Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Björn Töpel | 1553 | 65.56% | 7 | 33.33% |
Magnus Karlsson | 732 | 30.90% | 6 | 28.57% |
Maxim Mikityanskiy | 46 | 1.94% | 2 | 9.52% |
Jan Sokolowski | 24 | 1.01% | 1 | 4.76% |
Michał Mirosław | 6 | 0.25% | 1 | 4.76% |
Kevin Laatz | 4 | 0.17% | 1 | 4.76% |
Jesper Dangaard Brouer | 2 | 0.08% | 1 | 4.76% |
Maciej Fijalkowski | 1 | 0.04% | 1 | 4.76% |
Gustavo A. R. Silva | 1 | 0.04% | 1 | 4.76% |
Total | 2369 | 21 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2018 Intel Corporation. */ #include <linux/bpf_trace.h> #include <net/xdp_sock_drv.h> #include <net/xdp.h> #include "i40e.h" #include "i40e_txrx_common.h" #include "i40e_xsk.h" int i40e_alloc_rx_bi_zc(struct i40e_ring *rx_ring) { unsigned long sz = sizeof(*rx_ring->rx_bi_zc) * rx_ring->count; rx_ring->rx_bi_zc = kzalloc(sz, GFP_KERNEL); return rx_ring->rx_bi_zc ? 0 : -ENOMEM; } void i40e_clear_rx_bi_zc(struct i40e_ring *rx_ring) { memset(rx_ring->rx_bi_zc, 0, sizeof(*rx_ring->rx_bi_zc) * rx_ring->count); } static struct xdp_buff **i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx) { return &rx_ring->rx_bi_zc[idx]; } /** * i40e_xsk_umem_enable - Enable/associate a UMEM to a certain ring/qid * @vsi: Current VSI * @umem: UMEM * @qid: Rx ring to associate UMEM to * * Returns 0 on success, <0 on failure **/ static int i40e_xsk_umem_enable(struct i40e_vsi *vsi, struct xdp_umem *umem, u16 qid) { struct net_device *netdev = vsi->netdev; bool if_running; int err; if (vsi->type != I40E_VSI_MAIN) return -EINVAL; if (qid >= vsi->num_queue_pairs) return -EINVAL; if (qid >= netdev->real_num_rx_queues || qid >= netdev->real_num_tx_queues) return -EINVAL; err = xsk_buff_dma_map(umem, &vsi->back->pdev->dev, I40E_RX_DMA_ATTR); if (err) return err; set_bit(qid, vsi->af_xdp_zc_qps); if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi); if (if_running) { err = i40e_queue_pair_disable(vsi, qid); if (err) return err; err = i40e_queue_pair_enable(vsi, qid); if (err) return err; /* Kick start the NAPI context so that receiving will start */ err = i40e_xsk_wakeup(vsi->netdev, qid, XDP_WAKEUP_RX); if (err) return err; } return 0; } /** * i40e_xsk_umem_disable - Disassociate a UMEM from a certain ring/qid * @vsi: Current VSI * @qid: Rx ring to associate UMEM to * * Returns 0 on success, <0 on failure **/ static int i40e_xsk_umem_disable(struct i40e_vsi *vsi, u16 qid) { struct net_device *netdev = vsi->netdev; struct xdp_umem *umem; bool if_running; int err; umem = xdp_get_umem_from_qid(netdev, qid); if (!umem) return -EINVAL; if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi); if (if_running) { err = i40e_queue_pair_disable(vsi, qid); if (err) return err; } clear_bit(qid, vsi->af_xdp_zc_qps); xsk_buff_dma_unmap(umem, I40E_RX_DMA_ATTR); if (if_running) { err = i40e_queue_pair_enable(vsi, qid); if (err) return err; } return 0; } /** * i40e_xsk_umem_setup - Enable/disassociate a UMEM to/from a ring/qid * @vsi: Current VSI * @umem: UMEM to enable/associate to a ring, or NULL to disable * @qid: Rx ring to (dis)associate UMEM (from)to * * This function enables or disables a UMEM to a certain ring. * * Returns 0 on success, <0 on failure **/ int i40e_xsk_umem_setup(struct i40e_vsi *vsi, struct xdp_umem *umem, u16 qid) { return umem ? i40e_xsk_umem_enable(vsi, umem, qid) : i40e_xsk_umem_disable(vsi, qid); } /** * i40e_run_xdp_zc - Executes an XDP program on an xdp_buff * @rx_ring: Rx ring * @xdp: xdp_buff used as input to the XDP program * * Returns any of I40E_XDP_{PASS, CONSUMED, TX, REDIR} **/ static int i40e_run_xdp_zc(struct i40e_ring *rx_ring, struct xdp_buff *xdp) { int err, result = I40E_XDP_PASS; struct i40e_ring *xdp_ring; struct bpf_prog *xdp_prog; u32 act; rcu_read_lock(); /* NB! xdp_prog will always be !NULL, due to the fact that * this path is enabled by setting an XDP program. */ xdp_prog = READ_ONCE(rx_ring->xdp_prog); act = bpf_prog_run_xdp(xdp_prog, xdp); switch (act) { case XDP_PASS: break; case XDP_TX: xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index]; result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring); break; case XDP_REDIRECT: err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED; break; default: bpf_warn_invalid_xdp_action(act); /* fall through */ case XDP_ABORTED: trace_xdp_exception(rx_ring->netdev, xdp_prog, act); /* fallthrough -- handle aborts by dropping packet */ case XDP_DROP: result = I40E_XDP_CONSUMED; break; } rcu_read_unlock(); return result; } bool i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count) { u16 ntu = rx_ring->next_to_use; union i40e_rx_desc *rx_desc; struct xdp_buff **bi, *xdp; dma_addr_t dma; bool ok = true; rx_desc = I40E_RX_DESC(rx_ring, ntu); bi = i40e_rx_bi(rx_ring, ntu); do { xdp = xsk_buff_alloc(rx_ring->xsk_umem); if (!xdp) { ok = false; goto no_buffers; } *bi = xdp; dma = xsk_buff_xdp_get_dma(xdp); rx_desc->read.pkt_addr = cpu_to_le64(dma); rx_desc->read.hdr_addr = 0; rx_desc++; bi++; ntu++; if (unlikely(ntu == rx_ring->count)) { rx_desc = I40E_RX_DESC(rx_ring, 0); bi = i40e_rx_bi(rx_ring, 0); ntu = 0; } count--; } while (count); no_buffers: if (rx_ring->next_to_use != ntu) i40e_release_rx_desc(rx_ring, ntu); return ok; } /** * i40e_construct_skb_zc - Create skbuff from zero-copy Rx buffer * @rx_ring: Rx ring * @xdp: xdp_buff * * This functions allocates a new skb from a zero-copy Rx buffer. * * Returns the skb, or NULL on failure. **/ static struct sk_buff *i40e_construct_skb_zc(struct i40e_ring *rx_ring, struct xdp_buff *xdp) { unsigned int metasize = xdp->data - xdp->data_meta; unsigned int datasize = xdp->data_end - xdp->data; struct sk_buff *skb; /* allocate a skb to store the frags */ skb = __napi_alloc_skb(&rx_ring->q_vector->napi, xdp->data_end - xdp->data_hard_start, GFP_ATOMIC | __GFP_NOWARN); if (unlikely(!skb)) return NULL; skb_reserve(skb, xdp->data - xdp->data_hard_start); memcpy(__skb_put(skb, datasize), xdp->data, datasize); if (metasize) skb_metadata_set(skb, metasize); xsk_buff_free(xdp); return skb; } /** * i40e_clean_rx_irq_zc - Consumes Rx packets from the hardware ring * @rx_ring: Rx ring * @budget: NAPI budget * * Returns amount of work completed **/ int i40e_clean_rx_irq_zc(struct i40e_ring *rx_ring, int budget) { unsigned int total_rx_bytes = 0, total_rx_packets = 0; u16 cleaned_count = I40E_DESC_UNUSED(rx_ring); unsigned int xdp_res, xdp_xmit = 0; bool failure = false; struct sk_buff *skb; while (likely(total_rx_packets < (unsigned int)budget)) { union i40e_rx_desc *rx_desc; struct xdp_buff **bi; unsigned int size; u64 qword; if (cleaned_count >= I40E_RX_BUFFER_WRITE) { failure = failure || !i40e_alloc_rx_buffers_zc(rx_ring, cleaned_count); cleaned_count = 0; } rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean); qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); /* This memory barrier is needed to keep us from reading * any other fields out of the rx_desc until we have * verified the descriptor has been written back. */ dma_rmb(); if (i40e_rx_is_programming_status(qword)) { i40e_clean_programming_status(rx_ring, rx_desc->raw.qword[0], qword); bi = i40e_rx_bi(rx_ring, rx_ring->next_to_clean); xsk_buff_free(*bi); *bi = NULL; cleaned_count++; i40e_inc_ntc(rx_ring); continue; } bi = i40e_rx_bi(rx_ring, rx_ring->next_to_clean); size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >> I40E_RXD_QW1_LENGTH_PBUF_SHIFT; if (!size) break; bi = i40e_rx_bi(rx_ring, rx_ring->next_to_clean); (*bi)->data_end = (*bi)->data + size; xsk_buff_dma_sync_for_cpu(*bi); xdp_res = i40e_run_xdp_zc(rx_ring, *bi); if (xdp_res) { if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) xdp_xmit |= xdp_res; else xsk_buff_free(*bi); *bi = NULL; total_rx_bytes += size; total_rx_packets++; cleaned_count++; i40e_inc_ntc(rx_ring); continue; } /* XDP_PASS path */ /* NB! We are not checking for errors using * i40e_test_staterr with * BIT(I40E_RXD_QW1_ERROR_SHIFT). This is due to that * SBP is *not* set in PRT_SBPVSI (default not set). */ skb = i40e_construct_skb_zc(rx_ring, *bi); *bi = NULL; if (!skb) { rx_ring->rx_stats.alloc_buff_failed++; break; } cleaned_count++; i40e_inc_ntc(rx_ring); if (eth_skb_pad(skb)) continue; total_rx_bytes += skb->len; total_rx_packets++; i40e_process_skb_fields(rx_ring, rx_desc, skb); napi_gro_receive(&rx_ring->q_vector->napi, skb); } i40e_finalize_xdp_rx(rx_ring, xdp_xmit); i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets); if (xsk_umem_uses_need_wakeup(rx_ring->xsk_umem)) { if (failure || rx_ring->next_to_clean == rx_ring->next_to_use) xsk_set_rx_need_wakeup(rx_ring->xsk_umem); else xsk_clear_rx_need_wakeup(rx_ring->xsk_umem); return (int)total_rx_packets; } return failure ? budget : (int)total_rx_packets; } /** * i40e_xmit_zc - Performs zero-copy Tx AF_XDP * @xdp_ring: XDP Tx ring * @budget: NAPI budget * * Returns true if the work is finished. **/ static bool i40e_xmit_zc(struct i40e_ring *xdp_ring, unsigned int budget) { struct i40e_tx_desc *tx_desc = NULL; struct i40e_tx_buffer *tx_bi; bool work_done = true; struct xdp_desc desc; dma_addr_t dma; while (budget-- > 0) { if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) { xdp_ring->tx_stats.tx_busy++; work_done = false; break; } if (!xsk_umem_consume_tx(xdp_ring->xsk_umem, &desc)) break; dma = xsk_buff_raw_get_dma(xdp_ring->xsk_umem, desc.addr); xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_umem, dma, desc.len); tx_bi = &xdp_ring->tx_bi[xdp_ring->next_to_use]; tx_bi->bytecount = desc.len; tx_desc = I40E_TX_DESC(xdp_ring, xdp_ring->next_to_use); tx_desc->buffer_addr = cpu_to_le64(dma); tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC | I40E_TX_DESC_CMD_EOP, 0, desc.len, 0); xdp_ring->next_to_use++; if (xdp_ring->next_to_use == xdp_ring->count) xdp_ring->next_to_use = 0; } if (tx_desc) { /* Request an interrupt for the last frame and bump tail ptr. */ tx_desc->cmd_type_offset_bsz |= (I40E_TX_DESC_CMD_RS << I40E_TXD_QW1_CMD_SHIFT); i40e_xdp_ring_update_tail(xdp_ring); xsk_umem_consume_tx_done(xdp_ring->xsk_umem); } return !!budget && work_done; } /** * i40e_clean_xdp_tx_buffer - Frees and unmaps an XDP Tx entry * @tx_ring: XDP Tx ring * @tx_bi: Tx buffer info to clean **/ static void i40e_clean_xdp_tx_buffer(struct i40e_ring *tx_ring, struct i40e_tx_buffer *tx_bi) { xdp_return_frame(tx_bi->xdpf); dma_unmap_single(tx_ring->dev, dma_unmap_addr(tx_bi, dma), dma_unmap_len(tx_bi, len), DMA_TO_DEVICE); dma_unmap_len_set(tx_bi, len, 0); } /** * i40e_clean_xdp_tx_irq - Completes AF_XDP entries, and cleans XDP entries * @tx_ring: XDP Tx ring * @tx_bi: Tx buffer info to clean * * Returns true if cleanup/tranmission is done. **/ bool i40e_clean_xdp_tx_irq(struct i40e_vsi *vsi, struct i40e_ring *tx_ring, int napi_budget) { unsigned int ntc, total_bytes = 0, budget = vsi->work_limit; u32 i, completed_frames, frames_ready, xsk_frames = 0; struct xdp_umem *umem = tx_ring->xsk_umem; u32 head_idx = i40e_get_head(tx_ring); bool work_done = true, xmit_done; struct i40e_tx_buffer *tx_bi; if (head_idx < tx_ring->next_to_clean) head_idx += tx_ring->count; frames_ready = head_idx - tx_ring->next_to_clean; if (frames_ready == 0) { goto out_xmit; } else if (frames_ready > budget) { completed_frames = budget; work_done = false; } else { completed_frames = frames_ready; } ntc = tx_ring->next_to_clean; for (i = 0; i < completed_frames; i++) { tx_bi = &tx_ring->tx_bi[ntc]; if (tx_bi->xdpf) i40e_clean_xdp_tx_buffer(tx_ring, tx_bi); else xsk_frames++; tx_bi->xdpf = NULL; total_bytes += tx_bi->bytecount; if (++ntc >= tx_ring->count) ntc = 0; } tx_ring->next_to_clean += completed_frames; if (unlikely(tx_ring->next_to_clean >= tx_ring->count)) tx_ring->next_to_clean -= tx_ring->count; if (xsk_frames) xsk_umem_complete_tx(umem, xsk_frames); i40e_arm_wb(tx_ring, vsi, budget); i40e_update_tx_stats(tx_ring, completed_frames, total_bytes); out_xmit: if (xsk_umem_uses_need_wakeup(tx_ring->xsk_umem)) xsk_set_tx_need_wakeup(tx_ring->xsk_umem); xmit_done = i40e_xmit_zc(tx_ring, budget); return work_done && xmit_done; } /** * i40e_xsk_wakeup - Implements the ndo_xsk_wakeup * @dev: the netdevice * @queue_id: queue id to wake up * @flags: ignored in our case since we have Rx and Tx in the same NAPI. * * Returns <0 for errors, 0 otherwise. **/ int i40e_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags) { struct i40e_netdev_priv *np = netdev_priv(dev); struct i40e_vsi *vsi = np->vsi; struct i40e_pf *pf = vsi->back; struct i40e_ring *ring; if (test_bit(__I40E_CONFIG_BUSY, pf->state)) return -EAGAIN; if (test_bit(__I40E_VSI_DOWN, vsi->state)) return -ENETDOWN; if (!i40e_enabled_xdp_vsi(vsi)) return -ENXIO; if (queue_id >= vsi->num_queue_pairs) return -ENXIO; if (!vsi->xdp_rings[queue_id]->xsk_umem) return -ENXIO; ring = vsi->xdp_rings[queue_id]; /* The idea here is that if NAPI is running, mark a miss, so * it will run again. If not, trigger an interrupt and * schedule the NAPI from interrupt context. If NAPI would be * scheduled here, the interrupt affinity would not be * honored. */ if (!napi_if_scheduled_mark_missed(&ring->q_vector->napi)) i40e_force_wb(vsi, ring->q_vector); return 0; } void i40e_xsk_clean_rx_ring(struct i40e_ring *rx_ring) { u16 i; for (i = 0; i < rx_ring->count; i++) { struct xdp_buff *rx_bi = *i40e_rx_bi(rx_ring, i); if (!rx_bi) continue; xsk_buff_free(rx_bi); rx_bi = NULL; } } /** * i40e_xsk_clean_xdp_ring - Clean the XDP Tx ring on shutdown * @xdp_ring: XDP Tx ring **/ void i40e_xsk_clean_tx_ring(struct i40e_ring *tx_ring) { u16 ntc = tx_ring->next_to_clean, ntu = tx_ring->next_to_use; struct xdp_umem *umem = tx_ring->xsk_umem; struct i40e_tx_buffer *tx_bi; u32 xsk_frames = 0; while (ntc != ntu) { tx_bi = &tx_ring->tx_bi[ntc]; if (tx_bi->xdpf) i40e_clean_xdp_tx_buffer(tx_ring, tx_bi); else xsk_frames++; tx_bi->xdpf = NULL; ntc++; if (ntc >= tx_ring->count) ntc = 0; } if (xsk_frames) xsk_umem_complete_tx(umem, xsk_frames); } /** * i40e_xsk_any_rx_ring_enabled - Checks if Rx rings have AF_XDP UMEM attached * @vsi: vsi * * Returns true if any of the Rx rings has an AF_XDP UMEM attached **/ bool i40e_xsk_any_rx_ring_enabled(struct i40e_vsi *vsi) { struct net_device *netdev = vsi->netdev; int i; for (i = 0; i < vsi->num_queue_pairs; i++) { if (xdp_get_umem_from_qid(netdev, i)) return true; } return false; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1