Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jacob E Keller | 1583 | 68.53% | 7 | 43.75% |
Anirudh Venkataramanan | 633 | 27.40% | 4 | 25.00% |
Bruce W Allan | 56 | 2.42% | 2 | 12.50% |
Md Fahad Iqbal Polash | 34 | 1.47% | 1 | 6.25% |
Dan Nowlin | 2 | 0.09% | 1 | 6.25% |
Tony Nguyen | 2 | 0.09% | 1 | 6.25% |
Total | 2310 | 16 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2018, Intel Corporation. */ #include "ice_common.h" /** * ice_aq_read_nvm * @hw: pointer to the HW struct * @module_typeid: module pointer location in words from the NVM beginning * @offset: byte offset from the module beginning * @length: length of the section to be read (in bytes from the offset) * @data: command buffer (size [bytes] = length) * @last_command: tells if this is the last command in a series * @read_shadow_ram: tell if this is a shadow RAM read * @cd: pointer to command details structure or NULL * * Read the NVM using the admin queue commands (0x0701) */ static enum ice_status ice_aq_read_nvm(struct ice_hw *hw, u16 module_typeid, u32 offset, u16 length, void *data, bool last_command, bool read_shadow_ram, struct ice_sq_cd *cd) { struct ice_aq_desc desc; struct ice_aqc_nvm *cmd; cmd = &desc.params.nvm; if (offset > ICE_AQC_NVM_MAX_OFFSET) return ICE_ERR_PARAM; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_read); if (!read_shadow_ram && module_typeid == ICE_AQC_NVM_START_POINT) cmd->cmd_flags |= ICE_AQC_NVM_FLASH_ONLY; /* If this is the last command in a series, set the proper flag. */ if (last_command) cmd->cmd_flags |= ICE_AQC_NVM_LAST_CMD; cmd->module_typeid = cpu_to_le16(module_typeid); cmd->offset_low = cpu_to_le16(offset & 0xFFFF); cmd->offset_high = (offset >> 16) & 0xFF; cmd->length = cpu_to_le16(length); return ice_aq_send_cmd(hw, &desc, data, length, cd); } /** * ice_read_flat_nvm - Read portion of NVM by flat offset * @hw: pointer to the HW struct * @offset: offset from beginning of NVM * @length: (in) number of bytes to read; (out) number of bytes actually read * @data: buffer to return data in (sized to fit the specified length) * @read_shadow_ram: if true, read from shadow RAM instead of NVM * * Reads a portion of the NVM, as a flat memory space. This function correctly * breaks read requests across Shadow RAM sectors and ensures that no single * read request exceeds the maximum 4Kb read for a single AdminQ command. * * Returns a status code on failure. Note that the data pointer may be * partially updated if some reads succeed before a failure. */ enum ice_status ice_read_flat_nvm(struct ice_hw *hw, u32 offset, u32 *length, u8 *data, bool read_shadow_ram) { enum ice_status status; u32 inlen = *length; u32 bytes_read = 0; bool last_cmd; *length = 0; /* Verify the length of the read if this is for the Shadow RAM */ if (read_shadow_ram && ((offset + inlen) > (hw->nvm.sr_words * 2u))) { ice_debug(hw, ICE_DBG_NVM, "NVM error: requested offset is beyond Shadow RAM limit\n"); return ICE_ERR_PARAM; } do { u32 read_size, sector_offset; /* ice_aq_read_nvm cannot read more than 4Kb at a time. * Additionally, a read from the Shadow RAM may not cross over * a sector boundary. Conveniently, the sector size is also * 4Kb. */ sector_offset = offset % ICE_AQ_MAX_BUF_LEN; read_size = min_t(u32, ICE_AQ_MAX_BUF_LEN - sector_offset, inlen - bytes_read); last_cmd = !(bytes_read + read_size < inlen); status = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT, offset, read_size, data + bytes_read, last_cmd, read_shadow_ram, NULL); if (status) break; bytes_read += read_size; offset += read_size; } while (!last_cmd); *length = bytes_read; return status; } /** * ice_read_sr_word_aq - Reads Shadow RAM via AQ * @hw: pointer to the HW structure * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) * @data: word read from the Shadow RAM * * Reads one 16 bit word from the Shadow RAM using ice_read_flat_nvm. */ static enum ice_status ice_read_sr_word_aq(struct ice_hw *hw, u16 offset, u16 *data) { u32 bytes = sizeof(u16); enum ice_status status; __le16 data_local; /* Note that ice_read_flat_nvm takes into account the 4Kb AdminQ and * Shadow RAM sector restrictions necessary when reading from the NVM. */ status = ice_read_flat_nvm(hw, offset * sizeof(u16), &bytes, (u8 *)&data_local, true); if (status) return status; *data = le16_to_cpu(data_local); return 0; } /** * ice_acquire_nvm - Generic request for acquiring the NVM ownership * @hw: pointer to the HW structure * @access: NVM access type (read or write) * * This function will request NVM ownership. */ enum ice_status ice_acquire_nvm(struct ice_hw *hw, enum ice_aq_res_access_type access) { if (hw->nvm.blank_nvm_mode) return 0; return ice_acquire_res(hw, ICE_NVM_RES_ID, access, ICE_NVM_TIMEOUT); } /** * ice_release_nvm - Generic request for releasing the NVM ownership * @hw: pointer to the HW structure * * This function will release NVM ownership. */ void ice_release_nvm(struct ice_hw *hw) { if (hw->nvm.blank_nvm_mode) return; ice_release_res(hw, ICE_NVM_RES_ID); } /** * ice_read_sr_word - Reads Shadow RAM word and acquire NVM if necessary * @hw: pointer to the HW structure * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) * @data: word read from the Shadow RAM * * Reads one 16 bit word from the Shadow RAM using the ice_read_sr_word_aq. */ static enum ice_status ice_read_sr_word(struct ice_hw *hw, u16 offset, u16 *data) { enum ice_status status; status = ice_acquire_nvm(hw, ICE_RES_READ); if (!status) { status = ice_read_sr_word_aq(hw, offset, data); ice_release_nvm(hw); } return status; } /** * ice_get_pfa_module_tlv - Reads sub module TLV from NVM PFA * @hw: pointer to hardware structure * @module_tlv: pointer to module TLV to return * @module_tlv_len: pointer to module TLV length to return * @module_type: module type requested * * Finds the requested sub module TLV type from the Preserved Field * Area (PFA) and returns the TLV pointer and length. The caller can * use these to read the variable length TLV value. */ static enum ice_status ice_get_pfa_module_tlv(struct ice_hw *hw, u16 *module_tlv, u16 *module_tlv_len, u16 module_type) { enum ice_status status; u16 pfa_len, pfa_ptr; u16 next_tlv; status = ice_read_sr_word(hw, ICE_SR_PFA_PTR, &pfa_ptr); if (status) { ice_debug(hw, ICE_DBG_INIT, "Preserved Field Array pointer.\n"); return status; } status = ice_read_sr_word(hw, pfa_ptr, &pfa_len); if (status) { ice_debug(hw, ICE_DBG_INIT, "Failed to read PFA length.\n"); return status; } /* Starting with first TLV after PFA length, iterate through the list * of TLVs to find the requested one. */ next_tlv = pfa_ptr + 1; while (next_tlv < pfa_ptr + pfa_len) { u16 tlv_sub_module_type; u16 tlv_len; /* Read TLV type */ status = ice_read_sr_word(hw, next_tlv, &tlv_sub_module_type); if (status) { ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV type.\n"); break; } /* Read TLV length */ status = ice_read_sr_word(hw, next_tlv + 1, &tlv_len); if (status) { ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV length.\n"); break; } if (tlv_sub_module_type == module_type) { if (tlv_len) { *module_tlv = next_tlv; *module_tlv_len = tlv_len; return 0; } return ICE_ERR_INVAL_SIZE; } /* Check next TLV, i.e. current TLV pointer + length + 2 words * (for current TLV's type and length) */ next_tlv = next_tlv + tlv_len + 2; } /* Module does not exist */ return ICE_ERR_DOES_NOT_EXIST; } /** * ice_read_pba_string - Reads part number string from NVM * @hw: pointer to hardware structure * @pba_num: stores the part number string from the NVM * @pba_num_size: part number string buffer length * * Reads the part number string from the NVM. */ enum ice_status ice_read_pba_string(struct ice_hw *hw, u8 *pba_num, u32 pba_num_size) { u16 pba_tlv, pba_tlv_len; enum ice_status status; u16 pba_word, pba_size; u16 i; status = ice_get_pfa_module_tlv(hw, &pba_tlv, &pba_tlv_len, ICE_SR_PBA_BLOCK_PTR); if (status) { ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Block TLV.\n"); return status; } /* pba_size is the next word */ status = ice_read_sr_word(hw, (pba_tlv + 2), &pba_size); if (status) { ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Section size.\n"); return status; } if (pba_tlv_len < pba_size) { ice_debug(hw, ICE_DBG_INIT, "Invalid PBA Block TLV size.\n"); return ICE_ERR_INVAL_SIZE; } /* Subtract one to get PBA word count (PBA Size word is included in * total size) */ pba_size--; if (pba_num_size < (((u32)pba_size * 2) + 1)) { ice_debug(hw, ICE_DBG_INIT, "Buffer too small for PBA data.\n"); return ICE_ERR_PARAM; } for (i = 0; i < pba_size; i++) { status = ice_read_sr_word(hw, (pba_tlv + 2 + 1) + i, &pba_word); if (status) { ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Block word %d.\n", i); return status; } pba_num[(i * 2)] = (pba_word >> 8) & 0xFF; pba_num[(i * 2) + 1] = pba_word & 0xFF; } pba_num[(pba_size * 2)] = '\0'; return status; } /** * ice_get_orom_ver_info - Read Option ROM version information * @hw: pointer to the HW struct * * Read the Combo Image version data from the Boot Configuration TLV and fill * in the option ROM version data. */ static enum ice_status ice_get_orom_ver_info(struct ice_hw *hw) { u16 combo_hi, combo_lo, boot_cfg_tlv, boot_cfg_tlv_len; struct ice_orom_info *orom = &hw->nvm.orom; enum ice_status status; u32 combo_ver; status = ice_get_pfa_module_tlv(hw, &boot_cfg_tlv, &boot_cfg_tlv_len, ICE_SR_BOOT_CFG_PTR); if (status) { ice_debug(hw, ICE_DBG_INIT, "Failed to read Boot Configuration Block TLV.\n"); return status; } /* Boot Configuration Block must have length at least 2 words * (Combo Image Version High and Combo Image Version Low) */ if (boot_cfg_tlv_len < 2) { ice_debug(hw, ICE_DBG_INIT, "Invalid Boot Configuration Block TLV size.\n"); return ICE_ERR_INVAL_SIZE; } status = ice_read_sr_word(hw, (boot_cfg_tlv + ICE_NVM_OROM_VER_OFF), &combo_hi); if (status) { ice_debug(hw, ICE_DBG_INIT, "Failed to read OROM_VER hi.\n"); return status; } status = ice_read_sr_word(hw, (boot_cfg_tlv + ICE_NVM_OROM_VER_OFF + 1), &combo_lo); if (status) { ice_debug(hw, ICE_DBG_INIT, "Failed to read OROM_VER lo.\n"); return status; } combo_ver = ((u32)combo_hi << 16) | combo_lo; orom->major = (u8)((combo_ver & ICE_OROM_VER_MASK) >> ICE_OROM_VER_SHIFT); orom->patch = (u8)(combo_ver & ICE_OROM_VER_PATCH_MASK); orom->build = (u16)((combo_ver & ICE_OROM_VER_BUILD_MASK) >> ICE_OROM_VER_BUILD_SHIFT); return 0; } /** * ice_get_netlist_ver_info * @hw: pointer to the HW struct * * Get the netlist version information */ static enum ice_status ice_get_netlist_ver_info(struct ice_hw *hw) { struct ice_netlist_ver_info *ver = &hw->netlist_ver; enum ice_status ret; u32 id_blk_start; __le16 raw_data; u16 data, i; u16 *buff; ret = ice_acquire_nvm(hw, ICE_RES_READ); if (ret) return ret; buff = kcalloc(ICE_AQC_NVM_NETLIST_ID_BLK_LEN, sizeof(*buff), GFP_KERNEL); if (!buff) { ret = ICE_ERR_NO_MEMORY; goto exit_no_mem; } /* read module length */ ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_LINK_TOPO_NETLIST_MOD_ID, ICE_AQC_NVM_LINK_TOPO_NETLIST_LEN_OFFSET * 2, ICE_AQC_NVM_LINK_TOPO_NETLIST_LEN, &raw_data, false, false, NULL); if (ret) goto exit_error; data = le16_to_cpu(raw_data); /* exit if length is = 0 */ if (!data) goto exit_error; /* read node count */ ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_LINK_TOPO_NETLIST_MOD_ID, ICE_AQC_NVM_NETLIST_NODE_COUNT_OFFSET * 2, ICE_AQC_NVM_NETLIST_NODE_COUNT_LEN, &raw_data, false, false, NULL); if (ret) goto exit_error; data = le16_to_cpu(raw_data) & ICE_AQC_NVM_NETLIST_NODE_COUNT_M; /* netlist ID block starts from offset 4 + node count * 2 */ id_blk_start = ICE_AQC_NVM_NETLIST_ID_BLK_START_OFFSET + data * 2; /* read the entire netlist ID block */ ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_LINK_TOPO_NETLIST_MOD_ID, id_blk_start * 2, ICE_AQC_NVM_NETLIST_ID_BLK_LEN * 2, buff, false, false, NULL); if (ret) goto exit_error; for (i = 0; i < ICE_AQC_NVM_NETLIST_ID_BLK_LEN; i++) buff[i] = le16_to_cpu(((__force __le16 *)buff)[i]); ver->major = (buff[ICE_AQC_NVM_NETLIST_ID_BLK_MAJOR_VER_HIGH] << 16) | buff[ICE_AQC_NVM_NETLIST_ID_BLK_MAJOR_VER_LOW]; ver->minor = (buff[ICE_AQC_NVM_NETLIST_ID_BLK_MINOR_VER_HIGH] << 16) | buff[ICE_AQC_NVM_NETLIST_ID_BLK_MINOR_VER_LOW]; ver->type = (buff[ICE_AQC_NVM_NETLIST_ID_BLK_TYPE_HIGH] << 16) | buff[ICE_AQC_NVM_NETLIST_ID_BLK_TYPE_LOW]; ver->rev = (buff[ICE_AQC_NVM_NETLIST_ID_BLK_REV_HIGH] << 16) | buff[ICE_AQC_NVM_NETLIST_ID_BLK_REV_LOW]; ver->cust_ver = buff[ICE_AQC_NVM_NETLIST_ID_BLK_CUST_VER]; /* Read the left most 4 bytes of SHA */ ver->hash = buff[ICE_AQC_NVM_NETLIST_ID_BLK_SHA_HASH + 15] << 16 | buff[ICE_AQC_NVM_NETLIST_ID_BLK_SHA_HASH + 14]; exit_error: kfree(buff); exit_no_mem: ice_release_nvm(hw); return ret; } /** * ice_discover_flash_size - Discover the available flash size. * @hw: pointer to the HW struct * * The device flash could be up to 16MB in size. However, it is possible that * the actual size is smaller. Use bisection to determine the accessible size * of flash memory. */ static enum ice_status ice_discover_flash_size(struct ice_hw *hw) { u32 min_size = 0, max_size = ICE_AQC_NVM_MAX_OFFSET + 1; enum ice_status status; status = ice_acquire_nvm(hw, ICE_RES_READ); if (status) return status; while ((max_size - min_size) > 1) { u32 offset = (max_size + min_size) / 2; u32 len = 1; u8 data; status = ice_read_flat_nvm(hw, offset, &len, &data, false); if (status == ICE_ERR_AQ_ERROR && hw->adminq.sq_last_status == ICE_AQ_RC_EINVAL) { ice_debug(hw, ICE_DBG_NVM, "%s: New upper bound of %u bytes\n", __func__, offset); status = 0; max_size = offset; } else if (!status) { ice_debug(hw, ICE_DBG_NVM, "%s: New lower bound of %u bytes\n", __func__, offset); min_size = offset; } else { /* an unexpected error occurred */ goto err_read_flat_nvm; } } ice_debug(hw, ICE_DBG_NVM, "Predicted flash size is %u bytes\n", max_size); hw->nvm.flash_size = max_size; err_read_flat_nvm: ice_release_nvm(hw); return status; } /** * ice_init_nvm - initializes NVM setting * @hw: pointer to the HW struct * * This function reads and populates NVM settings such as Shadow RAM size, * max_timeout, and blank_nvm_mode */ enum ice_status ice_init_nvm(struct ice_hw *hw) { struct ice_nvm_info *nvm = &hw->nvm; u16 eetrack_lo, eetrack_hi, ver; enum ice_status status; u32 fla, gens_stat; u8 sr_size; /* The SR size is stored regardless of the NVM programming mode * as the blank mode may be used in the factory line. */ gens_stat = rd32(hw, GLNVM_GENS); sr_size = (gens_stat & GLNVM_GENS_SR_SIZE_M) >> GLNVM_GENS_SR_SIZE_S; /* Switching to words (sr_size contains power of 2) */ nvm->sr_words = BIT(sr_size) * ICE_SR_WORDS_IN_1KB; /* Check if we are in the normal or blank NVM programming mode */ fla = rd32(hw, GLNVM_FLA); if (fla & GLNVM_FLA_LOCKED_M) { /* Normal programming mode */ nvm->blank_nvm_mode = false; } else { /* Blank programming mode */ nvm->blank_nvm_mode = true; ice_debug(hw, ICE_DBG_NVM, "NVM init error: unsupported blank mode.\n"); return ICE_ERR_NVM_BLANK_MODE; } status = ice_read_sr_word(hw, ICE_SR_NVM_DEV_STARTER_VER, &ver); if (status) { ice_debug(hw, ICE_DBG_INIT, "Failed to read DEV starter version.\n"); return status; } nvm->major_ver = (ver & ICE_NVM_VER_HI_MASK) >> ICE_NVM_VER_HI_SHIFT; nvm->minor_ver = (ver & ICE_NVM_VER_LO_MASK) >> ICE_NVM_VER_LO_SHIFT; status = ice_read_sr_word(hw, ICE_SR_NVM_EETRACK_LO, &eetrack_lo); if (status) { ice_debug(hw, ICE_DBG_INIT, "Failed to read EETRACK lo.\n"); return status; } status = ice_read_sr_word(hw, ICE_SR_NVM_EETRACK_HI, &eetrack_hi); if (status) { ice_debug(hw, ICE_DBG_INIT, "Failed to read EETRACK hi.\n"); return status; } nvm->eetrack = (eetrack_hi << 16) | eetrack_lo; status = ice_discover_flash_size(hw); if (status) { ice_debug(hw, ICE_DBG_NVM, "NVM init error: failed to discover flash size.\n"); return status; } switch (hw->device_id) { /* the following devices do not have boot_cfg_tlv yet */ case ICE_DEV_ID_E823C_BACKPLANE: case ICE_DEV_ID_E823C_QSFP: case ICE_DEV_ID_E823C_SFP: case ICE_DEV_ID_E823C_10G_BASE_T: case ICE_DEV_ID_E823C_SGMII: case ICE_DEV_ID_E822C_BACKPLANE: case ICE_DEV_ID_E822C_QSFP: case ICE_DEV_ID_E822C_10G_BASE_T: case ICE_DEV_ID_E822C_SGMII: case ICE_DEV_ID_E822C_SFP: case ICE_DEV_ID_E822L_BACKPLANE: case ICE_DEV_ID_E822L_SFP: case ICE_DEV_ID_E822L_10G_BASE_T: case ICE_DEV_ID_E822L_SGMII: case ICE_DEV_ID_E823L_BACKPLANE: case ICE_DEV_ID_E823L_SFP: case ICE_DEV_ID_E823L_10G_BASE_T: case ICE_DEV_ID_E823L_1GBE: case ICE_DEV_ID_E823L_QSFP: return status; default: break; } status = ice_get_orom_ver_info(hw); if (status) { ice_debug(hw, ICE_DBG_INIT, "Failed to read Option ROM info.\n"); return status; } /* read the netlist version information */ status = ice_get_netlist_ver_info(hw); if (status) ice_debug(hw, ICE_DBG_INIT, "Failed to read netlist info.\n"); return 0; } /** * ice_nvm_validate_checksum * @hw: pointer to the HW struct * * Verify NVM PFA checksum validity (0x0706) */ enum ice_status ice_nvm_validate_checksum(struct ice_hw *hw) { struct ice_aqc_nvm_checksum *cmd; struct ice_aq_desc desc; enum ice_status status; status = ice_acquire_nvm(hw, ICE_RES_READ); if (status) return status; cmd = &desc.params.nvm_checksum; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_checksum); cmd->flags = ICE_AQC_NVM_CHECKSUM_VERIFY; status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); ice_release_nvm(hw); if (!status) if (le16_to_cpu(cmd->checksum) != ICE_AQC_NVM_CHECKSUM_CORRECT) status = ICE_ERR_NVM_CHECKSUM; return status; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1