 0.75% 4 6.35%
John Fastabend 29 0.44% 2 3.17%
Jiri Pirko 15 0.23% 4 6.35%
Jarod Wilson 13 0.20% 1 1.59%
Amritha Nambiar 9 0.14% 1 1.59%
Stephen Hemminger 8 0.12% 2 3.17%
Michael S. Tsirkin 4 0.06% 1 1.59%
Bruce W Allan 4 0.06% 2 3.17%
Tom Herbert 1 0.02% 1 1.59%
Nogah Frankel 1 0.02% 1 1.59%
Total 6653 63


// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2013 - 2019 Intel Corporation. */

#include "fm10k.h"
#include <linux/vmalloc.h>
#include <net/udp_tunnel.h>
#include <linux/if_macvlan.h>

/**
 * fm10k_setup_tx_resources - allocate Tx resources (Descriptors)
 * @tx_ring:    tx descriptor ring (for a specific queue) to setup
 *
 * Return 0 on success, negative on failure
 **/
int fm10k_setup_tx_resources(struct fm10k_ring *tx_ring)
{
	struct device *dev = tx_ring->dev;
	int size;

	size = sizeof(struct fm10k_tx_buffer) * tx_ring->count;

	tx_ring->tx_buffer = vzalloc(size);
	if (!tx_ring->tx_buffer)
		goto err;

	u64_stats_init(&tx_ring->syncp);

	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct fm10k_tx_desc);
	tx_ring->size = ALIGN(tx_ring->size, 4096);

	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->desc)
		goto err;

	return 0;

err:
	vfree(tx_ring->tx_buffer);
	tx_ring->tx_buffer = NULL;
	return -ENOMEM;
}

/**
 * fm10k_setup_all_tx_resources - allocate all queues Tx resources
 * @interface: board private structure
 *
 * If this function returns with an error, then it's possible one or
 * more of the rings is populated (while the rest are not).  It is the
 * callers duty to clean those orphaned rings.
 *
 * Return 0 on success, negative on failure
 **/
static int fm10k_setup_all_tx_resources(struct fm10k_intfc *interface)
{
	int i, err;

	for (i = 0; i < interface->num_tx_queues; i++) {
		err = fm10k_setup_tx_resources(interface->tx_ring[i]);
		if (!err)
			continue;

		netif_err(interface, probe, interface->netdev,
			  "Allocation for Tx Queue %u failed\n", i);
		goto err_setup_tx;
	}

	return 0;
err_setup_tx:
	/* rewind the index freeing the rings as we go */
	while (i--)
		fm10k_free_tx_resources(interface->tx_ring[i]);
	return err;
}

/**
 * fm10k_setup_rx_resources - allocate Rx resources (Descriptors)
 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
int fm10k_setup_rx_resources(struct fm10k_ring *rx_ring)
{
	struct device *dev = rx_ring->dev;
	int size;

	size = sizeof(struct fm10k_rx_buffer) * rx_ring->count;

	rx_ring->rx_buffer = vzalloc(size);
	if (!rx_ring->rx_buffer)
		goto err;

	u64_stats_init(&rx_ring->syncp);

	/* Round up to nearest 4K */
	rx_ring->size = rx_ring->count * sizeof(union fm10k_rx_desc);
	rx_ring->size = ALIGN(rx_ring->size, 4096);

	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);
	if (!rx_ring->desc)
		goto err;

	return 0;
err:
	vfree(rx_ring->rx_buffer);
	rx_ring->rx_buffer = NULL;
	return -ENOMEM;
}

/**
 * fm10k_setup_all_rx_resources - allocate all queues Rx resources
 * @interface: board private structure
 *
 * If this function returns with an error, then it's possible one or
 * more of the rings is populated (while the rest are not).  It is the
 * callers duty to clean those orphaned rings.
 *
 * Return 0 on success, negative on failure
 **/
static int fm10k_setup_all_rx_resources(struct fm10k_intfc *interface)
{
	int i, err;

	for (i = 0; i < interface->num_rx_queues; i++) {
		err = fm10k_setup_rx_resources(interface->rx_ring[i]);
		if (!err)
			continue;

		netif_err(interface, probe, interface->netdev,
			  "Allocation for Rx Queue %u failed\n", i);
		goto err_setup_rx;
	}

	return 0;
err_setup_rx:
	/* rewind the index freeing the rings as we go */
	while (i--)
		fm10k_free_rx_resources(interface->rx_ring[i]);
	return err;
}

void fm10k_unmap_and_free_tx_resource(struct fm10k_ring *ring,
				      struct fm10k_tx_buffer *tx_buffer)
{
	if (tx_buffer->skb) {
		dev_kfree_skb_any(tx_buffer->skb);
		if (dma_unmap_len(tx_buffer, len))
			dma_unmap_single(ring->dev,
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
					 DMA_TO_DEVICE);
	} else if (dma_unmap_len(tx_buffer, len)) {
		dma_unmap_page(ring->dev,
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
			       DMA_TO_DEVICE);
	}
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
	dma_unmap_len_set(tx_buffer, len, 0);
	/* tx_buffer must be completely set up in the transmit path */
}

/**
 * fm10k_clean_tx_ring - Free Tx Buffers
 * @tx_ring: ring to be cleaned
 **/
static void fm10k_clean_tx_ring(struct fm10k_ring *tx_ring)
{
	unsigned long size;
	u16 i;

	/* ring already cleared, nothing to do */
	if (!tx_ring->tx_buffer)
		return;

	/* Free all the Tx ring sk_buffs */
	for (i = 0; i < tx_ring->count; i++) {
		struct fm10k_tx_buffer *tx_buffer = &tx_ring->tx_buffer[i];

		fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
	}

	/* reset BQL values */
	netdev_tx_reset_queue(txring_txq(tx_ring));

	size = sizeof(struct fm10k_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_buffer, 0, size);

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);
}

/**
 * fm10k_free_tx_resources - Free Tx Resources per Queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
void fm10k_free_tx_resources(struct fm10k_ring *tx_ring)
{
	fm10k_clean_tx_ring(tx_ring);

	vfree(tx_ring->tx_buffer);
	tx_ring->tx_buffer = NULL;

	/* if not set, then don't free */
	if (!tx_ring->desc)
		return;

	dma_free_coherent(tx_ring->dev, tx_ring->size,
			  tx_ring->desc, tx_ring->dma);
	tx_ring->desc = NULL;
}

/**
 * fm10k_clean_all_tx_rings - Free Tx Buffers for all queues
 * @interface: board private structure
 **/
void fm10k_clean_all_tx_rings(struct fm10k_intfc *interface)
{
	int i;

	for (i = 0; i < interface->num_tx_queues; i++)
		fm10k_clean_tx_ring(interface->tx_ring[i]);
}

/**
 * fm10k_free_all_tx_resources - Free Tx Resources for All Queues
 * @interface: board private structure
 *
 * Free all transmit software resources
 **/
static void fm10k_free_all_tx_resources(struct fm10k_intfc *interface)
{
	int i = interface->num_tx_queues;

	while (i--)
		fm10k_free_tx_resources(interface->tx_ring[i]);
}

/**
 * fm10k_clean_rx_ring - Free Rx Buffers per Queue
 * @rx_ring: ring to free buffers from
 **/
static void fm10k_clean_rx_ring(struct fm10k_ring *rx_ring)
{
	unsigned long size;
	u16 i;

	if (!rx_ring->rx_buffer)
		return;

	dev_kfree_skb(rx_ring->skb);
	rx_ring->skb = NULL;

	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
		struct fm10k_rx_buffer *buffer = &rx_ring->rx_buffer[i];
		/* clean-up will only set page pointer to NULL */
		if (!buffer->page)
			continue;

		dma_unmap_page(rx_ring->dev, buffer->dma,
			       PAGE_SIZE, DMA_FROM_DEVICE);
		__free_page(buffer->page);

		buffer->page = NULL;
	}

	size = sizeof(struct fm10k_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_buffer, 0, size);

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_alloc = 0;
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * fm10k_free_rx_resources - Free Rx Resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
void fm10k_free_rx_resources(struct fm10k_ring *rx_ring)
{
	fm10k_clean_rx_ring(rx_ring);

	vfree(rx_ring->rx_buffer);
	rx_ring->rx_buffer = NULL;

	/* if not set, then don't free */
	if (!rx_ring->desc)
		return;

	dma_free_coherent(rx_ring->dev, rx_ring->size,
			  rx_ring->desc, rx_ring->dma);

	rx_ring->desc = NULL;
}

/**
 * fm10k_clean_all_rx_rings - Free Rx Buffers for all queues
 * @interface: board private structure
 **/
void fm10k_clean_all_rx_rings(struct fm10k_intfc *interface)
{
	int i;

	for (i = 0; i < interface->num_rx_queues; i++)
		fm10k_clean_rx_ring(interface->rx_ring[i]);
}

/**
 * fm10k_free_all_rx_resources - Free Rx Resources for All Queues
 * @interface: board private structure
 *
 * Free all receive software resources
 **/
static void fm10k_free_all_rx_resources(struct fm10k_intfc *interface)
{
	int i = interface->num_rx_queues;

	while (i--)
		fm10k_free_rx_resources(interface->rx_ring[i]);
}

/**
 * fm10k_request_glort_range - Request GLORTs for use in configuring rules
 * @interface: board private structure
 *
 * This function allocates a range of glorts for this interface to use.
 **/
static void fm10k_request_glort_range(struct fm10k_intfc *interface)
{
	struct fm10k_hw *hw = &interface->hw;
	u16 mask = (~hw->mac.dglort_map) >> FM10K_DGLORTMAP_MASK_SHIFT;

	/* establish GLORT base */
	interface->glort = hw->mac.dglort_map & FM10K_DGLORTMAP_NONE;
	interface->glort_count = 0;

	/* nothing we can do until mask is allocated */
	if (hw->mac.dglort_map == FM10K_DGLORTMAP_NONE)
		return;

	/* we support 3 possible GLORT configurations.
	 * 1: VFs consume all but the last 1
	 * 2: VFs and PF split glorts with possible gap between
	 * 3: VFs allocated first 64, all others belong to PF
	 */
	if (mask <= hw->iov.total_vfs) {
		interface->glort_count = 1;
		interface->glort += mask;
	} else if (mask < 64) {
		interface->glort_count = (mask + 1) / 2;
		interface->glort += interface->glort_count;
	} else {
		interface->glort_count = mask - 63;
		interface->glort += 64;
	}
}

/**
 * fm10k_free_udp_port_info
 * @interface: board private structure
 *
 * This function frees both geneve_port and vxlan_port structures
 **/
static void fm10k_free_udp_port_info(struct fm10k_intfc *interface)
{
	struct fm10k_udp_port *port;

	/* flush all entries from vxlan list */
	port = list_first_entry_or_null(&interface->vxlan_port,
					struct fm10k_udp_port, list);
	while (port) {
		list_del(&port->list);
		kfree(port);
		port = list_first_entry_or_null(&interface->vxlan_port,
						struct fm10k_udp_port,
						list);
	}

	/* flush all entries from geneve list */
	port = list_first_entry_or_null(&interface->geneve_port,
					struct fm10k_udp_port, list);
	while (port) {
		list_del(&port->list);
		kfree(port);
		port = list_first_entry_or_null(&interface->vxlan_port,
						struct fm10k_udp_port,
						list);
	}
}

/**
 * fm10k_restore_udp_port_info
 * @interface: board private structure
 *
 * This function restores the value in the tunnel_cfg register(s) after reset
 **/
static void fm10k_restore_udp_port_info(struct fm10k_intfc *interface)
{
	struct fm10k_hw *hw = &interface->hw;
	struct fm10k_udp_port *port;

	/* only the PF supports configuring tunnels */
	if (hw->mac.type != fm10k_mac_pf)
		return;

	port = list_first_entry_or_null(&interface->vxlan_port,
					struct fm10k_udp_port, list);

	/* restore tunnel configuration register */
	fm10k_write_reg(hw, FM10K_TUNNEL_CFG,
			(port ? ntohs(port->port) : 0) |
			(ETH_P_TEB << FM10K_TUNNEL_CFG_NVGRE_SHIFT));

	port = list_first_entry_or_null(&interface->geneve_port,
					struct fm10k_udp_port, list);

	/* restore Geneve tunnel configuration register */
	fm10k_write_reg(hw, FM10K_TUNNEL_CFG_GENEVE,
			(port ? ntohs(port->port) : 0));
}

static struct fm10k_udp_port *
fm10k_remove_tunnel_port(struct list_head *ports,
			 struct udp_tunnel_info *ti)
{
	struct fm10k_udp_port *port;

	list_for_each_entry(port, ports, list) {
		if ((port->port == ti->port) &&
		    (port->sa_family == ti->sa_family)) {
			list_del(&port->list);
			return port;
		}
	}

	return NULL;
}

static void fm10k_insert_tunnel_port(struct list_head *ports,
				     struct udp_tunnel_info *ti)
{
	struct fm10k_udp_port *port;

	/* remove existing port entry from the list so that the newest items
	 * are always at the tail of the list.
	 */
	port = fm10k_remove_tunnel_port(ports, ti);
	if (!port) {
		port = kmalloc(sizeof(*port), GFP_ATOMIC);
		if  (!port)
			return;
		port->port = ti->port;
		port->sa_family = ti->sa_family;
	}

	list_add_tail(&port->list, ports);
}

/**
 * fm10k_udp_tunnel_add
 * @dev: network interface device structure
 * @ti: Tunnel endpoint information
 *
 * This function is called when a new UDP tunnel port has been added.
 * Due to hardware restrictions, only one port per type can be offloaded at
 * once.
 **/
static void fm10k_udp_tunnel_add(struct net_device *dev,
				 struct udp_tunnel_info *ti)
{
	struct fm10k_intfc *interface = netdev_priv(dev);

	/* only the PF supports configuring tunnels */
	if (interface->hw.mac.type != fm10k_mac_pf)
		return;

	switch (ti->type) {
	case UDP_TUNNEL_TYPE_VXLAN:
		fm10k_insert_tunnel_port(&interface->vxlan_port, ti);
		break;
	case UDP_TUNNEL_TYPE_GENEVE:
		fm10k_insert_tunnel_port(&interface->geneve_port, ti);
		break;
	default:
		return;
	}

	fm10k_restore_udp_port_info(interface);
}

/**
 * fm10k_udp_tunnel_del
 * @dev: network interface device structure
 * @ti: Tunnel end point information
 *
 * This function is called when a new UDP tunnel port is deleted. The freed
 * port will be removed from the list, then we reprogram the offloaded port
 * based on the head of the list.
 **/
static void fm10k_udp_tunnel_del(struct net_device *dev,
				 struct udp_tunnel_info *ti)
{
	struct fm10k_intfc *interface = netdev_priv(dev);
	struct fm10k_udp_port *port = NULL;

	if (interface->hw.mac.type != fm10k_mac_pf)
		return;

	switch (ti->type) {
	case UDP_TUNNEL_TYPE_VXLAN:
		port = fm10k_remove_tunnel_port(&interface->vxlan_port, ti);
		break;
	case UDP_TUNNEL_TYPE_GENEVE:
		port = fm10k_remove_tunnel_port(&interface->geneve_port, ti);
		break;
	default:
		return;
	}

	/* if we did remove a port we need to free its memory */
	kfree(port);

	fm10k_restore_udp_port_info(interface);
}

/**
 * fm10k_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
int fm10k_open(struct net_device *netdev)
{
	struct fm10k_intfc *interface = netdev_priv(netdev);
	int err;

	/* allocate transmit descriptors */
	err = fm10k_setup_all_tx_resources(interface);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = fm10k_setup_all_rx_resources(interface);
	if (err)
		goto err_setup_rx;

	/* allocate interrupt resources */
	err = fm10k_qv_request_irq(interface);
	if (err)
		goto err_req_irq;

	/* setup GLORT assignment for this port */
	fm10k_request_glort_range(interface);

	/* Notify the stack of the actual queue counts */
	err = netif_set_real_num_tx_queues(netdev,
					   interface->num_tx_queues);
	if (err)
		goto err_set_queues;

	err = netif_set_real_num_rx_queues(netdev,
					   interface->num_rx_queues);
	if (err)
		goto err_set_queues;

	udp_tunnel_get_rx_info(netdev);

	fm10k_up(interface);

	return 0;

err_set_queues:
	fm10k_qv_free_irq(interface);
err_req_irq:
	fm10k_free_all_rx_resources(interface);
err_setup_rx:
	fm10k_free_all_tx_resources(interface);
err_setup_tx:
	return err;
}

/**
 * fm10k_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the drivers control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
int fm10k_close(struct net_device *netdev)
{
	struct fm10k_intfc *interface = netdev_priv(netdev);

	fm10k_down(interface);

	fm10k_qv_free_irq(interface);

	fm10k_free_udp_port_info(interface);

	fm10k_free_all_tx_resources(interface);
	fm10k_free_all_rx_resources(interface);

	return 0;
}

static netdev_tx_t fm10k_xmit_frame(struct sk_buff *skb, struct net_device *dev)
{
	struct fm10k_intfc *interface = netdev_priv(dev);
	int num_tx_queues = READ_ONCE(interface->num_tx_queues);
	unsigned int r_idx = skb->queue_mapping;
	int err;

	if (!num_tx_queues)
		return NETDEV_TX_BUSY;

	if ((skb->protocol == htons(ETH_P_8021Q)) &&
	    !skb_vlan_tag_present(skb)) {
		/* FM10K only supports hardware tagging, any tags in frame
		 * are considered 2nd level or "outer" tags
		 */
		struct vlan_hdr *vhdr;
		__be16 proto;

		/* make sure skb is not shared */
		skb = skb_share_check(skb, GFP_ATOMIC);
		if (!skb)
			return NETDEV_TX_OK;

		/* make sure there is enough room to move the ethernet header */
		if (unlikely(!pskb_may_pull(skb, VLAN_ETH_HLEN)))
			return NETDEV_TX_OK;

		/* verify the skb head is not shared */
		err = skb_cow_head(skb, 0);
		if (err) {
			dev_kfree_skb(skb);
			return NETDEV_TX_OK;
		}

		/* locate VLAN header */
		vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);

		/* pull the 2 key pieces of data out of it */
		__vlan_hwaccel_put_tag(skb,
				       htons(ETH_P_8021Q),
				       ntohs(vhdr->h_vlan_TCI));
		proto = vhdr->h_vlan_encapsulated_proto;
		skb->protocol = (ntohs(proto) >= 1536) ? proto :
							 htons(ETH_P_802_2);

		/* squash it by moving the ethernet addresses up 4 bytes */
		memmove(skb->data + VLAN_HLEN, skb->data, 12);
		__skb_pull(skb, VLAN_HLEN);
		skb_reset_mac_header(skb);
	}

	/* The minimum packet size for a single buffer is 17B so pad the skb
	 * in order to meet this minimum size requirement.
	 */
	if (unlikely(skb->len < 17)) {
		int pad_len = 17 - skb->len;

		if (skb_pad(skb, pad_len))
			return NETDEV_TX_OK;
		__skb_put(skb, pad_len);
	}

	if (r_idx >= num_tx_queues)
		r_idx %= num_tx_queues;

	err = fm10k_xmit_frame_ring(skb, interface->tx_ring[r_idx]);

	return err;
}

/**
 * fm10k_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 * @txqueue: the index of the Tx queue that timed out
 **/
static void fm10k_tx_timeout(struct net_device *netdev, unsigned int txqueue)
{
	struct fm10k_intfc *interface = netdev_priv(netdev);
	struct fm10k_ring *tx_ring;
	bool real_tx_hang = false;

	if (txqueue >= interface->num_tx_queues) {
		WARN(1, "invalid Tx queue index %d", txqueue);
		return;
	}

	tx_ring = interface->tx_ring[txqueue];
	if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring))
		real_tx_hang = true;

#define TX_TIMEO_LIMIT 16000
	if (real_tx_hang) {
		fm10k_tx_timeout_reset(interface);
	} else {
		netif_info(interface, drv, netdev,
			   "Fake Tx hang detected with timeout of %d seconds\n",
			   netdev->watchdog_timeo / HZ);

		/* fake Tx hang - increase the kernel timeout */
		if (netdev->watchdog_timeo < TX_TIMEO_LIMIT)
			netdev->watchdog_timeo *= 2;
	}
}

/**
 * fm10k_host_mbx_ready - Check PF interface's mailbox readiness
 * @interface: board private structure
 *
 * This function checks if the PF interface's mailbox is ready before queueing
 * mailbox messages for transmission. This will prevent filling the TX mailbox
 * queue when the receiver is not ready. VF interfaces are exempt from this
 * check since it will block all PF-VF mailbox messages from being sent from
 * the VF to the PF at initialization.
 **/
static bool fm10k_host_mbx_ready(struct fm10k_intfc *interface)
{
	struct fm10k_hw *hw = &interface->hw;

	return (hw->mac.type == fm10k_mac_vf || interface->host_ready);
}

/**
 * fm10k_queue_vlan_request - Queue a VLAN update request
 * @interface: the fm10k interface structure
 * @vid: the VLAN vid
 * @vsi: VSI index number
 * @set: whether to set or clear
 *
 * This function queues up a VLAN update. For VFs, this must be sent to the
 * managing PF over the mailbox. For PFs, we'll use the same handling so that
 * it's similar to the VF. This avoids storming the PF<->VF mailbox with too
 * many VLAN updates during reset.
 */
int fm10k_queue_vlan_request(struct fm10k_intfc *interface,
			     u32 vid, u8 vsi, bool set)
{
	struct fm10k_macvlan_request *request;
	unsigned long flags;

	/* This must be atomic since we may be called while the netdev
	 * addr_list_lock is held
	 */
	request = kzalloc(sizeof(*request), GFP_ATOMIC);
	if (!request)
		return -ENOMEM;

	request->type = FM10K_VLAN_REQUEST;
	request->vlan.vid = vid;
	request->vlan.vsi = vsi;
	request->set = set;

	spin_lock_irqsave(&interface->macvlan_lock, flags);
	list_add_tail(&request->list, &interface->macvlan_requests);
	spin_unlock_irqrestore(&interface->macvlan_lock, flags);

	fm10k_macvlan_schedule(interface);

	return 0;
}

/**
 * fm10k_queue_mac_request - Queue a MAC update request
 * @interface: the fm10k interface structure
 * @glort: the target glort for this update
 * @addr: the address to update
 * @vid: the vid to update
 * @set: whether to add or remove
 *
 * This function queues up a MAC request for sending to the switch manager.
 * A separate thread monitors the queue and sends updates to the switch
 * manager. Return 0 on success, and negative error code on failure.
 **/
int fm10k_queue_mac_request(struct fm10k_intfc *interface, u16 glort,
			    const unsigned char *addr, u16 vid, bool set)
{
	struct fm10k_macvlan_request *request;
	unsigned long flags;

	/* This must be atomic since we may be called while the netdev
	 * addr_list_lock is held
	 */
	request = kzalloc(sizeof(*request), GFP_ATOMIC);
	if (!request)
		return -ENOMEM;

	if (is_multicast_ether_addr(addr))
		request->type = FM10K_MC_MAC_REQUEST;
	else
		request->type = FM10K_UC_MAC_REQUEST;

	ether_addr_copy(request->mac.addr, addr);
	request->mac.glort = glort;
	request->mac.vid = vid;
	request->set = set;

	spin_lock_irqsave(&interface->macvlan_lock, flags);
	list_add_tail(&request->list, &interface->macvlan_requests);
	spin_unlock_irqrestore(&interface->macvlan_lock, flags);

	fm10k_macvlan_schedule(interface);

	return 0;
}

/**
 * fm10k_clear_macvlan_queue - Cancel pending updates for a given glort
 * @interface: the fm10k interface structure
 * @glort: the target glort to clear
 * @vlans: true to clear VLAN messages, false to ignore them
 *
 * Cancel any outstanding MAC/VLAN requests for a given glort. This is
 * expected to be called when a logical port goes down.
 **/
void fm10k_clear_macvlan_queue(struct fm10k_intfc *interface,
			       u16 glort, bool vlans)

{
	struct fm10k_macvlan_request *r, *tmp;
	unsigned long flags;

	spin_lock_irqsave(&interface->macvlan_lock, flags);

	/* Free any outstanding MAC/VLAN requests for this interface */
	list_for_each_entry_safe(r, tmp, &interface->macvlan_requests, list) {
		switch (r->type) {
		case FM10K_MC_MAC_REQUEST:
		case FM10K_UC_MAC_REQUEST:
			/* Don't free requests for other interfaces */
			if (r->mac.glort != glort)
				break;
			/* fall through */
		case FM10K_VLAN_REQUEST:
			if (vlans) {
				list_del(&r->list);
				kfree(r);
			}
			break;
		}
	}

	spin_unlock_irqrestore(&interface->macvlan_lock, flags);
}

static int fm10k_uc_vlan_unsync(struct net_device *netdev,
				const unsigned char *uc_addr)
{
	struct fm10k_intfc *interface = netdev_priv(netdev);
	u16 glort = interface->glort;
	u16 vid = interface->vid;
	bool set = !!(vid / VLAN_N_VID);
	int err;

	/* drop any leading bits on the VLAN ID */
	vid &= VLAN_N_VID - 1;

	err = fm10k_queue_mac_request(interface, glort, uc_addr, vid, set);
	if (err)
		return err;

	/* return non-zero value as we are only doing a partial sync/unsync */
	return 1;
}

static int fm10k_mc_vlan_unsync(struct net_device *netdev,
				const unsigned char *mc_addr)
{
	struct fm10k_intfc *interface = netdev_priv(netdev);
	u16 glort = interface->glort;
	u16 vid = interface->vid;
	bool set = !!(vid / VLAN_N_VID);
	int err;

	/* drop any leading bits on the VLAN ID */
	vid &= VLAN_N_VID - 1;

	err = fm10k_queue_mac_request(interface, glort, mc_addr, vid, set);
	if (err)
		return err;

	/* return non-zero value as we are only doing a partial sync/unsync */
	return 1;
}

static int fm10k_update_vid(struct net_device *netdev, u16 vid, bool set)
{
	struct fm10k_intfc *interface = netdev_priv(netdev);
	struct fm10k_l2_accel *l2_accel = interface->l2_accel;
	struct fm10k_hw *hw = &interface->hw;
	u16 glort;
	s32 err;
	int i;

	/* updates do not apply to VLAN 0 */
	if (!vid)
		return 0;

	if (vid >= VLAN_N_VID)
		return -EINVAL;

	/* Verify that we have permission to add VLANs. If this is a request
	 * to remove a VLAN, we still want to allow the user to remove the
	 * VLAN device. In that case, we need to clear the bit in the
	 * active_vlans bitmask.
	 */
	if (set && hw->mac.vlan_override)
		return -EACCES;

	/* update active_vlans bitmask */
	set_bit(vid, interface->active_vlans);
	if (!set)
		clear_bit(vid, interface->active_vlans);

	/* disable the default VLAN ID on ring if we have an active VLAN */
	for (i = 0; i < interface->num_rx_queues; i++) {
		struct fm10k_ring *rx_ring = interface->rx_ring[i];
		u16 rx_vid = rx_ring->vid & (VLAN_N_VID - 1);

		if (test_bit(rx_vid, interface->active_vlans))
			rx_ring->vid |= FM10K_VLAN_CLEAR;
		else
			rx_ring->vid &= ~FM10K_VLAN_CLEAR;
	}

	/* If our VLAN has been overridden, there is no reason to send VLAN
	 * removal requests as they will be silently ignored.
	 */
	if (hw->mac.vlan_override)
		return 0;

	/* Do not remove default VLAN ID related entries from VLAN and MAC
	 * tables
	 */
	if (!set && vid == hw->mac.default_vid)
		return 0;

	/* Do not throw an error if the interface is down. We will sync once
	 * we come up
	 */
	if (test_bit(__FM10K_DOWN, interface->state))
		return 0;

	fm10k_mbx_lock(interface);

	/* only need to update the VLAN if not in promiscuous mode */
	if (!(netdev->flags & IFF_PROMISC)) {
		err = fm10k_queue_vlan_request(interface, vid, 0, set);
		if (err)
			goto err_out;
	}

	/* Update our base MAC address */
	err = fm10k_queue_mac_request(interface, interface->glort,
				      hw->mac.addr, vid, set);
	if (err)
		goto err_out;

	/* Update L2 accelerated macvlan addresses */
	if (l2_accel) {
		for (i = 0; i < l2_accel->size; i++) {
			struct net_device *sdev = l2_accel->macvlan[i];

			if (!sdev)
				continue;

			glort = l2_accel->dglort + 1 + i;

			fm10k_queue_mac_request(interface, glort,
						sdev->dev_addr,
						vid, set);
		}
	}

	/* set VLAN ID prior to syncing/unsyncing the VLAN */
	interface->vid = vid + (set ? VLAN_N_VID : 0);

	/* Update the unicast and multicast address list to add/drop VLAN */
	__dev_uc_unsync(netdev, fm10k_uc_vlan_unsync);
	__dev_mc_unsync(netdev, fm10k_mc_vlan_unsync);

err_out:
	fm10k_mbx_unlock(interface);

	return err;
}

static int fm10k_vlan_rx_add_vid(struct net_device *netdev,
				 __always_unused __be16 proto, u16 vid)
{
	/* update VLAN and address table based on changes */
	return fm10k_update_vid(netdev, vid, true);
}

static int fm10k_vlan_rx_kill_vid(struct net_device *netdev,
				  __always_unused __be16 proto, u16 vid)
{
	/* update VLAN and address table based on changes */
	return fm10k_update_vid(netdev, vid, false);
}

static u16 fm10k_find_next_vlan(struct fm10k_intfc *interface, u16 vid)
{
	struct fm10k_hw *hw = &interface->hw;
	u16 default_vid = hw->mac.default_vid;
	u16 vid_limit = vid < default_vid ? default_vid : VLAN_N_VID;

	vid = find_next_bit(interface->active_vlans, vid_limit, ++vid);

	return vid;
}

static void fm10k_clear_unused_vlans(struct fm10k_intfc *interface)
{
	u32 vid, prev_vid;

	/* loop through and find any gaps in the table */
	for (vid = 0, prev_vid = 0;
	     prev_vid < VLAN_N_VID;
	     prev_vid = vid + 1, vid = fm10k_find_next_vlan(interface, vid)) {
		if (prev_vid == vid)
			continue;

		/* send request to clear multiple bits at a time */
		prev_vid += (vid - prev_vid - 1) << FM10K_VLAN_LENGTH_SHIFT;
		fm10k_queue_vlan_request(interface, prev_vid, 0, false);
	}
}

static int __fm10k_uc_sync(struct net_device *dev,
			   const unsigned char *addr, bool sync)
{
	struct fm10k_intfc *interface = netdev_priv(dev);
	u16 vid, glort = interface->glort;
	s32 err;

	if (!is_valid_ether_addr(addr))
		return -EADDRNOTAVAIL;

	for (vid = fm10k_find_next_vlan(interface, 0);
	     vid < VLAN_N_VID;
	     vid = fm10k_find_next_vlan(interface, vid)) {
		err = fm10k_queue_mac_request(interface, glort,
					      addr, vid, sync);
		if (err)
			return err;
	}

	return 0;
}

static int fm10k_uc_sync(struct net_device *dev,
			 const unsigned char *addr)
{
	return __fm10k_uc_sync(dev, addr, true);
}

static int fm10k_uc_unsync(struct net_device *dev,
			   const unsigned char *addr)
{
	return __fm10k_uc_sync(dev, addr, false);
}

static int fm10k_set_mac(struct net_device *dev, void *p)
{
	struct fm10k_intfc *interface = netdev_priv(dev);
	struct fm10k_hw *hw = &interface->hw;
	struct sockaddr *addr = p;
	s32 err = 0;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	if (dev->flags & IFF_UP) {
		/* setting MAC address requires mailbox */
		fm10k_mbx_lock(interface);

		err = fm10k_uc_sync(dev, addr->sa_data);
		if (!err)
			fm10k_uc_unsync(dev, hw->mac.addr);

		fm10k_mbx_unlock(interface);
	}

	if (!err) {
		ether_addr_copy(dev->dev_addr, addr->sa_data);
		ether_addr_copy(hw->mac.addr, addr->sa_data);
		dev->addr_assign_type &= ~NET_ADDR_RANDOM;
	}

	/* if we had a mailbox error suggest trying again */
	return err ? -EAGAIN : 0;
}

static int __fm10k_mc_sync(struct net_device *dev,
			   const unsigned char *addr, bool sync)
{
	struct fm10k_intfc *interface = netdev_priv(dev);
	u16 vid, glort = interface->glort;
	s32 err;

	if (!is_multicast_ether_addr(addr))
		return -EADDRNOTAVAIL;

	for (vid = fm10k_find_next_vlan(interface, 0);
	     vid < VLAN_N_VID;
	     vid = fm10k_find_next_vlan(interface, vid)) {
		err = fm10k_queue_mac_request(interface, glort,
					      addr, vid, sync);
		if (err)
			return err;
	}

	return 0;
}

static int fm10k_mc_sync(struct net_device *dev,
			 const unsigned char *addr)
{
	return __fm10k_mc_sync(dev, addr, true);
}

static int fm10k_mc_unsync(struct net_device *dev,
			   const unsigned char *addr)
{
	return __fm10k_mc_sync(dev, addr, false);
}

static void fm10k_set_rx_mode(struct net_device *dev)
{
	struct fm10k_intfc *interface = netdev_priv(dev);
	struct fm10k_hw *hw = &interface->hw;
	int xcast_mode;

	/* no need to update the harwdare if we are not running */
	if (!(dev->flags & IFF_UP))
		return;

	/* determine new mode based on flags */
	xcast_mode = (dev->flags & IFF_PROMISC) ? FM10K_XCAST_MODE_PROMISC :
		     (dev->flags & IFF_ALLMULTI) ? FM10K_XCAST_MODE_ALLMULTI :
		     (dev->flags & (IFF_BROADCAST | IFF_MULTICAST)) ?
		     FM10K_XCAST_MODE_MULTI : FM10K_XCAST_MODE_NONE;

	fm10k_mbx_lock(interface);

	/* update xcast mode first, but only if it changed */
	if (interface->xcast_mode != xcast_mode) {
		/* update VLAN table when entering promiscuous mode */
		if (xcast_mode == FM10K_XCAST_MODE_PROMISC)
			fm10k_queue_vlan_request(interface, FM10K_VLAN_ALL,
						 0, true);

		/* clear VLAN table when exiting promiscuous mode */
		if (interface->xcast_mode == FM10K_XCAST_MODE_PROMISC)
			fm10k_clear_unused_vlans(interface);

		/* update xcast mode if host's mailbox is ready */
		if (fm10k_host_mbx_ready(interface))
			hw->mac.ops.update_xcast_mode(hw, interface->glort,
						      xcast_mode);

		/* record updated xcast mode state */
		interface->xcast_mode = xcast_mode;
	}

	/* synchronize all of the addresses */
	__dev_uc_sync(dev, fm10k_uc_sync, fm10k_uc_unsync);
	__dev_mc_sync(dev, fm10k_mc_sync, fm10k_mc_unsync);

	fm10k_mbx_unlock(interface);
}

void fm10k_restore_rx_state(struct fm10k_intfc *interface)
{
	struct fm10k_l2_accel *l2_accel = interface->l2_accel;
	struct net_device *netdev = interface->netdev;
	struct fm10k_hw *hw = &interface->hw;
	int xcast_mode, i;
	u16 vid, glort;

	/* record glort for this interface */
	glort = interface->glort;

	/* convert interface flags to xcast mode */
	if (netdev->flags & IFF_PROMISC)
		xcast_mode = FM10K_XCAST_MODE_PROMISC;
	else if (netdev->flags & IFF_ALLMULTI)
		xcast_mode = FM10K_XCAST_MODE_ALLMULTI;
	else if (netdev->flags & (IFF_BROADCAST | IFF_MULTICAST))
		xcast_mode = FM10K_XCAST_MODE_MULTI;
	else
		xcast_mode = FM10K_XCAST_MODE_NONE;

	fm10k_mbx_lock(interface);

	/* Enable logical port if host's mailbox is ready */
	if (fm10k_host_mbx_ready(interface))
		hw->mac.ops.update_lport_state(hw, glort,
					       interface->glort_count, true);

	/* update VLAN table */
	fm10k_queue_vlan_request(interface, FM10K_VLAN_ALL, 0,
				 xcast_mode == FM10K_XCAST_MODE_PROMISC);

	/* update table with current entries */
	for (vid = fm10k_find_next_vlan(interface, 0);
	     vid < VLAN_N_VID;
	     vid = fm10k_find_next_vlan(interface, vid)) {
		fm10k_queue_vlan_request(interface, vid, 0, true);

		fm10k_queue_mac_request(interface, glort,
					hw->mac.addr, vid, true);

		/* synchronize macvlan addresses */
		if (l2_accel) {
			for (i = 0; i < l2_accel->size; i++) {
				struct net_device *sdev = l2_accel->macvlan[i];

				if (!sdev)
					continue;

				glort = l2_accel->dglort + 1 + i;

				fm10k_queue_mac_request(interface, glort,
							sdev->dev_addr,
							vid, true);
			}
		}
	}

	/* update xcast mode before synchronizing addresses if host's mailbox
	 * is ready
	 */
	if (fm10k_host_mbx_ready(interface))
		hw->mac.ops.update_xcast_mode(hw, glort, xcast_mode);

	/* synchronize all of the addresses */
	__dev_uc_sync(netdev, fm10k_uc_sync, fm10k_uc_unsync);
	__dev_mc_sync(netdev, fm10k_mc_sync, fm10k_mc_unsync);

	/* synchronize macvlan addresses */
	if (l2_accel) {
		for (i = 0; i < l2_accel->size; i++) {
			struct net_device *sdev = l2_accel->macvlan[i];

			if (!sdev)
				continue;

			glort = l2_accel->dglort + 1 + i;

			hw->mac.ops.update_xcast_mode(hw, glort,
						      FM10K_XCAST_MODE_NONE);
			fm10k_queue_mac_request(interface, glort,
						sdev->dev_addr,
						hw->mac.default_vid, true);
		}
	}

	fm10k_mbx_unlock(interface);

	/* record updated xcast mode state */
	interface->xcast_mode = xcast_mode;

	/* Restore tunnel configuration */
	fm10k_restore_udp_port_info(interface);
}

void fm10k_reset_rx_state(struct fm10k_intfc *interface)
{
	struct net_device *netdev = interface->netdev;
	struct fm10k_hw *hw = &interface->hw;

	/* Wait for MAC/VLAN work to finish */
	while (test_bit(__FM10K_MACVLAN_SCHED, interface->state))
		usleep_range(1000, 2000);

	/* Cancel pending MAC/VLAN requests */
	fm10k_clear_macvlan_queue(interface, interface->glort, true);

	fm10k_mbx_lock(interface);

	/* clear the logical port state on lower device if host's mailbox is
	 * ready
	 */
	if (fm10k_host_mbx_ready(interface))
		hw->mac.ops.update_lport_state(hw, interface->glort,
					       interface->glort_count, false);

	fm10k_mbx_unlock(interface);

	/* reset flags to default state */
	interface->xcast_mode = FM10K_XCAST_MODE_NONE;

	/* clear the sync flag since the lport has been dropped */
	__dev_uc_unsync(netdev, NULL);
	__dev_mc_unsync(netdev, NULL);
}

/**
 * fm10k_get_stats64 - Get System Network Statistics
 * @netdev: network interface device structure
 * @stats: storage space for 64bit statistics
 *
 * Obtain 64bit statistics in a way that is safe for both 32bit and 64bit
 * architectures.
 */
static void fm10k_get_stats64(struct net_device *netdev,
			      struct rtnl_link_stats64 *stats)
{
	struct fm10k_intfc *interface = netdev_priv(netdev);
	struct fm10k_ring *ring;
	unsigned int start, i;
	u64 bytes, packets;

	rcu_read_lock();

	for (i = 0; i < interface->num_rx_queues; i++) {
		ring = READ_ONCE(interface->rx_ring[i]);

		if (!ring)
			continue;

		do {
			start = u64_stats_fetch_begin_irq(&ring->syncp);
			packets = ring->stats.packets;
			bytes   = ring->stats.bytes;
		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));

		stats->rx_packets += packets;
		stats->rx_bytes   += bytes;
	}

	for (i = 0; i < interface->num_tx_queues; i++) {
		ring = READ_ONCE(interface->tx_ring[i]);

		if (!ring)
			continue;

		do {
			start = u64_stats_fetch_begin_irq(&ring->syncp);
			packets = ring->stats.packets;
			bytes   = ring->stats.bytes;
		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));

		stats->tx_packets += packets;
		stats->tx_bytes   += bytes;
	}

	rcu_read_unlock();

	/* following stats updated by fm10k_service_task() */
	stats->rx_missed_errors	= netdev->stats.rx_missed_errors;
}

int fm10k_setup_tc(struct net_device *dev, u8 tc)
{
	struct fm10k_intfc *interface = netdev_priv(dev);
	int err;

	/* Currently only the PF supports priority classes */
	if (tc && (interface->hw.mac.type != fm10k_mac_pf))
		return -EINVAL;

	/* Hardware supports up to 8 traffic classes */
	if (tc > 8)
		return -EINVAL;

	/* Hardware has to reinitialize queues to match packet
	 * buffer alignment. Unfortunately, the hardware is not
	 * flexible enough to do this dynamically.
	 */
	if (netif_running(dev))
		fm10k_close(dev);

	fm10k_mbx_free_irq(interface);

	fm10k_clear_queueing_scheme(interface);

	/* we expect the prio_tc map to be repopulated later */
	netdev_reset_tc(dev);
	netdev_set_num_tc(dev, tc);

	err = fm10k_init_queueing_scheme(interface);
	if (err)
		goto err_queueing_scheme;

	err = fm10k_mbx_request_irq(interface);
	if (err)
		goto err_mbx_irq;

	err = netif_running(dev) ? fm10k_open(dev) : 0;
	if (err)
		goto err_open;

	/* flag to indicate SWPRI has yet to be updated */
	set_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags);

	return 0;
err_open:
	fm10k_mbx_free_irq(interface);
err_mbx_irq:
	fm10k_clear_queueing_scheme(interface);
err_queueing_scheme:
	netif_device_detach(dev);

	return err;
}

static int __fm10k_setup_tc(struct net_device *dev, enum tc_setup_type type,
			    void *type_data)
{
	struct tc_mqprio_qopt *mqprio = type_data;

	if (type != TC_SETUP_QDISC_MQPRIO)
		return -EOPNOTSUPP;

	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;

	return fm10k_setup_tc(dev, mqprio->num_tc);
}

static void fm10k_assign_l2_accel(struct fm10k_intfc *interface,
				  struct fm10k_l2_accel *l2_accel)
{
	int i;

	for (i = 0; i < interface->num_rx_queues; i++) {
		struct fm10k_ring *ring = interface->rx_ring[i];

		rcu_assign_pointer(ring->l2_accel, l2_accel);
	}

	interface->l2_accel = l2_accel;
}

static void *fm10k_dfwd_add_station(struct net_device *dev,
				    struct net_device *sdev)
{
	struct fm10k_intfc *interface = netdev_priv(dev);
	struct fm10k_l2_accel *l2_accel = interface->l2_accel;
	struct fm10k_l2_accel *old_l2_accel = NULL;
	struct fm10k_dglort_cfg dglort = { 0 };
	struct fm10k_hw *hw = &interface->hw;
	int size, i;
	u16 vid, glort;

	/* The hardware supported by fm10k only filters on the destination MAC
	 * address. In order to avoid issues we only support offloading modes
	 * where the hardware can actually provide the functionality.
	 */
	if (!macvlan_supports_dest_filter(sdev))
		return ERR_PTR(-EMEDIUMTYPE);

	/* allocate l2 accel structure if it is not available */
	if (!l2_accel) {
		/* verify there is enough free GLORTs to support l2_accel */
		if (interface->glort_count < 7)
			return ERR_PTR(-EBUSY);

		size = offsetof(struct fm10k_l2_accel, macvlan[7]);
		l2_accel = kzalloc(size, GFP_KERNEL);
		if (!l2_accel)
			return ERR_PTR(-ENOMEM);

		l2_accel->size = 7;
		l2_accel->dglort = interface->glort;

		/* update pointers */
		fm10k_assign_l2_accel(interface, l2_accel);
	/* do not expand if we are at our limit */
	} else if ((l2_accel->count == FM10K_MAX_STATIONS) ||
		   (l2_accel->count == (interface->glort_count - 1))) {
		return ERR_PTR(-EBUSY);
	/* expand if we have hit the size limit */
	} else if (l2_accel->count == l2_accel->size) {
		old_l2_accel = l2_accel;
		size = offsetof(struct fm10k_l2_accel,
				macvlan[(l2_accel->size * 2) + 1]);
		l2_accel = kzalloc(size, GFP_KERNEL);
		if (!l2_accel)
			return ERR_PTR(-ENOMEM);

		memcpy(l2_accel, old_l2_accel,
		       offsetof(struct fm10k_l2_accel,
				macvlan[old_l2_accel->size]));

		l2_accel->size = (old_l2_accel->size * 2) + 1;

		/* update pointers */
		fm10k_assign_l2_accel(interface, l2_accel);
		kfree_rcu(old_l2_accel, rcu);
	}

	/* add macvlan to accel table, and record GLORT for position */
	for (i = 0; i < l2_accel->size; i++) {
		if (!l2_accel->macvlan[i])
			break;
	}

	/* record station */
	l2_accel->macvlan[i] = sdev;
	l2_accel->count++;

	/* configure default DGLORT mapping for RSS/DCB */
	dglort.idx = fm10k_dglort_pf_rss;
	dglort.inner_rss = 1;
	dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
	dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
	dglort.glort = interface->glort;
	dglort.shared_l = fls(l2_accel->size);
	hw->mac.ops.configure_dglort_map(hw, &dglort);

	/* Add rules for this specific dglort to the switch */
	fm10k_mbx_lock(interface);

	glort = l2_accel->dglort + 1 + i;

	if (fm10k_host_mbx_ready(interface))
		hw->mac.ops.update_xcast_mode(hw, glort,
					      FM10K_XCAST_MODE_NONE);

	fm10k_queue_mac_request(interface, glort, sdev->dev_addr,
				hw->mac.default_vid, true);

	for (vid = fm10k_find_next_vlan(interface, 0);
	     vid < VLAN_N_VID;
	     vid = fm10k_find_next_vlan(interface, vid))
		fm10k_queue_mac_request(interface, glort, sdev->dev_addr,
					vid, true);

	fm10k_mbx_unlock(interface);

	return sdev;
}

static void fm10k_dfwd_del_station(struct net_device *dev, void *priv)
{
	struct fm10k_intfc *interface = netdev_priv(dev);
	struct fm10k_l2_accel *l2_accel = READ_ONCE(interface->l2_accel);
	struct fm10k_dglort_cfg dglort = { 0 };
	struct fm10k_hw *hw = &interface->hw;
	struct net_device *sdev = priv;
	u16 vid, glort;
	int i;

	if (!l2_accel)
		return;

	/* search table for matching interface */
	for (i = 0; i < l2_accel->size; i++) {
		if (l2_accel->macvlan[i] == sdev)
			break;
	}

	/* exit if macvlan not found */
	if (i == l2_accel->size)
		return;

	/* Remove any rules specific to this dglort */
	fm10k_mbx_lock(interface);

	glort = l2_accel->dglort + 1 + i;

	if (fm10k_host_mbx_ready(interface))
		hw->mac.ops.update_xcast_mode(hw, glort,
					      FM10K_XCAST_MODE_NONE);

	fm10k_queue_mac_request(interface, glort, sdev->dev_addr,
				hw->mac.default_vid, false);

	for (vid = fm10k_find_next_vlan(interface, 0);
	     vid < VLAN_N_VID;
	     vid = fm10k_find_next_vlan(interface, vid))
		fm10k_queue_mac_request(interface, glort, sdev->dev_addr,
					vid, false);

	fm10k_mbx_unlock(interface);

	/* record removal */
	l2_accel->macvlan[i] = NULL;
	l2_accel->count--;

	/* configure default DGLORT mapping for RSS/DCB */
	dglort.idx = fm10k_dglort_pf_rss;
	dglort.inner_rss = 1;
	dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
	dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
	dglort.glort = interface->glort;
	dglort.shared_l = fls(l2_accel->size);
	hw->mac.ops.configure_dglort_map(hw, &dglort);

	/* If table is empty remove it */
	if (l2_accel->count == 0) {
		fm10k_assign_l2_accel(interface, NULL);
		kfree_rcu(l2_accel, rcu);
	}
}

static netdev_features_t fm10k_features_check(struct sk_buff *skb,
					      struct net_device *dev,
					      netdev_features_t features)
{
	if (!skb->encapsulation || fm10k_tx_encap_offload(skb))
		return features;

	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
}

static const struct net_device_ops fm10k_netdev_ops = {
	.ndo_open		= fm10k_open,
	.ndo_stop		= fm10k_close,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_start_xmit		= fm10k_xmit_frame,
	.ndo_set_mac_address	= fm10k_set_mac,
	.ndo_tx_timeout		= fm10k_tx_timeout,
	.ndo_vlan_rx_add_vid	= fm10k_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= fm10k_vlan_rx_kill_vid,
	.ndo_set_rx_mode	= fm10k_set_rx_mode,
	.ndo_get_stats64	= fm10k_get_stats64,
	.ndo_setup_tc		= __fm10k_setup_tc,
	.ndo_set_vf_mac		= fm10k_ndo_set_vf_mac,
	.ndo_set_vf_vlan	= fm10k_ndo_set_vf_vlan,
	.ndo_set_vf_rate	= fm10k_ndo_set_vf_bw,
	.ndo_get_vf_config	= fm10k_ndo_get_vf_config,
	.ndo_get_vf_stats	= fm10k_ndo_get_vf_stats,
	.ndo_udp_tunnel_add	= fm10k_udp_tunnel_add,
	.ndo_udp_tunnel_del	= fm10k_udp_tunnel_del,
	.ndo_dfwd_add_station	= fm10k_dfwd_add_station,
	.ndo_dfwd_del_station	= fm10k_dfwd_del_station,
	.ndo_features_check	= fm10k_features_check,
};

#define DEFAULT_DEBUG_LEVEL_SHIFT 3

struct net_device *fm10k_alloc_netdev(const struct fm10k_info *info)
{
	netdev_features_t hw_features;
	struct fm10k_intfc *interface;
	struct net_device *dev;

	dev = alloc_etherdev_mq(sizeof(struct fm10k_intfc), MAX_QUEUES);
	if (!dev)
		return NULL;

	/* set net device and ethtool ops */
	dev->netdev_ops = &fm10k_netdev_ops;
	fm10k_set_ethtool_ops(dev);

	/* configure default debug level */
	interface = netdev_priv(dev);
	interface->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;

	/* configure default features */
	dev->features |= NETIF_F_IP_CSUM |
			 NETIF_F_IPV6_CSUM |
			 NETIF_F_SG |
			 NETIF_F_TSO |
			 NETIF_F_TSO6 |
			 NETIF_F_TSO_ECN |
			 NETIF_F_RXHASH |
			 NETIF_F_RXCSUM;

	/* Only the PF can support VXLAN and NVGRE tunnel offloads */
	if (info->mac == fm10k_mac_pf) {
		dev->hw_enc_features = NETIF_F_IP_CSUM |
				       NETIF_F_TSO |
				       NETIF_F_TSO6 |
				       NETIF_F_TSO_ECN |
				       NETIF_F_GSO_UDP_TUNNEL |
				       NETIF_F_IPV6_CSUM |
				       NETIF_F_SG;

		dev->features |= NETIF_F_GSO_UDP_TUNNEL;
	}

	/* all features defined to this point should be changeable */
	hw_features = dev->features;

	/* allow user to enable L2 forwarding acceleration */
	hw_features |= NETIF_F_HW_L2FW_DOFFLOAD;

	/* configure VLAN features */
	dev->vlan_features |= dev->features;

	/* we want to leave these both on as we cannot disable VLAN tag
	 * insertion or stripping on the hardware since it is contained
	 * in the FTAG and not in the frame itself.
	 */
	dev->features |= NETIF_F_HW_VLAN_CTAG_TX |
			 NETIF_F_HW_VLAN_CTAG_RX |
			 NETIF_F_HW_VLAN_CTAG_FILTER;

	dev->priv_flags |= IFF_UNICAST_FLT;

	dev->hw_features |= hw_features;

	/* MTU range: 68 - 15342 */
	dev->min_mtu = ETH_MIN_MTU;
	dev->max_mtu = FM10K_MAX_JUMBO_FRAME_SIZE;

	return dev;
}