Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Krzysztof Kazimierczak | 3348 | 93.39% | 2 | 18.18% |
Björn Töpel | 217 | 6.05% | 1 | 9.09% |
Brett Creeley | 7 | 0.20% | 2 | 18.18% |
Bruce W Allan | 6 | 0.17% | 2 | 18.18% |
Colin Ian King | 3 | 0.08% | 1 | 9.09% |
Jesse Brandeburg | 2 | 0.06% | 1 | 9.09% |
Tony Nguyen | 1 | 0.03% | 1 | 9.09% |
Magnus Karlsson | 1 | 0.03% | 1 | 9.09% |
Total | 3585 | 11 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2019, Intel Corporation. */ #include <linux/bpf_trace.h> #include <net/xdp_sock_drv.h> #include <net/xdp.h> #include "ice.h" #include "ice_base.h" #include "ice_type.h" #include "ice_xsk.h" #include "ice_txrx.h" #include "ice_txrx_lib.h" #include "ice_lib.h" /** * ice_qp_reset_stats - Resets all stats for rings of given index * @vsi: VSI that contains rings of interest * @q_idx: ring index in array */ static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx) { memset(&vsi->rx_rings[q_idx]->rx_stats, 0, sizeof(vsi->rx_rings[q_idx]->rx_stats)); memset(&vsi->tx_rings[q_idx]->stats, 0, sizeof(vsi->tx_rings[q_idx]->stats)); if (ice_is_xdp_ena_vsi(vsi)) memset(&vsi->xdp_rings[q_idx]->stats, 0, sizeof(vsi->xdp_rings[q_idx]->stats)); } /** * ice_qp_clean_rings - Cleans all the rings of a given index * @vsi: VSI that contains rings of interest * @q_idx: ring index in array */ static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx) { ice_clean_tx_ring(vsi->tx_rings[q_idx]); if (ice_is_xdp_ena_vsi(vsi)) ice_clean_tx_ring(vsi->xdp_rings[q_idx]); ice_clean_rx_ring(vsi->rx_rings[q_idx]); } /** * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector * @vsi: VSI that has netdev * @q_vector: q_vector that has NAPI context * @enable: true for enable, false for disable */ static void ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector, bool enable) { if (!vsi->netdev || !q_vector) return; if (enable) napi_enable(&q_vector->napi); else napi_disable(&q_vector->napi); } /** * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring * @vsi: the VSI that contains queue vector being un-configured * @rx_ring: Rx ring that will have its IRQ disabled * @q_vector: queue vector */ static void ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_ring *rx_ring, struct ice_q_vector *q_vector) { struct ice_pf *pf = vsi->back; struct ice_hw *hw = &pf->hw; int base = vsi->base_vector; u16 reg; u32 val; /* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle * here only QINT_RQCTL */ reg = rx_ring->reg_idx; val = rd32(hw, QINT_RQCTL(reg)); val &= ~QINT_RQCTL_CAUSE_ENA_M; wr32(hw, QINT_RQCTL(reg), val); if (q_vector) { u16 v_idx = q_vector->v_idx; wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0); ice_flush(hw); synchronize_irq(pf->msix_entries[v_idx + base].vector); } } /** * ice_qvec_cfg_msix - Enable IRQ for given queue vector * @vsi: the VSI that contains queue vector * @q_vector: queue vector */ static void ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector) { u16 reg_idx = q_vector->reg_idx; struct ice_pf *pf = vsi->back; struct ice_hw *hw = &pf->hw; struct ice_ring *ring; ice_cfg_itr(hw, q_vector); wr32(hw, GLINT_RATE(reg_idx), ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran)); ice_for_each_ring(ring, q_vector->tx) ice_cfg_txq_interrupt(vsi, ring->reg_idx, reg_idx, q_vector->tx.itr_idx); ice_for_each_ring(ring, q_vector->rx) ice_cfg_rxq_interrupt(vsi, ring->reg_idx, reg_idx, q_vector->rx.itr_idx); ice_flush(hw); } /** * ice_qvec_ena_irq - Enable IRQ for given queue vector * @vsi: the VSI that contains queue vector * @q_vector: queue vector */ static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector) { struct ice_pf *pf = vsi->back; struct ice_hw *hw = &pf->hw; ice_irq_dynamic_ena(hw, vsi, q_vector); ice_flush(hw); } /** * ice_qp_dis - Disables a queue pair * @vsi: VSI of interest * @q_idx: ring index in array * * Returns 0 on success, negative on failure. */ static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx) { struct ice_txq_meta txq_meta = { }; struct ice_ring *tx_ring, *rx_ring; struct ice_q_vector *q_vector; int timeout = 50; int err; if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) return -EINVAL; tx_ring = vsi->tx_rings[q_idx]; rx_ring = vsi->rx_rings[q_idx]; q_vector = rx_ring->q_vector; while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state)) { timeout--; if (!timeout) return -EBUSY; usleep_range(1000, 2000); } netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); ice_qvec_dis_irq(vsi, rx_ring, q_vector); ice_fill_txq_meta(vsi, tx_ring, &txq_meta); err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta); if (err) return err; if (ice_is_xdp_ena_vsi(vsi)) { struct ice_ring *xdp_ring = vsi->xdp_rings[q_idx]; memset(&txq_meta, 0, sizeof(txq_meta)); ice_fill_txq_meta(vsi, xdp_ring, &txq_meta); err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring, &txq_meta); if (err) return err; } err = ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, true); if (err) return err; ice_qvec_toggle_napi(vsi, q_vector, false); ice_qp_clean_rings(vsi, q_idx); ice_qp_reset_stats(vsi, q_idx); return 0; } /** * ice_qp_ena - Enables a queue pair * @vsi: VSI of interest * @q_idx: ring index in array * * Returns 0 on success, negative on failure. */ static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx) { struct ice_aqc_add_tx_qgrp *qg_buf; struct ice_ring *tx_ring, *rx_ring; struct ice_q_vector *q_vector; int err; if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) return -EINVAL; qg_buf = kzalloc(sizeof(*qg_buf), GFP_KERNEL); if (!qg_buf) return -ENOMEM; qg_buf->num_txqs = 1; tx_ring = vsi->tx_rings[q_idx]; rx_ring = vsi->rx_rings[q_idx]; q_vector = rx_ring->q_vector; err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf); if (err) goto free_buf; if (ice_is_xdp_ena_vsi(vsi)) { struct ice_ring *xdp_ring = vsi->xdp_rings[q_idx]; memset(qg_buf, 0, sizeof(*qg_buf)); qg_buf->num_txqs = 1; err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf); if (err) goto free_buf; ice_set_ring_xdp(xdp_ring); xdp_ring->xsk_umem = ice_xsk_umem(xdp_ring); } err = ice_setup_rx_ctx(rx_ring); if (err) goto free_buf; ice_qvec_cfg_msix(vsi, q_vector); err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true); if (err) goto free_buf; clear_bit(__ICE_CFG_BUSY, vsi->state); ice_qvec_toggle_napi(vsi, q_vector, true); ice_qvec_ena_irq(vsi, q_vector); netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); free_buf: kfree(qg_buf); return err; } /** * ice_xsk_alloc_umems - allocate a UMEM region for an XDP socket * @vsi: VSI to allocate the UMEM on * * Returns 0 on success, negative on error */ static int ice_xsk_alloc_umems(struct ice_vsi *vsi) { if (vsi->xsk_umems) return 0; vsi->xsk_umems = kcalloc(vsi->num_xsk_umems, sizeof(*vsi->xsk_umems), GFP_KERNEL); if (!vsi->xsk_umems) { vsi->num_xsk_umems = 0; return -ENOMEM; } return 0; } /** * ice_xsk_remove_umem - Remove an UMEM for a certain ring/qid * @vsi: VSI from which the VSI will be removed * @qid: Ring/qid associated with the UMEM */ static void ice_xsk_remove_umem(struct ice_vsi *vsi, u16 qid) { vsi->xsk_umems[qid] = NULL; vsi->num_xsk_umems_used--; if (vsi->num_xsk_umems_used == 0) { kfree(vsi->xsk_umems); vsi->xsk_umems = NULL; vsi->num_xsk_umems = 0; } } /** * ice_xsk_umem_disable - disable a UMEM region * @vsi: Current VSI * @qid: queue ID * * Returns 0 on success, negative on failure */ static int ice_xsk_umem_disable(struct ice_vsi *vsi, u16 qid) { if (!vsi->xsk_umems || qid >= vsi->num_xsk_umems || !vsi->xsk_umems[qid]) return -EINVAL; xsk_buff_dma_unmap(vsi->xsk_umems[qid], ICE_RX_DMA_ATTR); ice_xsk_remove_umem(vsi, qid); return 0; } /** * ice_xsk_umem_enable - enable a UMEM region * @vsi: Current VSI * @umem: pointer to a requested UMEM region * @qid: queue ID * * Returns 0 on success, negative on failure */ static int ice_xsk_umem_enable(struct ice_vsi *vsi, struct xdp_umem *umem, u16 qid) { int err; if (vsi->type != ICE_VSI_PF) return -EINVAL; if (!vsi->num_xsk_umems) vsi->num_xsk_umems = min_t(u16, vsi->num_rxq, vsi->num_txq); if (qid >= vsi->num_xsk_umems) return -EINVAL; err = ice_xsk_alloc_umems(vsi); if (err) return err; if (vsi->xsk_umems && vsi->xsk_umems[qid]) return -EBUSY; vsi->xsk_umems[qid] = umem; vsi->num_xsk_umems_used++; err = xsk_buff_dma_map(vsi->xsk_umems[qid], ice_pf_to_dev(vsi->back), ICE_RX_DMA_ATTR); if (err) return err; return 0; } /** * ice_xsk_umem_setup - enable/disable a UMEM region depending on its state * @vsi: Current VSI * @umem: UMEM to enable/associate to a ring, NULL to disable * @qid: queue ID * * Returns 0 on success, negative on failure */ int ice_xsk_umem_setup(struct ice_vsi *vsi, struct xdp_umem *umem, u16 qid) { bool if_running, umem_present = !!umem; int ret = 0, umem_failure = 0; if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi); if (if_running) { ret = ice_qp_dis(vsi, qid); if (ret) { netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret); goto xsk_umem_if_up; } } umem_failure = umem_present ? ice_xsk_umem_enable(vsi, umem, qid) : ice_xsk_umem_disable(vsi, qid); xsk_umem_if_up: if (if_running) { ret = ice_qp_ena(vsi, qid); if (!ret && umem_present) napi_schedule(&vsi->xdp_rings[qid]->q_vector->napi); else if (ret) netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret); } if (umem_failure) { netdev_err(vsi->netdev, "Could not %sable UMEM, error = %d\n", umem_present ? "en" : "dis", umem_failure); return umem_failure; } return ret; } /** * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers * @rx_ring: Rx ring * @count: The number of buffers to allocate * * This function allocates a number of Rx buffers from the fill ring * or the internal recycle mechanism and places them on the Rx ring. * * Returns false if all allocations were successful, true if any fail. */ bool ice_alloc_rx_bufs_zc(struct ice_ring *rx_ring, u16 count) { union ice_32b_rx_flex_desc *rx_desc; u16 ntu = rx_ring->next_to_use; struct ice_rx_buf *rx_buf; bool ret = false; dma_addr_t dma; if (!count) return false; rx_desc = ICE_RX_DESC(rx_ring, ntu); rx_buf = &rx_ring->rx_buf[ntu]; do { rx_buf->xdp = xsk_buff_alloc(rx_ring->xsk_umem); if (!rx_buf->xdp) { ret = true; break; } dma = xsk_buff_xdp_get_dma(rx_buf->xdp); rx_desc->read.pkt_addr = cpu_to_le64(dma); rx_desc->wb.status_error0 = 0; rx_desc++; rx_buf++; ntu++; if (unlikely(ntu == rx_ring->count)) { rx_desc = ICE_RX_DESC(rx_ring, 0); rx_buf = rx_ring->rx_buf; ntu = 0; } } while (--count); if (rx_ring->next_to_use != ntu) ice_release_rx_desc(rx_ring, ntu); return ret; } /** * ice_bump_ntc - Bump the next_to_clean counter of an Rx ring * @rx_ring: Rx ring */ static void ice_bump_ntc(struct ice_ring *rx_ring) { int ntc = rx_ring->next_to_clean + 1; ntc = (ntc < rx_ring->count) ? ntc : 0; rx_ring->next_to_clean = ntc; prefetch(ICE_RX_DESC(rx_ring, ntc)); } /** * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer * @rx_ring: Rx ring * @rx_buf: zero-copy Rx buffer * * This function allocates a new skb from a zero-copy Rx buffer. * * Returns the skb on success, NULL on failure. */ static struct sk_buff * ice_construct_skb_zc(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf) { unsigned int metasize = rx_buf->xdp->data - rx_buf->xdp->data_meta; unsigned int datasize = rx_buf->xdp->data_end - rx_buf->xdp->data; unsigned int datasize_hard = rx_buf->xdp->data_end - rx_buf->xdp->data_hard_start; struct sk_buff *skb; skb = __napi_alloc_skb(&rx_ring->q_vector->napi, datasize_hard, GFP_ATOMIC | __GFP_NOWARN); if (unlikely(!skb)) return NULL; skb_reserve(skb, rx_buf->xdp->data - rx_buf->xdp->data_hard_start); memcpy(__skb_put(skb, datasize), rx_buf->xdp->data, datasize); if (metasize) skb_metadata_set(skb, metasize); xsk_buff_free(rx_buf->xdp); rx_buf->xdp = NULL; return skb; } /** * ice_run_xdp_zc - Executes an XDP program in zero-copy path * @rx_ring: Rx ring * @xdp: xdp_buff used as input to the XDP program * * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} */ static int ice_run_xdp_zc(struct ice_ring *rx_ring, struct xdp_buff *xdp) { int err, result = ICE_XDP_PASS; struct bpf_prog *xdp_prog; struct ice_ring *xdp_ring; u32 act; rcu_read_lock(); xdp_prog = READ_ONCE(rx_ring->xdp_prog); if (!xdp_prog) { rcu_read_unlock(); return ICE_XDP_PASS; } act = bpf_prog_run_xdp(xdp_prog, xdp); switch (act) { case XDP_PASS: break; case XDP_TX: xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->q_index]; result = ice_xmit_xdp_buff(xdp, xdp_ring); break; case XDP_REDIRECT: err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); result = !err ? ICE_XDP_REDIR : ICE_XDP_CONSUMED; break; default: bpf_warn_invalid_xdp_action(act); fallthrough; case XDP_ABORTED: trace_xdp_exception(rx_ring->netdev, xdp_prog, act); fallthrough; case XDP_DROP: result = ICE_XDP_CONSUMED; break; } rcu_read_unlock(); return result; } /** * ice_clean_rx_irq_zc - consumes packets from the hardware ring * @rx_ring: AF_XDP Rx ring * @budget: NAPI budget * * Returns number of processed packets on success, remaining budget on failure. */ int ice_clean_rx_irq_zc(struct ice_ring *rx_ring, int budget) { unsigned int total_rx_bytes = 0, total_rx_packets = 0; u16 cleaned_count = ICE_DESC_UNUSED(rx_ring); unsigned int xdp_xmit = 0; bool failure = false; while (likely(total_rx_packets < (unsigned int)budget)) { union ice_32b_rx_flex_desc *rx_desc; unsigned int size, xdp_res = 0; struct ice_rx_buf *rx_buf; struct sk_buff *skb; u16 stat_err_bits; u16 vlan_tag = 0; u8 rx_ptype; if (cleaned_count >= ICE_RX_BUF_WRITE) { failure |= ice_alloc_rx_bufs_zc(rx_ring, cleaned_count); cleaned_count = 0; } rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean); stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); if (!ice_test_staterr(rx_desc, stat_err_bits)) break; /* This memory barrier is needed to keep us from reading * any other fields out of the rx_desc until we have * verified the descriptor has been written back. */ dma_rmb(); size = le16_to_cpu(rx_desc->wb.pkt_len) & ICE_RX_FLX_DESC_PKT_LEN_M; if (!size) break; rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean]; rx_buf->xdp->data_end = rx_buf->xdp->data + size; xsk_buff_dma_sync_for_cpu(rx_buf->xdp); xdp_res = ice_run_xdp_zc(rx_ring, rx_buf->xdp); if (xdp_res) { if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) xdp_xmit |= xdp_res; else xsk_buff_free(rx_buf->xdp); rx_buf->xdp = NULL; total_rx_bytes += size; total_rx_packets++; cleaned_count++; ice_bump_ntc(rx_ring); continue; } /* XDP_PASS path */ skb = ice_construct_skb_zc(rx_ring, rx_buf); if (!skb) { rx_ring->rx_stats.alloc_buf_failed++; break; } cleaned_count++; ice_bump_ntc(rx_ring); if (eth_skb_pad(skb)) { skb = NULL; continue; } total_rx_bytes += skb->len; total_rx_packets++; stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S); if (ice_test_staterr(rx_desc, stat_err_bits)) vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1); rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & ICE_RX_FLEX_DESC_PTYPE_M; ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); ice_receive_skb(rx_ring, skb, vlan_tag); } ice_finalize_xdp_rx(rx_ring, xdp_xmit); ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes); if (xsk_umem_uses_need_wakeup(rx_ring->xsk_umem)) { if (failure || rx_ring->next_to_clean == rx_ring->next_to_use) xsk_set_rx_need_wakeup(rx_ring->xsk_umem); else xsk_clear_rx_need_wakeup(rx_ring->xsk_umem); return (int)total_rx_packets; } return failure ? budget : (int)total_rx_packets; } /** * ice_xmit_zc - Completes AF_XDP entries, and cleans XDP entries * @xdp_ring: XDP Tx ring * @budget: max number of frames to xmit * * Returns true if cleanup/transmission is done. */ static bool ice_xmit_zc(struct ice_ring *xdp_ring, int budget) { struct ice_tx_desc *tx_desc = NULL; bool work_done = true; struct xdp_desc desc; dma_addr_t dma; while (likely(budget-- > 0)) { struct ice_tx_buf *tx_buf; if (unlikely(!ICE_DESC_UNUSED(xdp_ring))) { xdp_ring->tx_stats.tx_busy++; work_done = false; break; } tx_buf = &xdp_ring->tx_buf[xdp_ring->next_to_use]; if (!xsk_umem_consume_tx(xdp_ring->xsk_umem, &desc)) break; dma = xsk_buff_raw_get_dma(xdp_ring->xsk_umem, desc.addr); xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_umem, dma, desc.len); tx_buf->bytecount = desc.len; tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use); tx_desc->buf_addr = cpu_to_le64(dma); tx_desc->cmd_type_offset_bsz = ice_build_ctob(ICE_TXD_LAST_DESC_CMD, 0, desc.len, 0); xdp_ring->next_to_use++; if (xdp_ring->next_to_use == xdp_ring->count) xdp_ring->next_to_use = 0; } if (tx_desc) { ice_xdp_ring_update_tail(xdp_ring); xsk_umem_consume_tx_done(xdp_ring->xsk_umem); if (xsk_umem_uses_need_wakeup(xdp_ring->xsk_umem)) xsk_clear_tx_need_wakeup(xdp_ring->xsk_umem); } return budget > 0 && work_done; } /** * ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer * @xdp_ring: XDP Tx ring * @tx_buf: Tx buffer to clean */ static void ice_clean_xdp_tx_buf(struct ice_ring *xdp_ring, struct ice_tx_buf *tx_buf) { xdp_return_frame((struct xdp_frame *)tx_buf->raw_buf); dma_unmap_single(xdp_ring->dev, dma_unmap_addr(tx_buf, dma), dma_unmap_len(tx_buf, len), DMA_TO_DEVICE); dma_unmap_len_set(tx_buf, len, 0); } /** * ice_clean_tx_irq_zc - Completes AF_XDP entries, and cleans XDP entries * @xdp_ring: XDP Tx ring * @budget: NAPI budget * * Returns true if cleanup/tranmission is done. */ bool ice_clean_tx_irq_zc(struct ice_ring *xdp_ring, int budget) { int total_packets = 0, total_bytes = 0; s16 ntc = xdp_ring->next_to_clean; struct ice_tx_desc *tx_desc; struct ice_tx_buf *tx_buf; u32 xsk_frames = 0; bool xmit_done; tx_desc = ICE_TX_DESC(xdp_ring, ntc); tx_buf = &xdp_ring->tx_buf[ntc]; ntc -= xdp_ring->count; do { if (!(tx_desc->cmd_type_offset_bsz & cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) break; total_bytes += tx_buf->bytecount; total_packets++; if (tx_buf->raw_buf) { ice_clean_xdp_tx_buf(xdp_ring, tx_buf); tx_buf->raw_buf = NULL; } else { xsk_frames++; } tx_desc->cmd_type_offset_bsz = 0; tx_buf++; tx_desc++; ntc++; if (unlikely(!ntc)) { ntc -= xdp_ring->count; tx_buf = xdp_ring->tx_buf; tx_desc = ICE_TX_DESC(xdp_ring, 0); } prefetch(tx_desc); } while (likely(--budget)); ntc += xdp_ring->count; xdp_ring->next_to_clean = ntc; if (xsk_frames) xsk_umem_complete_tx(xdp_ring->xsk_umem, xsk_frames); if (xsk_umem_uses_need_wakeup(xdp_ring->xsk_umem)) { if (xdp_ring->next_to_clean == xdp_ring->next_to_use) xsk_set_tx_need_wakeup(xdp_ring->xsk_umem); else xsk_clear_tx_need_wakeup(xdp_ring->xsk_umem); } ice_update_tx_ring_stats(xdp_ring, total_packets, total_bytes); xmit_done = ice_xmit_zc(xdp_ring, ICE_DFLT_IRQ_WORK); return budget > 0 && xmit_done; } /** * ice_xsk_wakeup - Implements ndo_xsk_wakeup * @netdev: net_device * @queue_id: queue to wake up * @flags: ignored in our case, since we have Rx and Tx in the same NAPI * * Returns negative on error, zero otherwise. */ int ice_xsk_wakeup(struct net_device *netdev, u32 queue_id, u32 __always_unused flags) { struct ice_netdev_priv *np = netdev_priv(netdev); struct ice_q_vector *q_vector; struct ice_vsi *vsi = np->vsi; struct ice_ring *ring; if (test_bit(__ICE_DOWN, vsi->state)) return -ENETDOWN; if (!ice_is_xdp_ena_vsi(vsi)) return -ENXIO; if (queue_id >= vsi->num_txq) return -ENXIO; if (!vsi->xdp_rings[queue_id]->xsk_umem) return -ENXIO; ring = vsi->xdp_rings[queue_id]; /* The idea here is that if NAPI is running, mark a miss, so * it will run again. If not, trigger an interrupt and * schedule the NAPI from interrupt context. If NAPI would be * scheduled here, the interrupt affinity would not be * honored. */ q_vector = ring->q_vector; if (!napi_if_scheduled_mark_missed(&q_vector->napi)) ice_trigger_sw_intr(&vsi->back->hw, q_vector); return 0; } /** * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP UMEM attached * @vsi: VSI to be checked * * Returns true if any of the Rx rings has an AF_XDP UMEM attached */ bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi) { int i; if (!vsi->xsk_umems) return false; for (i = 0; i < vsi->num_xsk_umems; i++) { if (vsi->xsk_umems[i]) return true; } return false; } /** * ice_xsk_clean_rx_ring - clean UMEM queues connected to a given Rx ring * @rx_ring: ring to be cleaned */ void ice_xsk_clean_rx_ring(struct ice_ring *rx_ring) { u16 i; for (i = 0; i < rx_ring->count; i++) { struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i]; if (!rx_buf->xdp) continue; rx_buf->xdp = NULL; } } /** * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its UMEM queues * @xdp_ring: XDP_Tx ring */ void ice_xsk_clean_xdp_ring(struct ice_ring *xdp_ring) { u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use; u32 xsk_frames = 0; while (ntc != ntu) { struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc]; if (tx_buf->raw_buf) ice_clean_xdp_tx_buf(xdp_ring, tx_buf); else xsk_frames++; tx_buf->raw_buf = NULL; ntc++; if (ntc >= xdp_ring->count) ntc = 0; } if (xsk_frames) xsk_umem_complete_tx(xdp_ring->xsk_umem, xsk_frames); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1