Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
John Crispin | 8333 | 51.39% | 27 | 22.50% |
Nelson Chang | 2104 | 12.98% | 6 | 5.00% |
René van Dorst | 1886 | 11.63% | 6 | 5.00% |
Sean Wang | 1767 | 10.90% | 44 | 36.67% |
Stefan Roese | 1670 | 10.30% | 2 | 1.67% |
Björn Mork | 197 | 1.21% | 1 | 0.83% |
MarkLee | 126 | 0.78% | 4 | 3.33% |
Russell King | 20 | 0.12% | 2 | 1.67% |
Andrew Lunn | 15 | 0.09% | 2 | 1.67% |
Elena Reshetova | 14 | 0.09% | 1 | 0.83% |
Landen Chao | 13 | 0.08% | 1 | 0.83% |
Johan Hovold | 10 | 0.06% | 1 | 0.83% |
Vladimir Zapolskiy | 9 | 0.06% | 1 | 0.83% |
Nishka Dasgupta | 7 | 0.04% | 1 | 0.83% |
Matthew Wilcox | 5 | 0.03% | 2 | 1.67% |
Ryder Lee | 4 | 0.02% | 1 | 0.83% |
Petr Štetiar | 4 | 0.02% | 1 | 0.83% |
Michael S. Tsirkin | 4 | 0.02% | 1 | 0.83% |
Mark Brown | 3 | 0.02% | 1 | 0.83% |
Luis R. Rodriguez | 3 | 0.02% | 1 | 0.83% |
Wei Yongjun | 3 | 0.02% | 2 | 1.67% |
Thierry Reding | 3 | 0.02% | 1 | 0.83% |
Baoyou Xie | 2 | 0.01% | 1 | 0.83% |
Yue haibing | 2 | 0.01% | 1 | 0.83% |
Florian Westphal | 2 | 0.01% | 1 | 0.83% |
Thomas Gleixner | 2 | 0.01% | 1 | 0.83% |
Tobias Klauser | 1 | 0.01% | 1 | 0.83% |
wangyunjian | 1 | 0.01% | 1 | 0.83% |
Stephen Hemminger | 1 | 0.01% | 1 | 0.83% |
Zou Wei | 1 | 0.01% | 1 | 0.83% |
Julia Lawall | 1 | 0.01% | 1 | 0.83% |
Rob Herring | 1 | 0.01% | 1 | 0.83% |
Arnd Bergmann | 1 | 0.01% | 1 | 0.83% |
Total | 16215 | 120 |
// SPDX-License-Identifier: GPL-2.0-only /* * * Copyright (C) 2009-2016 John Crispin <blogic@openwrt.org> * Copyright (C) 2009-2016 Felix Fietkau <nbd@openwrt.org> * Copyright (C) 2013-2016 Michael Lee <igvtee@gmail.com> */ #include <linux/of_device.h> #include <linux/of_mdio.h> #include <linux/of_net.h> #include <linux/mfd/syscon.h> #include <linux/regmap.h> #include <linux/clk.h> #include <linux/pm_runtime.h> #include <linux/if_vlan.h> #include <linux/reset.h> #include <linux/tcp.h> #include <linux/interrupt.h> #include <linux/pinctrl/devinfo.h> #include <linux/phylink.h> #include "mtk_eth_soc.h" static int mtk_msg_level = -1; module_param_named(msg_level, mtk_msg_level, int, 0); MODULE_PARM_DESC(msg_level, "Message level (-1=defaults,0=none,...,16=all)"); #define MTK_ETHTOOL_STAT(x) { #x, \ offsetof(struct mtk_hw_stats, x) / sizeof(u64) } /* strings used by ethtool */ static const struct mtk_ethtool_stats { char str[ETH_GSTRING_LEN]; u32 offset; } mtk_ethtool_stats[] = { MTK_ETHTOOL_STAT(tx_bytes), MTK_ETHTOOL_STAT(tx_packets), MTK_ETHTOOL_STAT(tx_skip), MTK_ETHTOOL_STAT(tx_collisions), MTK_ETHTOOL_STAT(rx_bytes), MTK_ETHTOOL_STAT(rx_packets), MTK_ETHTOOL_STAT(rx_overflow), MTK_ETHTOOL_STAT(rx_fcs_errors), MTK_ETHTOOL_STAT(rx_short_errors), MTK_ETHTOOL_STAT(rx_long_errors), MTK_ETHTOOL_STAT(rx_checksum_errors), MTK_ETHTOOL_STAT(rx_flow_control_packets), }; static const char * const mtk_clks_source_name[] = { "ethif", "sgmiitop", "esw", "gp0", "gp1", "gp2", "fe", "trgpll", "sgmii_tx250m", "sgmii_rx250m", "sgmii_cdr_ref", "sgmii_cdr_fb", "sgmii2_tx250m", "sgmii2_rx250m", "sgmii2_cdr_ref", "sgmii2_cdr_fb", "sgmii_ck", "eth2pll", }; void mtk_w32(struct mtk_eth *eth, u32 val, unsigned reg) { __raw_writel(val, eth->base + reg); } u32 mtk_r32(struct mtk_eth *eth, unsigned reg) { return __raw_readl(eth->base + reg); } static u32 mtk_m32(struct mtk_eth *eth, u32 mask, u32 set, unsigned reg) { u32 val; val = mtk_r32(eth, reg); val &= ~mask; val |= set; mtk_w32(eth, val, reg); return reg; } static int mtk_mdio_busy_wait(struct mtk_eth *eth) { unsigned long t_start = jiffies; while (1) { if (!(mtk_r32(eth, MTK_PHY_IAC) & PHY_IAC_ACCESS)) return 0; if (time_after(jiffies, t_start + PHY_IAC_TIMEOUT)) break; usleep_range(10, 20); } dev_err(eth->dev, "mdio: MDIO timeout\n"); return -1; } static u32 _mtk_mdio_write(struct mtk_eth *eth, u32 phy_addr, u32 phy_register, u32 write_data) { if (mtk_mdio_busy_wait(eth)) return -1; write_data &= 0xffff; mtk_w32(eth, PHY_IAC_ACCESS | PHY_IAC_START | PHY_IAC_WRITE | (phy_register << PHY_IAC_REG_SHIFT) | (phy_addr << PHY_IAC_ADDR_SHIFT) | write_data, MTK_PHY_IAC); if (mtk_mdio_busy_wait(eth)) return -1; return 0; } static u32 _mtk_mdio_read(struct mtk_eth *eth, int phy_addr, int phy_reg) { u32 d; if (mtk_mdio_busy_wait(eth)) return 0xffff; mtk_w32(eth, PHY_IAC_ACCESS | PHY_IAC_START | PHY_IAC_READ | (phy_reg << PHY_IAC_REG_SHIFT) | (phy_addr << PHY_IAC_ADDR_SHIFT), MTK_PHY_IAC); if (mtk_mdio_busy_wait(eth)) return 0xffff; d = mtk_r32(eth, MTK_PHY_IAC) & 0xffff; return d; } static int mtk_mdio_write(struct mii_bus *bus, int phy_addr, int phy_reg, u16 val) { struct mtk_eth *eth = bus->priv; return _mtk_mdio_write(eth, phy_addr, phy_reg, val); } static int mtk_mdio_read(struct mii_bus *bus, int phy_addr, int phy_reg) { struct mtk_eth *eth = bus->priv; return _mtk_mdio_read(eth, phy_addr, phy_reg); } static int mt7621_gmac0_rgmii_adjust(struct mtk_eth *eth, phy_interface_t interface) { u32 val; /* Check DDR memory type. * Currently TRGMII mode with DDR2 memory is not supported. */ regmap_read(eth->ethsys, ETHSYS_SYSCFG, &val); if (interface == PHY_INTERFACE_MODE_TRGMII && val & SYSCFG_DRAM_TYPE_DDR2) { dev_err(eth->dev, "TRGMII mode with DDR2 memory is not supported!\n"); return -EOPNOTSUPP; } val = (interface == PHY_INTERFACE_MODE_TRGMII) ? ETHSYS_TRGMII_MT7621_DDR_PLL : 0; regmap_update_bits(eth->ethsys, ETHSYS_CLKCFG0, ETHSYS_TRGMII_MT7621_MASK, val); return 0; } static void mtk_gmac0_rgmii_adjust(struct mtk_eth *eth, phy_interface_t interface, int speed) { u32 val; int ret; if (interface == PHY_INTERFACE_MODE_TRGMII) { mtk_w32(eth, TRGMII_MODE, INTF_MODE); val = 500000000; ret = clk_set_rate(eth->clks[MTK_CLK_TRGPLL], val); if (ret) dev_err(eth->dev, "Failed to set trgmii pll: %d\n", ret); return; } val = (speed == SPEED_1000) ? INTF_MODE_RGMII_1000 : INTF_MODE_RGMII_10_100; mtk_w32(eth, val, INTF_MODE); regmap_update_bits(eth->ethsys, ETHSYS_CLKCFG0, ETHSYS_TRGMII_CLK_SEL362_5, ETHSYS_TRGMII_CLK_SEL362_5); val = (speed == SPEED_1000) ? 250000000 : 500000000; ret = clk_set_rate(eth->clks[MTK_CLK_TRGPLL], val); if (ret) dev_err(eth->dev, "Failed to set trgmii pll: %d\n", ret); val = (speed == SPEED_1000) ? RCK_CTRL_RGMII_1000 : RCK_CTRL_RGMII_10_100; mtk_w32(eth, val, TRGMII_RCK_CTRL); val = (speed == SPEED_1000) ? TCK_CTRL_RGMII_1000 : TCK_CTRL_RGMII_10_100; mtk_w32(eth, val, TRGMII_TCK_CTRL); } static void mtk_mac_config(struct phylink_config *config, unsigned int mode, const struct phylink_link_state *state) { struct mtk_mac *mac = container_of(config, struct mtk_mac, phylink_config); struct mtk_eth *eth = mac->hw; u32 mcr_cur, mcr_new, sid, i; int val, ge_mode, err; /* MT76x8 has no hardware settings between for the MAC */ if (!MTK_HAS_CAPS(eth->soc->caps, MTK_SOC_MT7628) && mac->interface != state->interface) { /* Setup soc pin functions */ switch (state->interface) { case PHY_INTERFACE_MODE_TRGMII: if (mac->id) goto err_phy; if (!MTK_HAS_CAPS(mac->hw->soc->caps, MTK_GMAC1_TRGMII)) goto err_phy; /* fall through */ case PHY_INTERFACE_MODE_RGMII_TXID: case PHY_INTERFACE_MODE_RGMII_RXID: case PHY_INTERFACE_MODE_RGMII_ID: case PHY_INTERFACE_MODE_RGMII: case PHY_INTERFACE_MODE_MII: case PHY_INTERFACE_MODE_REVMII: case PHY_INTERFACE_MODE_RMII: if (MTK_HAS_CAPS(eth->soc->caps, MTK_RGMII)) { err = mtk_gmac_rgmii_path_setup(eth, mac->id); if (err) goto init_err; } break; case PHY_INTERFACE_MODE_1000BASEX: case PHY_INTERFACE_MODE_2500BASEX: case PHY_INTERFACE_MODE_SGMII: if (MTK_HAS_CAPS(eth->soc->caps, MTK_SGMII)) { err = mtk_gmac_sgmii_path_setup(eth, mac->id); if (err) goto init_err; } break; case PHY_INTERFACE_MODE_GMII: if (MTK_HAS_CAPS(eth->soc->caps, MTK_GEPHY)) { err = mtk_gmac_gephy_path_setup(eth, mac->id); if (err) goto init_err; } break; default: goto err_phy; } /* Setup clock for 1st gmac */ if (!mac->id && state->interface != PHY_INTERFACE_MODE_SGMII && !phy_interface_mode_is_8023z(state->interface) && MTK_HAS_CAPS(mac->hw->soc->caps, MTK_GMAC1_TRGMII)) { if (MTK_HAS_CAPS(mac->hw->soc->caps, MTK_TRGMII_MT7621_CLK)) { if (mt7621_gmac0_rgmii_adjust(mac->hw, state->interface)) goto err_phy; } else { mtk_gmac0_rgmii_adjust(mac->hw, state->interface, state->speed); /* mt7623_pad_clk_setup */ for (i = 0 ; i < NUM_TRGMII_CTRL; i++) mtk_w32(mac->hw, TD_DM_DRVP(8) | TD_DM_DRVN(8), TRGMII_TD_ODT(i)); /* Assert/release MT7623 RXC reset */ mtk_m32(mac->hw, 0, RXC_RST | RXC_DQSISEL, TRGMII_RCK_CTRL); mtk_m32(mac->hw, RXC_RST, 0, TRGMII_RCK_CTRL); } } ge_mode = 0; switch (state->interface) { case PHY_INTERFACE_MODE_MII: case PHY_INTERFACE_MODE_GMII: ge_mode = 1; break; case PHY_INTERFACE_MODE_REVMII: ge_mode = 2; break; case PHY_INTERFACE_MODE_RMII: if (mac->id) goto err_phy; ge_mode = 3; break; default: break; } /* put the gmac into the right mode */ regmap_read(eth->ethsys, ETHSYS_SYSCFG0, &val); val &= ~SYSCFG0_GE_MODE(SYSCFG0_GE_MASK, mac->id); val |= SYSCFG0_GE_MODE(ge_mode, mac->id); regmap_write(eth->ethsys, ETHSYS_SYSCFG0, val); mac->interface = state->interface; } /* SGMII */ if (state->interface == PHY_INTERFACE_MODE_SGMII || phy_interface_mode_is_8023z(state->interface)) { /* The path GMAC to SGMII will be enabled once the SGMIISYS is * being setup done. */ regmap_read(eth->ethsys, ETHSYS_SYSCFG0, &val); regmap_update_bits(eth->ethsys, ETHSYS_SYSCFG0, SYSCFG0_SGMII_MASK, ~(u32)SYSCFG0_SGMII_MASK); /* Decide how GMAC and SGMIISYS be mapped */ sid = (MTK_HAS_CAPS(eth->soc->caps, MTK_SHARED_SGMII)) ? 0 : mac->id; /* Setup SGMIISYS with the determined property */ if (state->interface != PHY_INTERFACE_MODE_SGMII) err = mtk_sgmii_setup_mode_force(eth->sgmii, sid, state); else if (phylink_autoneg_inband(mode)) err = mtk_sgmii_setup_mode_an(eth->sgmii, sid); if (err) goto init_err; regmap_update_bits(eth->ethsys, ETHSYS_SYSCFG0, SYSCFG0_SGMII_MASK, val); } else if (phylink_autoneg_inband(mode)) { dev_err(eth->dev, "In-band mode not supported in non SGMII mode!\n"); return; } /* Setup gmac */ mcr_cur = mtk_r32(mac->hw, MTK_MAC_MCR(mac->id)); mcr_new = mcr_cur; mcr_new &= ~(MAC_MCR_SPEED_100 | MAC_MCR_SPEED_1000 | MAC_MCR_FORCE_DPX | MAC_MCR_FORCE_TX_FC | MAC_MCR_FORCE_RX_FC); mcr_new |= MAC_MCR_MAX_RX_1536 | MAC_MCR_IPG_CFG | MAC_MCR_FORCE_MODE | MAC_MCR_BACKOFF_EN | MAC_MCR_BACKPR_EN | MAC_MCR_FORCE_LINK; switch (state->speed) { case SPEED_2500: case SPEED_1000: mcr_new |= MAC_MCR_SPEED_1000; break; case SPEED_100: mcr_new |= MAC_MCR_SPEED_100; break; } if (state->duplex == DUPLEX_FULL) { mcr_new |= MAC_MCR_FORCE_DPX; if (state->pause & MLO_PAUSE_TX) mcr_new |= MAC_MCR_FORCE_TX_FC; if (state->pause & MLO_PAUSE_RX) mcr_new |= MAC_MCR_FORCE_RX_FC; } /* Only update control register when needed! */ if (mcr_new != mcr_cur) mtk_w32(mac->hw, mcr_new, MTK_MAC_MCR(mac->id)); return; err_phy: dev_err(eth->dev, "%s: GMAC%d mode %s not supported!\n", __func__, mac->id, phy_modes(state->interface)); return; init_err: dev_err(eth->dev, "%s: GMAC%d mode %s err: %d!\n", __func__, mac->id, phy_modes(state->interface), err); } static void mtk_mac_pcs_get_state(struct phylink_config *config, struct phylink_link_state *state) { struct mtk_mac *mac = container_of(config, struct mtk_mac, phylink_config); u32 pmsr = mtk_r32(mac->hw, MTK_MAC_MSR(mac->id)); state->link = (pmsr & MAC_MSR_LINK); state->duplex = (pmsr & MAC_MSR_DPX) >> 1; switch (pmsr & (MAC_MSR_SPEED_1000 | MAC_MSR_SPEED_100)) { case 0: state->speed = SPEED_10; break; case MAC_MSR_SPEED_100: state->speed = SPEED_100; break; case MAC_MSR_SPEED_1000: state->speed = SPEED_1000; break; default: state->speed = SPEED_UNKNOWN; break; } state->pause &= (MLO_PAUSE_RX | MLO_PAUSE_TX); if (pmsr & MAC_MSR_RX_FC) state->pause |= MLO_PAUSE_RX; if (pmsr & MAC_MSR_TX_FC) state->pause |= MLO_PAUSE_TX; } static void mtk_mac_an_restart(struct phylink_config *config) { struct mtk_mac *mac = container_of(config, struct mtk_mac, phylink_config); mtk_sgmii_restart_an(mac->hw, mac->id); } static void mtk_mac_link_down(struct phylink_config *config, unsigned int mode, phy_interface_t interface) { struct mtk_mac *mac = container_of(config, struct mtk_mac, phylink_config); u32 mcr = mtk_r32(mac->hw, MTK_MAC_MCR(mac->id)); mcr &= ~(MAC_MCR_TX_EN | MAC_MCR_RX_EN); mtk_w32(mac->hw, mcr, MTK_MAC_MCR(mac->id)); } static void mtk_mac_link_up(struct phylink_config *config, struct phy_device *phy, unsigned int mode, phy_interface_t interface, int speed, int duplex, bool tx_pause, bool rx_pause) { struct mtk_mac *mac = container_of(config, struct mtk_mac, phylink_config); u32 mcr = mtk_r32(mac->hw, MTK_MAC_MCR(mac->id)); mcr |= MAC_MCR_TX_EN | MAC_MCR_RX_EN; mtk_w32(mac->hw, mcr, MTK_MAC_MCR(mac->id)); } static void mtk_validate(struct phylink_config *config, unsigned long *supported, struct phylink_link_state *state) { struct mtk_mac *mac = container_of(config, struct mtk_mac, phylink_config); __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; if (state->interface != PHY_INTERFACE_MODE_NA && state->interface != PHY_INTERFACE_MODE_MII && state->interface != PHY_INTERFACE_MODE_GMII && !(MTK_HAS_CAPS(mac->hw->soc->caps, MTK_RGMII) && phy_interface_mode_is_rgmii(state->interface)) && !(MTK_HAS_CAPS(mac->hw->soc->caps, MTK_TRGMII) && !mac->id && state->interface == PHY_INTERFACE_MODE_TRGMII) && !(MTK_HAS_CAPS(mac->hw->soc->caps, MTK_SGMII) && (state->interface == PHY_INTERFACE_MODE_SGMII || phy_interface_mode_is_8023z(state->interface)))) { linkmode_zero(supported); return; } phylink_set_port_modes(mask); phylink_set(mask, Autoneg); switch (state->interface) { case PHY_INTERFACE_MODE_TRGMII: phylink_set(mask, 1000baseT_Full); break; case PHY_INTERFACE_MODE_1000BASEX: case PHY_INTERFACE_MODE_2500BASEX: phylink_set(mask, 1000baseX_Full); phylink_set(mask, 2500baseX_Full); break; case PHY_INTERFACE_MODE_GMII: case PHY_INTERFACE_MODE_RGMII: case PHY_INTERFACE_MODE_RGMII_ID: case PHY_INTERFACE_MODE_RGMII_RXID: case PHY_INTERFACE_MODE_RGMII_TXID: phylink_set(mask, 1000baseT_Half); /* fall through */ case PHY_INTERFACE_MODE_SGMII: phylink_set(mask, 1000baseT_Full); phylink_set(mask, 1000baseX_Full); /* fall through */ case PHY_INTERFACE_MODE_MII: case PHY_INTERFACE_MODE_RMII: case PHY_INTERFACE_MODE_REVMII: case PHY_INTERFACE_MODE_NA: default: phylink_set(mask, 10baseT_Half); phylink_set(mask, 10baseT_Full); phylink_set(mask, 100baseT_Half); phylink_set(mask, 100baseT_Full); break; } if (state->interface == PHY_INTERFACE_MODE_NA) { if (MTK_HAS_CAPS(mac->hw->soc->caps, MTK_SGMII)) { phylink_set(mask, 1000baseT_Full); phylink_set(mask, 1000baseX_Full); phylink_set(mask, 2500baseX_Full); } if (MTK_HAS_CAPS(mac->hw->soc->caps, MTK_RGMII)) { phylink_set(mask, 1000baseT_Full); phylink_set(mask, 1000baseT_Half); phylink_set(mask, 1000baseX_Full); } if (MTK_HAS_CAPS(mac->hw->soc->caps, MTK_GEPHY)) { phylink_set(mask, 1000baseT_Full); phylink_set(mask, 1000baseT_Half); } } phylink_set(mask, Pause); phylink_set(mask, Asym_Pause); linkmode_and(supported, supported, mask); linkmode_and(state->advertising, state->advertising, mask); /* We can only operate at 2500BaseX or 1000BaseX. If requested * to advertise both, only report advertising at 2500BaseX. */ phylink_helper_basex_speed(state); } static const struct phylink_mac_ops mtk_phylink_ops = { .validate = mtk_validate, .mac_pcs_get_state = mtk_mac_pcs_get_state, .mac_an_restart = mtk_mac_an_restart, .mac_config = mtk_mac_config, .mac_link_down = mtk_mac_link_down, .mac_link_up = mtk_mac_link_up, }; static int mtk_mdio_init(struct mtk_eth *eth) { struct device_node *mii_np; int ret; mii_np = of_get_child_by_name(eth->dev->of_node, "mdio-bus"); if (!mii_np) { dev_err(eth->dev, "no %s child node found", "mdio-bus"); return -ENODEV; } if (!of_device_is_available(mii_np)) { ret = -ENODEV; goto err_put_node; } eth->mii_bus = devm_mdiobus_alloc(eth->dev); if (!eth->mii_bus) { ret = -ENOMEM; goto err_put_node; } eth->mii_bus->name = "mdio"; eth->mii_bus->read = mtk_mdio_read; eth->mii_bus->write = mtk_mdio_write; eth->mii_bus->priv = eth; eth->mii_bus->parent = eth->dev; snprintf(eth->mii_bus->id, MII_BUS_ID_SIZE, "%pOFn", mii_np); ret = of_mdiobus_register(eth->mii_bus, mii_np); err_put_node: of_node_put(mii_np); return ret; } static void mtk_mdio_cleanup(struct mtk_eth *eth) { if (!eth->mii_bus) return; mdiobus_unregister(eth->mii_bus); } static inline void mtk_tx_irq_disable(struct mtk_eth *eth, u32 mask) { unsigned long flags; u32 val; spin_lock_irqsave(ð->tx_irq_lock, flags); val = mtk_r32(eth, eth->tx_int_mask_reg); mtk_w32(eth, val & ~mask, eth->tx_int_mask_reg); spin_unlock_irqrestore(ð->tx_irq_lock, flags); } static inline void mtk_tx_irq_enable(struct mtk_eth *eth, u32 mask) { unsigned long flags; u32 val; spin_lock_irqsave(ð->tx_irq_lock, flags); val = mtk_r32(eth, eth->tx_int_mask_reg); mtk_w32(eth, val | mask, eth->tx_int_mask_reg); spin_unlock_irqrestore(ð->tx_irq_lock, flags); } static inline void mtk_rx_irq_disable(struct mtk_eth *eth, u32 mask) { unsigned long flags; u32 val; spin_lock_irqsave(ð->rx_irq_lock, flags); val = mtk_r32(eth, MTK_PDMA_INT_MASK); mtk_w32(eth, val & ~mask, MTK_PDMA_INT_MASK); spin_unlock_irqrestore(ð->rx_irq_lock, flags); } static inline void mtk_rx_irq_enable(struct mtk_eth *eth, u32 mask) { unsigned long flags; u32 val; spin_lock_irqsave(ð->rx_irq_lock, flags); val = mtk_r32(eth, MTK_PDMA_INT_MASK); mtk_w32(eth, val | mask, MTK_PDMA_INT_MASK); spin_unlock_irqrestore(ð->rx_irq_lock, flags); } static int mtk_set_mac_address(struct net_device *dev, void *p) { int ret = eth_mac_addr(dev, p); struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; const char *macaddr = dev->dev_addr; if (ret) return ret; if (unlikely(test_bit(MTK_RESETTING, &mac->hw->state))) return -EBUSY; spin_lock_bh(&mac->hw->page_lock); if (MTK_HAS_CAPS(eth->soc->caps, MTK_SOC_MT7628)) { mtk_w32(mac->hw, (macaddr[0] << 8) | macaddr[1], MT7628_SDM_MAC_ADRH); mtk_w32(mac->hw, (macaddr[2] << 24) | (macaddr[3] << 16) | (macaddr[4] << 8) | macaddr[5], MT7628_SDM_MAC_ADRL); } else { mtk_w32(mac->hw, (macaddr[0] << 8) | macaddr[1], MTK_GDMA_MAC_ADRH(mac->id)); mtk_w32(mac->hw, (macaddr[2] << 24) | (macaddr[3] << 16) | (macaddr[4] << 8) | macaddr[5], MTK_GDMA_MAC_ADRL(mac->id)); } spin_unlock_bh(&mac->hw->page_lock); return 0; } void mtk_stats_update_mac(struct mtk_mac *mac) { struct mtk_hw_stats *hw_stats = mac->hw_stats; unsigned int base = MTK_GDM1_TX_GBCNT; u64 stats; base += hw_stats->reg_offset; u64_stats_update_begin(&hw_stats->syncp); hw_stats->rx_bytes += mtk_r32(mac->hw, base); stats = mtk_r32(mac->hw, base + 0x04); if (stats) hw_stats->rx_bytes += (stats << 32); hw_stats->rx_packets += mtk_r32(mac->hw, base + 0x08); hw_stats->rx_overflow += mtk_r32(mac->hw, base + 0x10); hw_stats->rx_fcs_errors += mtk_r32(mac->hw, base + 0x14); hw_stats->rx_short_errors += mtk_r32(mac->hw, base + 0x18); hw_stats->rx_long_errors += mtk_r32(mac->hw, base + 0x1c); hw_stats->rx_checksum_errors += mtk_r32(mac->hw, base + 0x20); hw_stats->rx_flow_control_packets += mtk_r32(mac->hw, base + 0x24); hw_stats->tx_skip += mtk_r32(mac->hw, base + 0x28); hw_stats->tx_collisions += mtk_r32(mac->hw, base + 0x2c); hw_stats->tx_bytes += mtk_r32(mac->hw, base + 0x30); stats = mtk_r32(mac->hw, base + 0x34); if (stats) hw_stats->tx_bytes += (stats << 32); hw_stats->tx_packets += mtk_r32(mac->hw, base + 0x38); u64_stats_update_end(&hw_stats->syncp); } static void mtk_stats_update(struct mtk_eth *eth) { int i; for (i = 0; i < MTK_MAC_COUNT; i++) { if (!eth->mac[i] || !eth->mac[i]->hw_stats) continue; if (spin_trylock(ð->mac[i]->hw_stats->stats_lock)) { mtk_stats_update_mac(eth->mac[i]); spin_unlock(ð->mac[i]->hw_stats->stats_lock); } } } static void mtk_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *storage) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_hw_stats *hw_stats = mac->hw_stats; unsigned int start; if (netif_running(dev) && netif_device_present(dev)) { if (spin_trylock_bh(&hw_stats->stats_lock)) { mtk_stats_update_mac(mac); spin_unlock_bh(&hw_stats->stats_lock); } } do { start = u64_stats_fetch_begin_irq(&hw_stats->syncp); storage->rx_packets = hw_stats->rx_packets; storage->tx_packets = hw_stats->tx_packets; storage->rx_bytes = hw_stats->rx_bytes; storage->tx_bytes = hw_stats->tx_bytes; storage->collisions = hw_stats->tx_collisions; storage->rx_length_errors = hw_stats->rx_short_errors + hw_stats->rx_long_errors; storage->rx_over_errors = hw_stats->rx_overflow; storage->rx_crc_errors = hw_stats->rx_fcs_errors; storage->rx_errors = hw_stats->rx_checksum_errors; storage->tx_aborted_errors = hw_stats->tx_skip; } while (u64_stats_fetch_retry_irq(&hw_stats->syncp, start)); storage->tx_errors = dev->stats.tx_errors; storage->rx_dropped = dev->stats.rx_dropped; storage->tx_dropped = dev->stats.tx_dropped; } static inline int mtk_max_frag_size(int mtu) { /* make sure buf_size will be at least MTK_MAX_RX_LENGTH */ if (mtu + MTK_RX_ETH_HLEN < MTK_MAX_RX_LENGTH) mtu = MTK_MAX_RX_LENGTH - MTK_RX_ETH_HLEN; return SKB_DATA_ALIGN(MTK_RX_HLEN + mtu) + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); } static inline int mtk_max_buf_size(int frag_size) { int buf_size = frag_size - NET_SKB_PAD - NET_IP_ALIGN - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); WARN_ON(buf_size < MTK_MAX_RX_LENGTH); return buf_size; } static inline void mtk_rx_get_desc(struct mtk_rx_dma *rxd, struct mtk_rx_dma *dma_rxd) { rxd->rxd1 = READ_ONCE(dma_rxd->rxd1); rxd->rxd2 = READ_ONCE(dma_rxd->rxd2); rxd->rxd3 = READ_ONCE(dma_rxd->rxd3); rxd->rxd4 = READ_ONCE(dma_rxd->rxd4); } /* the qdma core needs scratch memory to be setup */ static int mtk_init_fq_dma(struct mtk_eth *eth) { dma_addr_t phy_ring_tail; int cnt = MTK_DMA_SIZE; dma_addr_t dma_addr; int i; eth->scratch_ring = dma_alloc_coherent(eth->dev, cnt * sizeof(struct mtk_tx_dma), ð->phy_scratch_ring, GFP_ATOMIC); if (unlikely(!eth->scratch_ring)) return -ENOMEM; eth->scratch_head = kcalloc(cnt, MTK_QDMA_PAGE_SIZE, GFP_KERNEL); if (unlikely(!eth->scratch_head)) return -ENOMEM; dma_addr = dma_map_single(eth->dev, eth->scratch_head, cnt * MTK_QDMA_PAGE_SIZE, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(eth->dev, dma_addr))) return -ENOMEM; phy_ring_tail = eth->phy_scratch_ring + (sizeof(struct mtk_tx_dma) * (cnt - 1)); for (i = 0; i < cnt; i++) { eth->scratch_ring[i].txd1 = (dma_addr + (i * MTK_QDMA_PAGE_SIZE)); if (i < cnt - 1) eth->scratch_ring[i].txd2 = (eth->phy_scratch_ring + ((i + 1) * sizeof(struct mtk_tx_dma))); eth->scratch_ring[i].txd3 = TX_DMA_SDL(MTK_QDMA_PAGE_SIZE); } mtk_w32(eth, eth->phy_scratch_ring, MTK_QDMA_FQ_HEAD); mtk_w32(eth, phy_ring_tail, MTK_QDMA_FQ_TAIL); mtk_w32(eth, (cnt << 16) | cnt, MTK_QDMA_FQ_CNT); mtk_w32(eth, MTK_QDMA_PAGE_SIZE << 16, MTK_QDMA_FQ_BLEN); return 0; } static inline void *mtk_qdma_phys_to_virt(struct mtk_tx_ring *ring, u32 desc) { void *ret = ring->dma; return ret + (desc - ring->phys); } static inline struct mtk_tx_buf *mtk_desc_to_tx_buf(struct mtk_tx_ring *ring, struct mtk_tx_dma *txd) { int idx = txd - ring->dma; return &ring->buf[idx]; } static struct mtk_tx_dma *qdma_to_pdma(struct mtk_tx_ring *ring, struct mtk_tx_dma *dma) { return ring->dma_pdma - ring->dma + dma; } static int txd_to_idx(struct mtk_tx_ring *ring, struct mtk_tx_dma *dma) { return ((void *)dma - (void *)ring->dma) / sizeof(*dma); } static void mtk_tx_unmap(struct mtk_eth *eth, struct mtk_tx_buf *tx_buf) { if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) { if (tx_buf->flags & MTK_TX_FLAGS_SINGLE0) { dma_unmap_single(eth->dev, dma_unmap_addr(tx_buf, dma_addr0), dma_unmap_len(tx_buf, dma_len0), DMA_TO_DEVICE); } else if (tx_buf->flags & MTK_TX_FLAGS_PAGE0) { dma_unmap_page(eth->dev, dma_unmap_addr(tx_buf, dma_addr0), dma_unmap_len(tx_buf, dma_len0), DMA_TO_DEVICE); } } else { if (dma_unmap_len(tx_buf, dma_len0)) { dma_unmap_page(eth->dev, dma_unmap_addr(tx_buf, dma_addr0), dma_unmap_len(tx_buf, dma_len0), DMA_TO_DEVICE); } if (dma_unmap_len(tx_buf, dma_len1)) { dma_unmap_page(eth->dev, dma_unmap_addr(tx_buf, dma_addr1), dma_unmap_len(tx_buf, dma_len1), DMA_TO_DEVICE); } } tx_buf->flags = 0; if (tx_buf->skb && (tx_buf->skb != (struct sk_buff *)MTK_DMA_DUMMY_DESC)) dev_kfree_skb_any(tx_buf->skb); tx_buf->skb = NULL; } static void setup_tx_buf(struct mtk_eth *eth, struct mtk_tx_buf *tx_buf, struct mtk_tx_dma *txd, dma_addr_t mapped_addr, size_t size, int idx) { if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) { dma_unmap_addr_set(tx_buf, dma_addr0, mapped_addr); dma_unmap_len_set(tx_buf, dma_len0, size); } else { if (idx & 1) { txd->txd3 = mapped_addr; txd->txd2 |= TX_DMA_PLEN1(size); dma_unmap_addr_set(tx_buf, dma_addr1, mapped_addr); dma_unmap_len_set(tx_buf, dma_len1, size); } else { tx_buf->skb = (struct sk_buff *)MTK_DMA_DUMMY_DESC; txd->txd1 = mapped_addr; txd->txd2 = TX_DMA_PLEN0(size); dma_unmap_addr_set(tx_buf, dma_addr0, mapped_addr); dma_unmap_len_set(tx_buf, dma_len0, size); } } } static int mtk_tx_map(struct sk_buff *skb, struct net_device *dev, int tx_num, struct mtk_tx_ring *ring, bool gso) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; struct mtk_tx_dma *itxd, *txd; struct mtk_tx_dma *itxd_pdma, *txd_pdma; struct mtk_tx_buf *itx_buf, *tx_buf; dma_addr_t mapped_addr; unsigned int nr_frags; int i, n_desc = 1; u32 txd4 = 0, fport; int k = 0; itxd = ring->next_free; itxd_pdma = qdma_to_pdma(ring, itxd); if (itxd == ring->last_free) return -ENOMEM; /* set the forward port */ fport = (mac->id + 1) << TX_DMA_FPORT_SHIFT; txd4 |= fport; itx_buf = mtk_desc_to_tx_buf(ring, itxd); memset(itx_buf, 0, sizeof(*itx_buf)); if (gso) txd4 |= TX_DMA_TSO; /* TX Checksum offload */ if (skb->ip_summed == CHECKSUM_PARTIAL) txd4 |= TX_DMA_CHKSUM; /* VLAN header offload */ if (skb_vlan_tag_present(skb)) txd4 |= TX_DMA_INS_VLAN | skb_vlan_tag_get(skb); mapped_addr = dma_map_single(eth->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); if (unlikely(dma_mapping_error(eth->dev, mapped_addr))) return -ENOMEM; WRITE_ONCE(itxd->txd1, mapped_addr); itx_buf->flags |= MTK_TX_FLAGS_SINGLE0; itx_buf->flags |= (!mac->id) ? MTK_TX_FLAGS_FPORT0 : MTK_TX_FLAGS_FPORT1; setup_tx_buf(eth, itx_buf, itxd_pdma, mapped_addr, skb_headlen(skb), k++); /* TX SG offload */ txd = itxd; txd_pdma = qdma_to_pdma(ring, txd); nr_frags = skb_shinfo(skb)->nr_frags; for (i = 0; i < nr_frags; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; unsigned int offset = 0; int frag_size = skb_frag_size(frag); while (frag_size) { bool last_frag = false; unsigned int frag_map_size; bool new_desc = true; if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA) || (i & 0x1)) { txd = mtk_qdma_phys_to_virt(ring, txd->txd2); txd_pdma = qdma_to_pdma(ring, txd); if (txd == ring->last_free) goto err_dma; n_desc++; } else { new_desc = false; } frag_map_size = min(frag_size, MTK_TX_DMA_BUF_LEN); mapped_addr = skb_frag_dma_map(eth->dev, frag, offset, frag_map_size, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(eth->dev, mapped_addr))) goto err_dma; if (i == nr_frags - 1 && (frag_size - frag_map_size) == 0) last_frag = true; WRITE_ONCE(txd->txd1, mapped_addr); WRITE_ONCE(txd->txd3, (TX_DMA_SWC | TX_DMA_PLEN0(frag_map_size) | last_frag * TX_DMA_LS0)); WRITE_ONCE(txd->txd4, fport); tx_buf = mtk_desc_to_tx_buf(ring, txd); if (new_desc) memset(tx_buf, 0, sizeof(*tx_buf)); tx_buf->skb = (struct sk_buff *)MTK_DMA_DUMMY_DESC; tx_buf->flags |= MTK_TX_FLAGS_PAGE0; tx_buf->flags |= (!mac->id) ? MTK_TX_FLAGS_FPORT0 : MTK_TX_FLAGS_FPORT1; setup_tx_buf(eth, tx_buf, txd_pdma, mapped_addr, frag_map_size, k++); frag_size -= frag_map_size; offset += frag_map_size; } } /* store skb to cleanup */ itx_buf->skb = skb; WRITE_ONCE(itxd->txd4, txd4); WRITE_ONCE(itxd->txd3, (TX_DMA_SWC | TX_DMA_PLEN0(skb_headlen(skb)) | (!nr_frags * TX_DMA_LS0))); if (!MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) { if (k & 0x1) txd_pdma->txd2 |= TX_DMA_LS0; else txd_pdma->txd2 |= TX_DMA_LS1; } netdev_sent_queue(dev, skb->len); skb_tx_timestamp(skb); ring->next_free = mtk_qdma_phys_to_virt(ring, txd->txd2); atomic_sub(n_desc, &ring->free_count); /* make sure that all changes to the dma ring are flushed before we * continue */ wmb(); if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) { if (netif_xmit_stopped(netdev_get_tx_queue(dev, 0)) || !netdev_xmit_more()) mtk_w32(eth, txd->txd2, MTK_QTX_CTX_PTR); } else { int next_idx = NEXT_DESP_IDX(txd_to_idx(ring, txd), ring->dma_size); mtk_w32(eth, next_idx, MT7628_TX_CTX_IDX0); } return 0; err_dma: do { tx_buf = mtk_desc_to_tx_buf(ring, itxd); /* unmap dma */ mtk_tx_unmap(eth, tx_buf); itxd->txd3 = TX_DMA_LS0 | TX_DMA_OWNER_CPU; if (!MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) itxd_pdma->txd2 = TX_DMA_DESP2_DEF; itxd = mtk_qdma_phys_to_virt(ring, itxd->txd2); itxd_pdma = qdma_to_pdma(ring, itxd); } while (itxd != txd); return -ENOMEM; } static inline int mtk_cal_txd_req(struct sk_buff *skb) { int i, nfrags; skb_frag_t *frag; nfrags = 1; if (skb_is_gso(skb)) { for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { frag = &skb_shinfo(skb)->frags[i]; nfrags += DIV_ROUND_UP(skb_frag_size(frag), MTK_TX_DMA_BUF_LEN); } } else { nfrags += skb_shinfo(skb)->nr_frags; } return nfrags; } static int mtk_queue_stopped(struct mtk_eth *eth) { int i; for (i = 0; i < MTK_MAC_COUNT; i++) { if (!eth->netdev[i]) continue; if (netif_queue_stopped(eth->netdev[i])) return 1; } return 0; } static void mtk_wake_queue(struct mtk_eth *eth) { int i; for (i = 0; i < MTK_MAC_COUNT; i++) { if (!eth->netdev[i]) continue; netif_wake_queue(eth->netdev[i]); } } static void mtk_stop_queue(struct mtk_eth *eth) { int i; for (i = 0; i < MTK_MAC_COUNT; i++) { if (!eth->netdev[i]) continue; netif_stop_queue(eth->netdev[i]); } } static netdev_tx_t mtk_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; struct mtk_tx_ring *ring = ð->tx_ring; struct net_device_stats *stats = &dev->stats; bool gso = false; int tx_num; /* normally we can rely on the stack not calling this more than once, * however we have 2 queues running on the same ring so we need to lock * the ring access */ spin_lock(ð->page_lock); if (unlikely(test_bit(MTK_RESETTING, ð->state))) goto drop; tx_num = mtk_cal_txd_req(skb); if (unlikely(atomic_read(&ring->free_count) <= tx_num)) { mtk_stop_queue(eth); netif_err(eth, tx_queued, dev, "Tx Ring full when queue awake!\n"); spin_unlock(ð->page_lock); return NETDEV_TX_BUSY; } /* TSO: fill MSS info in tcp checksum field */ if (skb_is_gso(skb)) { if (skb_cow_head(skb, 0)) { netif_warn(eth, tx_err, dev, "GSO expand head fail.\n"); goto drop; } if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) { gso = true; tcp_hdr(skb)->check = htons(skb_shinfo(skb)->gso_size); } } if (mtk_tx_map(skb, dev, tx_num, ring, gso) < 0) goto drop; if (unlikely(atomic_read(&ring->free_count) <= ring->thresh)) mtk_stop_queue(eth); spin_unlock(ð->page_lock); return NETDEV_TX_OK; drop: spin_unlock(ð->page_lock); stats->tx_dropped++; dev_kfree_skb_any(skb); return NETDEV_TX_OK; } static struct mtk_rx_ring *mtk_get_rx_ring(struct mtk_eth *eth) { int i; struct mtk_rx_ring *ring; int idx; if (!eth->hwlro) return ð->rx_ring[0]; for (i = 0; i < MTK_MAX_RX_RING_NUM; i++) { ring = ð->rx_ring[i]; idx = NEXT_DESP_IDX(ring->calc_idx, ring->dma_size); if (ring->dma[idx].rxd2 & RX_DMA_DONE) { ring->calc_idx_update = true; return ring; } } return NULL; } static void mtk_update_rx_cpu_idx(struct mtk_eth *eth) { struct mtk_rx_ring *ring; int i; if (!eth->hwlro) { ring = ð->rx_ring[0]; mtk_w32(eth, ring->calc_idx, ring->crx_idx_reg); } else { for (i = 0; i < MTK_MAX_RX_RING_NUM; i++) { ring = ð->rx_ring[i]; if (ring->calc_idx_update) { ring->calc_idx_update = false; mtk_w32(eth, ring->calc_idx, ring->crx_idx_reg); } } } } static int mtk_poll_rx(struct napi_struct *napi, int budget, struct mtk_eth *eth) { struct mtk_rx_ring *ring; int idx; struct sk_buff *skb; u8 *data, *new_data; struct mtk_rx_dma *rxd, trxd; int done = 0; while (done < budget) { struct net_device *netdev; unsigned int pktlen; dma_addr_t dma_addr; int mac; ring = mtk_get_rx_ring(eth); if (unlikely(!ring)) goto rx_done; idx = NEXT_DESP_IDX(ring->calc_idx, ring->dma_size); rxd = &ring->dma[idx]; data = ring->data[idx]; mtk_rx_get_desc(&trxd, rxd); if (!(trxd.rxd2 & RX_DMA_DONE)) break; /* find out which mac the packet come from. values start at 1 */ if (MTK_HAS_CAPS(eth->soc->caps, MTK_SOC_MT7628)) { mac = 0; } else { mac = (trxd.rxd4 >> RX_DMA_FPORT_SHIFT) & RX_DMA_FPORT_MASK; mac--; } if (unlikely(mac < 0 || mac >= MTK_MAC_COUNT || !eth->netdev[mac])) goto release_desc; netdev = eth->netdev[mac]; if (unlikely(test_bit(MTK_RESETTING, ð->state))) goto release_desc; /* alloc new buffer */ new_data = napi_alloc_frag(ring->frag_size); if (unlikely(!new_data)) { netdev->stats.rx_dropped++; goto release_desc; } dma_addr = dma_map_single(eth->dev, new_data + NET_SKB_PAD + eth->ip_align, ring->buf_size, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(eth->dev, dma_addr))) { skb_free_frag(new_data); netdev->stats.rx_dropped++; goto release_desc; } /* receive data */ skb = build_skb(data, ring->frag_size); if (unlikely(!skb)) { skb_free_frag(new_data); netdev->stats.rx_dropped++; goto release_desc; } skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); dma_unmap_single(eth->dev, trxd.rxd1, ring->buf_size, DMA_FROM_DEVICE); pktlen = RX_DMA_GET_PLEN0(trxd.rxd2); skb->dev = netdev; skb_put(skb, pktlen); if (trxd.rxd4 & eth->rx_dma_l4_valid) skb->ip_summed = CHECKSUM_UNNECESSARY; else skb_checksum_none_assert(skb); skb->protocol = eth_type_trans(skb, netdev); if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX && RX_DMA_VID(trxd.rxd3)) __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), RX_DMA_VID(trxd.rxd3)); skb_record_rx_queue(skb, 0); napi_gro_receive(napi, skb); ring->data[idx] = new_data; rxd->rxd1 = (unsigned int)dma_addr; release_desc: if (MTK_HAS_CAPS(eth->soc->caps, MTK_SOC_MT7628)) rxd->rxd2 = RX_DMA_LSO; else rxd->rxd2 = RX_DMA_PLEN0(ring->buf_size); ring->calc_idx = idx; done++; } rx_done: if (done) { /* make sure that all changes to the dma ring are flushed before * we continue */ wmb(); mtk_update_rx_cpu_idx(eth); } return done; } static int mtk_poll_tx_qdma(struct mtk_eth *eth, int budget, unsigned int *done, unsigned int *bytes) { struct mtk_tx_ring *ring = ð->tx_ring; struct mtk_tx_dma *desc; struct sk_buff *skb; struct mtk_tx_buf *tx_buf; u32 cpu, dma; cpu = mtk_r32(eth, MTK_QTX_CRX_PTR); dma = mtk_r32(eth, MTK_QTX_DRX_PTR); desc = mtk_qdma_phys_to_virt(ring, cpu); while ((cpu != dma) && budget) { u32 next_cpu = desc->txd2; int mac = 0; desc = mtk_qdma_phys_to_virt(ring, desc->txd2); if ((desc->txd3 & TX_DMA_OWNER_CPU) == 0) break; tx_buf = mtk_desc_to_tx_buf(ring, desc); if (tx_buf->flags & MTK_TX_FLAGS_FPORT1) mac = 1; skb = tx_buf->skb; if (!skb) break; if (skb != (struct sk_buff *)MTK_DMA_DUMMY_DESC) { bytes[mac] += skb->len; done[mac]++; budget--; } mtk_tx_unmap(eth, tx_buf); ring->last_free = desc; atomic_inc(&ring->free_count); cpu = next_cpu; } mtk_w32(eth, cpu, MTK_QTX_CRX_PTR); return budget; } static int mtk_poll_tx_pdma(struct mtk_eth *eth, int budget, unsigned int *done, unsigned int *bytes) { struct mtk_tx_ring *ring = ð->tx_ring; struct mtk_tx_dma *desc; struct sk_buff *skb; struct mtk_tx_buf *tx_buf; u32 cpu, dma; cpu = ring->cpu_idx; dma = mtk_r32(eth, MT7628_TX_DTX_IDX0); while ((cpu != dma) && budget) { tx_buf = &ring->buf[cpu]; skb = tx_buf->skb; if (!skb) break; if (skb != (struct sk_buff *)MTK_DMA_DUMMY_DESC) { bytes[0] += skb->len; done[0]++; budget--; } mtk_tx_unmap(eth, tx_buf); desc = &ring->dma[cpu]; ring->last_free = desc; atomic_inc(&ring->free_count); cpu = NEXT_DESP_IDX(cpu, ring->dma_size); } ring->cpu_idx = cpu; return budget; } static int mtk_poll_tx(struct mtk_eth *eth, int budget) { struct mtk_tx_ring *ring = ð->tx_ring; unsigned int done[MTK_MAX_DEVS]; unsigned int bytes[MTK_MAX_DEVS]; int total = 0, i; memset(done, 0, sizeof(done)); memset(bytes, 0, sizeof(bytes)); if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) budget = mtk_poll_tx_qdma(eth, budget, done, bytes); else budget = mtk_poll_tx_pdma(eth, budget, done, bytes); for (i = 0; i < MTK_MAC_COUNT; i++) { if (!eth->netdev[i] || !done[i]) continue; netdev_completed_queue(eth->netdev[i], done[i], bytes[i]); total += done[i]; } if (mtk_queue_stopped(eth) && (atomic_read(&ring->free_count) > ring->thresh)) mtk_wake_queue(eth); return total; } static void mtk_handle_status_irq(struct mtk_eth *eth) { u32 status2 = mtk_r32(eth, MTK_INT_STATUS2); if (unlikely(status2 & (MTK_GDM1_AF | MTK_GDM2_AF))) { mtk_stats_update(eth); mtk_w32(eth, (MTK_GDM1_AF | MTK_GDM2_AF), MTK_INT_STATUS2); } } static int mtk_napi_tx(struct napi_struct *napi, int budget) { struct mtk_eth *eth = container_of(napi, struct mtk_eth, tx_napi); u32 status, mask; int tx_done = 0; if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) mtk_handle_status_irq(eth); mtk_w32(eth, MTK_TX_DONE_INT, eth->tx_int_status_reg); tx_done = mtk_poll_tx(eth, budget); if (unlikely(netif_msg_intr(eth))) { status = mtk_r32(eth, eth->tx_int_status_reg); mask = mtk_r32(eth, eth->tx_int_mask_reg); dev_info(eth->dev, "done tx %d, intr 0x%08x/0x%x\n", tx_done, status, mask); } if (tx_done == budget) return budget; status = mtk_r32(eth, eth->tx_int_status_reg); if (status & MTK_TX_DONE_INT) return budget; napi_complete(napi); mtk_tx_irq_enable(eth, MTK_TX_DONE_INT); return tx_done; } static int mtk_napi_rx(struct napi_struct *napi, int budget) { struct mtk_eth *eth = container_of(napi, struct mtk_eth, rx_napi); u32 status, mask; int rx_done = 0; int remain_budget = budget; mtk_handle_status_irq(eth); poll_again: mtk_w32(eth, MTK_RX_DONE_INT, MTK_PDMA_INT_STATUS); rx_done = mtk_poll_rx(napi, remain_budget, eth); if (unlikely(netif_msg_intr(eth))) { status = mtk_r32(eth, MTK_PDMA_INT_STATUS); mask = mtk_r32(eth, MTK_PDMA_INT_MASK); dev_info(eth->dev, "done rx %d, intr 0x%08x/0x%x\n", rx_done, status, mask); } if (rx_done == remain_budget) return budget; status = mtk_r32(eth, MTK_PDMA_INT_STATUS); if (status & MTK_RX_DONE_INT) { remain_budget -= rx_done; goto poll_again; } napi_complete(napi); mtk_rx_irq_enable(eth, MTK_RX_DONE_INT); return rx_done + budget - remain_budget; } static int mtk_tx_alloc(struct mtk_eth *eth) { struct mtk_tx_ring *ring = ð->tx_ring; int i, sz = sizeof(*ring->dma); ring->buf = kcalloc(MTK_DMA_SIZE, sizeof(*ring->buf), GFP_KERNEL); if (!ring->buf) goto no_tx_mem; ring->dma = dma_alloc_coherent(eth->dev, MTK_DMA_SIZE * sz, &ring->phys, GFP_ATOMIC); if (!ring->dma) goto no_tx_mem; for (i = 0; i < MTK_DMA_SIZE; i++) { int next = (i + 1) % MTK_DMA_SIZE; u32 next_ptr = ring->phys + next * sz; ring->dma[i].txd2 = next_ptr; ring->dma[i].txd3 = TX_DMA_LS0 | TX_DMA_OWNER_CPU; } /* On MT7688 (PDMA only) this driver uses the ring->dma structs * only as the framework. The real HW descriptors are the PDMA * descriptors in ring->dma_pdma. */ if (!MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) { ring->dma_pdma = dma_alloc_coherent(eth->dev, MTK_DMA_SIZE * sz, &ring->phys_pdma, GFP_ATOMIC); if (!ring->dma_pdma) goto no_tx_mem; for (i = 0; i < MTK_DMA_SIZE; i++) { ring->dma_pdma[i].txd2 = TX_DMA_DESP2_DEF; ring->dma_pdma[i].txd4 = 0; } } ring->dma_size = MTK_DMA_SIZE; atomic_set(&ring->free_count, MTK_DMA_SIZE - 2); ring->next_free = &ring->dma[0]; ring->last_free = &ring->dma[MTK_DMA_SIZE - 1]; ring->thresh = MAX_SKB_FRAGS; /* make sure that all changes to the dma ring are flushed before we * continue */ wmb(); if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) { mtk_w32(eth, ring->phys, MTK_QTX_CTX_PTR); mtk_w32(eth, ring->phys, MTK_QTX_DTX_PTR); mtk_w32(eth, ring->phys + ((MTK_DMA_SIZE - 1) * sz), MTK_QTX_CRX_PTR); mtk_w32(eth, ring->phys + ((MTK_DMA_SIZE - 1) * sz), MTK_QTX_DRX_PTR); mtk_w32(eth, (QDMA_RES_THRES << 8) | QDMA_RES_THRES, MTK_QTX_CFG(0)); } else { mtk_w32(eth, ring->phys_pdma, MT7628_TX_BASE_PTR0); mtk_w32(eth, MTK_DMA_SIZE, MT7628_TX_MAX_CNT0); mtk_w32(eth, 0, MT7628_TX_CTX_IDX0); mtk_w32(eth, MT7628_PST_DTX_IDX0, MTK_PDMA_RST_IDX); } return 0; no_tx_mem: return -ENOMEM; } static void mtk_tx_clean(struct mtk_eth *eth) { struct mtk_tx_ring *ring = ð->tx_ring; int i; if (ring->buf) { for (i = 0; i < MTK_DMA_SIZE; i++) mtk_tx_unmap(eth, &ring->buf[i]); kfree(ring->buf); ring->buf = NULL; } if (ring->dma) { dma_free_coherent(eth->dev, MTK_DMA_SIZE * sizeof(*ring->dma), ring->dma, ring->phys); ring->dma = NULL; } if (ring->dma_pdma) { dma_free_coherent(eth->dev, MTK_DMA_SIZE * sizeof(*ring->dma_pdma), ring->dma_pdma, ring->phys_pdma); ring->dma_pdma = NULL; } } static int mtk_rx_alloc(struct mtk_eth *eth, int ring_no, int rx_flag) { struct mtk_rx_ring *ring; int rx_data_len, rx_dma_size; int i; u32 offset = 0; if (rx_flag == MTK_RX_FLAGS_QDMA) { if (ring_no) return -EINVAL; ring = ð->rx_ring_qdma; offset = 0x1000; } else { ring = ð->rx_ring[ring_no]; } if (rx_flag == MTK_RX_FLAGS_HWLRO) { rx_data_len = MTK_MAX_LRO_RX_LENGTH; rx_dma_size = MTK_HW_LRO_DMA_SIZE; } else { rx_data_len = ETH_DATA_LEN; rx_dma_size = MTK_DMA_SIZE; } ring->frag_size = mtk_max_frag_size(rx_data_len); ring->buf_size = mtk_max_buf_size(ring->frag_size); ring->data = kcalloc(rx_dma_size, sizeof(*ring->data), GFP_KERNEL); if (!ring->data) return -ENOMEM; for (i = 0; i < rx_dma_size; i++) { ring->data[i] = netdev_alloc_frag(ring->frag_size); if (!ring->data[i]) return -ENOMEM; } ring->dma = dma_alloc_coherent(eth->dev, rx_dma_size * sizeof(*ring->dma), &ring->phys, GFP_ATOMIC); if (!ring->dma) return -ENOMEM; for (i = 0; i < rx_dma_size; i++) { dma_addr_t dma_addr = dma_map_single(eth->dev, ring->data[i] + NET_SKB_PAD + eth->ip_align, ring->buf_size, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(eth->dev, dma_addr))) return -ENOMEM; ring->dma[i].rxd1 = (unsigned int)dma_addr; if (MTK_HAS_CAPS(eth->soc->caps, MTK_SOC_MT7628)) ring->dma[i].rxd2 = RX_DMA_LSO; else ring->dma[i].rxd2 = RX_DMA_PLEN0(ring->buf_size); } ring->dma_size = rx_dma_size; ring->calc_idx_update = false; ring->calc_idx = rx_dma_size - 1; ring->crx_idx_reg = MTK_PRX_CRX_IDX_CFG(ring_no); /* make sure that all changes to the dma ring are flushed before we * continue */ wmb(); mtk_w32(eth, ring->phys, MTK_PRX_BASE_PTR_CFG(ring_no) + offset); mtk_w32(eth, rx_dma_size, MTK_PRX_MAX_CNT_CFG(ring_no) + offset); mtk_w32(eth, ring->calc_idx, ring->crx_idx_reg + offset); mtk_w32(eth, MTK_PST_DRX_IDX_CFG(ring_no), MTK_PDMA_RST_IDX + offset); return 0; } static void mtk_rx_clean(struct mtk_eth *eth, struct mtk_rx_ring *ring) { int i; if (ring->data && ring->dma) { for (i = 0; i < ring->dma_size; i++) { if (!ring->data[i]) continue; if (!ring->dma[i].rxd1) continue; dma_unmap_single(eth->dev, ring->dma[i].rxd1, ring->buf_size, DMA_FROM_DEVICE); skb_free_frag(ring->data[i]); } kfree(ring->data); ring->data = NULL; } if (ring->dma) { dma_free_coherent(eth->dev, ring->dma_size * sizeof(*ring->dma), ring->dma, ring->phys); ring->dma = NULL; } } static int mtk_hwlro_rx_init(struct mtk_eth *eth) { int i; u32 ring_ctrl_dw1 = 0, ring_ctrl_dw2 = 0, ring_ctrl_dw3 = 0; u32 lro_ctrl_dw0 = 0, lro_ctrl_dw3 = 0; /* set LRO rings to auto-learn modes */ ring_ctrl_dw2 |= MTK_RING_AUTO_LERAN_MODE; /* validate LRO ring */ ring_ctrl_dw2 |= MTK_RING_VLD; /* set AGE timer (unit: 20us) */ ring_ctrl_dw2 |= MTK_RING_AGE_TIME_H; ring_ctrl_dw1 |= MTK_RING_AGE_TIME_L; /* set max AGG timer (unit: 20us) */ ring_ctrl_dw2 |= MTK_RING_MAX_AGG_TIME; /* set max LRO AGG count */ ring_ctrl_dw2 |= MTK_RING_MAX_AGG_CNT_L; ring_ctrl_dw3 |= MTK_RING_MAX_AGG_CNT_H; for (i = 1; i < MTK_MAX_RX_RING_NUM; i++) { mtk_w32(eth, ring_ctrl_dw1, MTK_LRO_CTRL_DW1_CFG(i)); mtk_w32(eth, ring_ctrl_dw2, MTK_LRO_CTRL_DW2_CFG(i)); mtk_w32(eth, ring_ctrl_dw3, MTK_LRO_CTRL_DW3_CFG(i)); } /* IPv4 checksum update enable */ lro_ctrl_dw0 |= MTK_L3_CKS_UPD_EN; /* switch priority comparison to packet count mode */ lro_ctrl_dw0 |= MTK_LRO_ALT_PKT_CNT_MODE; /* bandwidth threshold setting */ mtk_w32(eth, MTK_HW_LRO_BW_THRE, MTK_PDMA_LRO_CTRL_DW2); /* auto-learn score delta setting */ mtk_w32(eth, MTK_HW_LRO_REPLACE_DELTA, MTK_PDMA_LRO_ALT_SCORE_DELTA); /* set refresh timer for altering flows to 1 sec. (unit: 20us) */ mtk_w32(eth, (MTK_HW_LRO_TIMER_UNIT << 16) | MTK_HW_LRO_REFRESH_TIME, MTK_PDMA_LRO_ALT_REFRESH_TIMER); /* set HW LRO mode & the max aggregation count for rx packets */ lro_ctrl_dw3 |= MTK_ADMA_MODE | (MTK_HW_LRO_MAX_AGG_CNT & 0xff); /* the minimal remaining room of SDL0 in RXD for lro aggregation */ lro_ctrl_dw3 |= MTK_LRO_MIN_RXD_SDL; /* enable HW LRO */ lro_ctrl_dw0 |= MTK_LRO_EN; mtk_w32(eth, lro_ctrl_dw3, MTK_PDMA_LRO_CTRL_DW3); mtk_w32(eth, lro_ctrl_dw0, MTK_PDMA_LRO_CTRL_DW0); return 0; } static void mtk_hwlro_rx_uninit(struct mtk_eth *eth) { int i; u32 val; /* relinquish lro rings, flush aggregated packets */ mtk_w32(eth, MTK_LRO_RING_RELINQUISH_REQ, MTK_PDMA_LRO_CTRL_DW0); /* wait for relinquishments done */ for (i = 0; i < 10; i++) { val = mtk_r32(eth, MTK_PDMA_LRO_CTRL_DW0); if (val & MTK_LRO_RING_RELINQUISH_DONE) { msleep(20); continue; } break; } /* invalidate lro rings */ for (i = 1; i < MTK_MAX_RX_RING_NUM; i++) mtk_w32(eth, 0, MTK_LRO_CTRL_DW2_CFG(i)); /* disable HW LRO */ mtk_w32(eth, 0, MTK_PDMA_LRO_CTRL_DW0); } static void mtk_hwlro_val_ipaddr(struct mtk_eth *eth, int idx, __be32 ip) { u32 reg_val; reg_val = mtk_r32(eth, MTK_LRO_CTRL_DW2_CFG(idx)); /* invalidate the IP setting */ mtk_w32(eth, (reg_val & ~MTK_RING_MYIP_VLD), MTK_LRO_CTRL_DW2_CFG(idx)); mtk_w32(eth, ip, MTK_LRO_DIP_DW0_CFG(idx)); /* validate the IP setting */ mtk_w32(eth, (reg_val | MTK_RING_MYIP_VLD), MTK_LRO_CTRL_DW2_CFG(idx)); } static void mtk_hwlro_inval_ipaddr(struct mtk_eth *eth, int idx) { u32 reg_val; reg_val = mtk_r32(eth, MTK_LRO_CTRL_DW2_CFG(idx)); /* invalidate the IP setting */ mtk_w32(eth, (reg_val & ~MTK_RING_MYIP_VLD), MTK_LRO_CTRL_DW2_CFG(idx)); mtk_w32(eth, 0, MTK_LRO_DIP_DW0_CFG(idx)); } static int mtk_hwlro_get_ip_cnt(struct mtk_mac *mac) { int cnt = 0; int i; for (i = 0; i < MTK_MAX_LRO_IP_CNT; i++) { if (mac->hwlro_ip[i]) cnt++; } return cnt; } static int mtk_hwlro_add_ipaddr(struct net_device *dev, struct ethtool_rxnfc *cmd) { struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs; struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; int hwlro_idx; if ((fsp->flow_type != TCP_V4_FLOW) || (!fsp->h_u.tcp_ip4_spec.ip4dst) || (fsp->location > 1)) return -EINVAL; mac->hwlro_ip[fsp->location] = htonl(fsp->h_u.tcp_ip4_spec.ip4dst); hwlro_idx = (mac->id * MTK_MAX_LRO_IP_CNT) + fsp->location; mac->hwlro_ip_cnt = mtk_hwlro_get_ip_cnt(mac); mtk_hwlro_val_ipaddr(eth, hwlro_idx, mac->hwlro_ip[fsp->location]); return 0; } static int mtk_hwlro_del_ipaddr(struct net_device *dev, struct ethtool_rxnfc *cmd) { struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs; struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; int hwlro_idx; if (fsp->location > 1) return -EINVAL; mac->hwlro_ip[fsp->location] = 0; hwlro_idx = (mac->id * MTK_MAX_LRO_IP_CNT) + fsp->location; mac->hwlro_ip_cnt = mtk_hwlro_get_ip_cnt(mac); mtk_hwlro_inval_ipaddr(eth, hwlro_idx); return 0; } static void mtk_hwlro_netdev_disable(struct net_device *dev) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; int i, hwlro_idx; for (i = 0; i < MTK_MAX_LRO_IP_CNT; i++) { mac->hwlro_ip[i] = 0; hwlro_idx = (mac->id * MTK_MAX_LRO_IP_CNT) + i; mtk_hwlro_inval_ipaddr(eth, hwlro_idx); } mac->hwlro_ip_cnt = 0; } static int mtk_hwlro_get_fdir_entry(struct net_device *dev, struct ethtool_rxnfc *cmd) { struct mtk_mac *mac = netdev_priv(dev); struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs; /* only tcp dst ipv4 is meaningful, others are meaningless */ fsp->flow_type = TCP_V4_FLOW; fsp->h_u.tcp_ip4_spec.ip4dst = ntohl(mac->hwlro_ip[fsp->location]); fsp->m_u.tcp_ip4_spec.ip4dst = 0; fsp->h_u.tcp_ip4_spec.ip4src = 0; fsp->m_u.tcp_ip4_spec.ip4src = 0xffffffff; fsp->h_u.tcp_ip4_spec.psrc = 0; fsp->m_u.tcp_ip4_spec.psrc = 0xffff; fsp->h_u.tcp_ip4_spec.pdst = 0; fsp->m_u.tcp_ip4_spec.pdst = 0xffff; fsp->h_u.tcp_ip4_spec.tos = 0; fsp->m_u.tcp_ip4_spec.tos = 0xff; return 0; } static int mtk_hwlro_get_fdir_all(struct net_device *dev, struct ethtool_rxnfc *cmd, u32 *rule_locs) { struct mtk_mac *mac = netdev_priv(dev); int cnt = 0; int i; for (i = 0; i < MTK_MAX_LRO_IP_CNT; i++) { if (mac->hwlro_ip[i]) { rule_locs[cnt] = i; cnt++; } } cmd->rule_cnt = cnt; return 0; } static netdev_features_t mtk_fix_features(struct net_device *dev, netdev_features_t features) { if (!(features & NETIF_F_LRO)) { struct mtk_mac *mac = netdev_priv(dev); int ip_cnt = mtk_hwlro_get_ip_cnt(mac); if (ip_cnt) { netdev_info(dev, "RX flow is programmed, LRO should keep on\n"); features |= NETIF_F_LRO; } } return features; } static int mtk_set_features(struct net_device *dev, netdev_features_t features) { int err = 0; if (!((dev->features ^ features) & NETIF_F_LRO)) return 0; if (!(features & NETIF_F_LRO)) mtk_hwlro_netdev_disable(dev); return err; } /* wait for DMA to finish whatever it is doing before we start using it again */ static int mtk_dma_busy_wait(struct mtk_eth *eth) { unsigned long t_start = jiffies; while (1) { if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) { if (!(mtk_r32(eth, MTK_QDMA_GLO_CFG) & (MTK_RX_DMA_BUSY | MTK_TX_DMA_BUSY))) return 0; } else { if (!(mtk_r32(eth, MTK_PDMA_GLO_CFG) & (MTK_RX_DMA_BUSY | MTK_TX_DMA_BUSY))) return 0; } if (time_after(jiffies, t_start + MTK_DMA_BUSY_TIMEOUT)) break; } dev_err(eth->dev, "DMA init timeout\n"); return -1; } static int mtk_dma_init(struct mtk_eth *eth) { int err; u32 i; if (mtk_dma_busy_wait(eth)) return -EBUSY; if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) { /* QDMA needs scratch memory for internal reordering of the * descriptors */ err = mtk_init_fq_dma(eth); if (err) return err; } err = mtk_tx_alloc(eth); if (err) return err; if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) { err = mtk_rx_alloc(eth, 0, MTK_RX_FLAGS_QDMA); if (err) return err; } err = mtk_rx_alloc(eth, 0, MTK_RX_FLAGS_NORMAL); if (err) return err; if (eth->hwlro) { for (i = 1; i < MTK_MAX_RX_RING_NUM; i++) { err = mtk_rx_alloc(eth, i, MTK_RX_FLAGS_HWLRO); if (err) return err; } err = mtk_hwlro_rx_init(eth); if (err) return err; } if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) { /* Enable random early drop and set drop threshold * automatically */ mtk_w32(eth, FC_THRES_DROP_MODE | FC_THRES_DROP_EN | FC_THRES_MIN, MTK_QDMA_FC_THRES); mtk_w32(eth, 0x0, MTK_QDMA_HRED2); } return 0; } static void mtk_dma_free(struct mtk_eth *eth) { int i; for (i = 0; i < MTK_MAC_COUNT; i++) if (eth->netdev[i]) netdev_reset_queue(eth->netdev[i]); if (eth->scratch_ring) { dma_free_coherent(eth->dev, MTK_DMA_SIZE * sizeof(struct mtk_tx_dma), eth->scratch_ring, eth->phy_scratch_ring); eth->scratch_ring = NULL; eth->phy_scratch_ring = 0; } mtk_tx_clean(eth); mtk_rx_clean(eth, ð->rx_ring[0]); mtk_rx_clean(eth, ð->rx_ring_qdma); if (eth->hwlro) { mtk_hwlro_rx_uninit(eth); for (i = 1; i < MTK_MAX_RX_RING_NUM; i++) mtk_rx_clean(eth, ð->rx_ring[i]); } kfree(eth->scratch_head); } static void mtk_tx_timeout(struct net_device *dev, unsigned int txqueue) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; eth->netdev[mac->id]->stats.tx_errors++; netif_err(eth, tx_err, dev, "transmit timed out\n"); schedule_work(ð->pending_work); } static irqreturn_t mtk_handle_irq_rx(int irq, void *_eth) { struct mtk_eth *eth = _eth; if (likely(napi_schedule_prep(ð->rx_napi))) { __napi_schedule(ð->rx_napi); mtk_rx_irq_disable(eth, MTK_RX_DONE_INT); } return IRQ_HANDLED; } static irqreturn_t mtk_handle_irq_tx(int irq, void *_eth) { struct mtk_eth *eth = _eth; if (likely(napi_schedule_prep(ð->tx_napi))) { __napi_schedule(ð->tx_napi); mtk_tx_irq_disable(eth, MTK_TX_DONE_INT); } return IRQ_HANDLED; } static irqreturn_t mtk_handle_irq(int irq, void *_eth) { struct mtk_eth *eth = _eth; if (mtk_r32(eth, MTK_PDMA_INT_MASK) & MTK_RX_DONE_INT) { if (mtk_r32(eth, MTK_PDMA_INT_STATUS) & MTK_RX_DONE_INT) mtk_handle_irq_rx(irq, _eth); } if (mtk_r32(eth, eth->tx_int_mask_reg) & MTK_TX_DONE_INT) { if (mtk_r32(eth, eth->tx_int_status_reg) & MTK_TX_DONE_INT) mtk_handle_irq_tx(irq, _eth); } return IRQ_HANDLED; } #ifdef CONFIG_NET_POLL_CONTROLLER static void mtk_poll_controller(struct net_device *dev) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; mtk_tx_irq_disable(eth, MTK_TX_DONE_INT); mtk_rx_irq_disable(eth, MTK_RX_DONE_INT); mtk_handle_irq_rx(eth->irq[2], dev); mtk_tx_irq_enable(eth, MTK_TX_DONE_INT); mtk_rx_irq_enable(eth, MTK_RX_DONE_INT); } #endif static int mtk_start_dma(struct mtk_eth *eth) { u32 rx_2b_offset = (NET_IP_ALIGN == 2) ? MTK_RX_2B_OFFSET : 0; int err; err = mtk_dma_init(eth); if (err) { mtk_dma_free(eth); return err; } if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) { mtk_w32(eth, MTK_TX_WB_DDONE | MTK_TX_DMA_EN | MTK_DMA_SIZE_16DWORDS | MTK_NDP_CO_PRO | MTK_RX_DMA_EN | MTK_RX_2B_OFFSET | MTK_RX_BT_32DWORDS, MTK_QDMA_GLO_CFG); mtk_w32(eth, MTK_RX_DMA_EN | rx_2b_offset | MTK_RX_BT_32DWORDS | MTK_MULTI_EN, MTK_PDMA_GLO_CFG); } else { mtk_w32(eth, MTK_TX_WB_DDONE | MTK_TX_DMA_EN | MTK_RX_DMA_EN | MTK_MULTI_EN | MTK_PDMA_SIZE_8DWORDS, MTK_PDMA_GLO_CFG); } return 0; } static void mtk_gdm_config(struct mtk_eth *eth, u32 config) { int i; if (MTK_HAS_CAPS(eth->soc->caps, MTK_SOC_MT7628)) return; for (i = 0; i < MTK_MAC_COUNT; i++) { u32 val = mtk_r32(eth, MTK_GDMA_FWD_CFG(i)); /* default setup the forward port to send frame to PDMA */ val &= ~0xffff; /* Enable RX checksum */ val |= MTK_GDMA_ICS_EN | MTK_GDMA_TCS_EN | MTK_GDMA_UCS_EN; val |= config; mtk_w32(eth, val, MTK_GDMA_FWD_CFG(i)); } /* Reset and enable PSE */ mtk_w32(eth, RST_GL_PSE, MTK_RST_GL); mtk_w32(eth, 0, MTK_RST_GL); } static int mtk_open(struct net_device *dev) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; int err; err = phylink_of_phy_connect(mac->phylink, mac->of_node, 0); if (err) { netdev_err(dev, "%s: could not attach PHY: %d\n", __func__, err); return err; } /* we run 2 netdevs on the same dma ring so we only bring it up once */ if (!refcount_read(ð->dma_refcnt)) { int err = mtk_start_dma(eth); if (err) return err; mtk_gdm_config(eth, MTK_GDMA_TO_PDMA); napi_enable(ð->tx_napi); napi_enable(ð->rx_napi); mtk_tx_irq_enable(eth, MTK_TX_DONE_INT); mtk_rx_irq_enable(eth, MTK_RX_DONE_INT); refcount_set(ð->dma_refcnt, 1); } else refcount_inc(ð->dma_refcnt); phylink_start(mac->phylink); netif_start_queue(dev); return 0; } static void mtk_stop_dma(struct mtk_eth *eth, u32 glo_cfg) { u32 val; int i; /* stop the dma engine */ spin_lock_bh(ð->page_lock); val = mtk_r32(eth, glo_cfg); mtk_w32(eth, val & ~(MTK_TX_WB_DDONE | MTK_RX_DMA_EN | MTK_TX_DMA_EN), glo_cfg); spin_unlock_bh(ð->page_lock); /* wait for dma stop */ for (i = 0; i < 10; i++) { val = mtk_r32(eth, glo_cfg); if (val & (MTK_TX_DMA_BUSY | MTK_RX_DMA_BUSY)) { msleep(20); continue; } break; } } static int mtk_stop(struct net_device *dev) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; phylink_stop(mac->phylink); netif_tx_disable(dev); phylink_disconnect_phy(mac->phylink); /* only shutdown DMA if this is the last user */ if (!refcount_dec_and_test(ð->dma_refcnt)) return 0; mtk_gdm_config(eth, MTK_GDMA_DROP_ALL); mtk_tx_irq_disable(eth, MTK_TX_DONE_INT); mtk_rx_irq_disable(eth, MTK_RX_DONE_INT); napi_disable(ð->tx_napi); napi_disable(ð->rx_napi); if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) mtk_stop_dma(eth, MTK_QDMA_GLO_CFG); mtk_stop_dma(eth, MTK_PDMA_GLO_CFG); mtk_dma_free(eth); return 0; } static void ethsys_reset(struct mtk_eth *eth, u32 reset_bits) { regmap_update_bits(eth->ethsys, ETHSYS_RSTCTRL, reset_bits, reset_bits); usleep_range(1000, 1100); regmap_update_bits(eth->ethsys, ETHSYS_RSTCTRL, reset_bits, ~reset_bits); mdelay(10); } static void mtk_clk_disable(struct mtk_eth *eth) { int clk; for (clk = MTK_CLK_MAX - 1; clk >= 0; clk--) clk_disable_unprepare(eth->clks[clk]); } static int mtk_clk_enable(struct mtk_eth *eth) { int clk, ret; for (clk = 0; clk < MTK_CLK_MAX ; clk++) { ret = clk_prepare_enable(eth->clks[clk]); if (ret) goto err_disable_clks; } return 0; err_disable_clks: while (--clk >= 0) clk_disable_unprepare(eth->clks[clk]); return ret; } static int mtk_hw_init(struct mtk_eth *eth) { int i, val, ret; if (test_and_set_bit(MTK_HW_INIT, ð->state)) return 0; pm_runtime_enable(eth->dev); pm_runtime_get_sync(eth->dev); ret = mtk_clk_enable(eth); if (ret) goto err_disable_pm; if (MTK_HAS_CAPS(eth->soc->caps, MTK_SOC_MT7628)) { ret = device_reset(eth->dev); if (ret) { dev_err(eth->dev, "MAC reset failed!\n"); goto err_disable_pm; } /* enable interrupt delay for RX */ mtk_w32(eth, MTK_PDMA_DELAY_RX_DELAY, MTK_PDMA_DELAY_INT); /* disable delay and normal interrupt */ mtk_tx_irq_disable(eth, ~0); mtk_rx_irq_disable(eth, ~0); return 0; } /* Non-MT7628 handling... */ ethsys_reset(eth, RSTCTRL_FE); ethsys_reset(eth, RSTCTRL_PPE); if (eth->pctl) { /* Set GE2 driving and slew rate */ regmap_write(eth->pctl, GPIO_DRV_SEL10, 0xa00); /* set GE2 TDSEL */ regmap_write(eth->pctl, GPIO_OD33_CTRL8, 0x5); /* set GE2 TUNE */ regmap_write(eth->pctl, GPIO_BIAS_CTRL, 0x0); } /* Set linkdown as the default for each GMAC. Its own MCR would be set * up with the more appropriate value when mtk_mac_config call is being * invoked. */ for (i = 0; i < MTK_MAC_COUNT; i++) mtk_w32(eth, MAC_MCR_FORCE_LINK_DOWN, MTK_MAC_MCR(i)); /* Indicates CDM to parse the MTK special tag from CPU * which also is working out for untag packets. */ val = mtk_r32(eth, MTK_CDMQ_IG_CTRL); mtk_w32(eth, val | MTK_CDMQ_STAG_EN, MTK_CDMQ_IG_CTRL); /* Enable RX VLan Offloading */ mtk_w32(eth, 1, MTK_CDMP_EG_CTRL); /* enable interrupt delay for RX */ mtk_w32(eth, MTK_PDMA_DELAY_RX_DELAY, MTK_PDMA_DELAY_INT); /* disable delay and normal interrupt */ mtk_w32(eth, 0, MTK_QDMA_DELAY_INT); mtk_tx_irq_disable(eth, ~0); mtk_rx_irq_disable(eth, ~0); /* FE int grouping */ mtk_w32(eth, MTK_TX_DONE_INT, MTK_PDMA_INT_GRP1); mtk_w32(eth, MTK_RX_DONE_INT, MTK_PDMA_INT_GRP2); mtk_w32(eth, MTK_TX_DONE_INT, MTK_QDMA_INT_GRP1); mtk_w32(eth, MTK_RX_DONE_INT, MTK_QDMA_INT_GRP2); mtk_w32(eth, 0x21021000, MTK_FE_INT_GRP); return 0; err_disable_pm: pm_runtime_put_sync(eth->dev); pm_runtime_disable(eth->dev); return ret; } static int mtk_hw_deinit(struct mtk_eth *eth) { if (!test_and_clear_bit(MTK_HW_INIT, ð->state)) return 0; mtk_clk_disable(eth); pm_runtime_put_sync(eth->dev); pm_runtime_disable(eth->dev); return 0; } static int __init mtk_init(struct net_device *dev) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; const char *mac_addr; mac_addr = of_get_mac_address(mac->of_node); if (!IS_ERR(mac_addr)) ether_addr_copy(dev->dev_addr, mac_addr); /* If the mac address is invalid, use random mac address */ if (!is_valid_ether_addr(dev->dev_addr)) { eth_hw_addr_random(dev); dev_err(eth->dev, "generated random MAC address %pM\n", dev->dev_addr); } return 0; } static void mtk_uninit(struct net_device *dev) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; phylink_disconnect_phy(mac->phylink); mtk_tx_irq_disable(eth, ~0); mtk_rx_irq_disable(eth, ~0); } static int mtk_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { struct mtk_mac *mac = netdev_priv(dev); switch (cmd) { case SIOCGMIIPHY: case SIOCGMIIREG: case SIOCSMIIREG: return phylink_mii_ioctl(mac->phylink, ifr, cmd); default: break; } return -EOPNOTSUPP; } static void mtk_pending_work(struct work_struct *work) { struct mtk_eth *eth = container_of(work, struct mtk_eth, pending_work); int err, i; unsigned long restart = 0; rtnl_lock(); dev_dbg(eth->dev, "[%s][%d] reset\n", __func__, __LINE__); while (test_and_set_bit_lock(MTK_RESETTING, ð->state)) cpu_relax(); dev_dbg(eth->dev, "[%s][%d] mtk_stop starts\n", __func__, __LINE__); /* stop all devices to make sure that dma is properly shut down */ for (i = 0; i < MTK_MAC_COUNT; i++) { if (!eth->netdev[i]) continue; mtk_stop(eth->netdev[i]); __set_bit(i, &restart); } dev_dbg(eth->dev, "[%s][%d] mtk_stop ends\n", __func__, __LINE__); /* restart underlying hardware such as power, clock, pin mux * and the connected phy */ mtk_hw_deinit(eth); if (eth->dev->pins) pinctrl_select_state(eth->dev->pins->p, eth->dev->pins->default_state); mtk_hw_init(eth); /* restart DMA and enable IRQs */ for (i = 0; i < MTK_MAC_COUNT; i++) { if (!test_bit(i, &restart)) continue; err = mtk_open(eth->netdev[i]); if (err) { netif_alert(eth, ifup, eth->netdev[i], "Driver up/down cycle failed, closing device.\n"); dev_close(eth->netdev[i]); } } dev_dbg(eth->dev, "[%s][%d] reset done\n", __func__, __LINE__); clear_bit_unlock(MTK_RESETTING, ð->state); rtnl_unlock(); } static int mtk_free_dev(struct mtk_eth *eth) { int i; for (i = 0; i < MTK_MAC_COUNT; i++) { if (!eth->netdev[i]) continue; free_netdev(eth->netdev[i]); } return 0; } static int mtk_unreg_dev(struct mtk_eth *eth) { int i; for (i = 0; i < MTK_MAC_COUNT; i++) { if (!eth->netdev[i]) continue; unregister_netdev(eth->netdev[i]); } return 0; } static int mtk_cleanup(struct mtk_eth *eth) { mtk_unreg_dev(eth); mtk_free_dev(eth); cancel_work_sync(ð->pending_work); return 0; } static int mtk_get_link_ksettings(struct net_device *ndev, struct ethtool_link_ksettings *cmd) { struct mtk_mac *mac = netdev_priv(ndev); if (unlikely(test_bit(MTK_RESETTING, &mac->hw->state))) return -EBUSY; return phylink_ethtool_ksettings_get(mac->phylink, cmd); } static int mtk_set_link_ksettings(struct net_device *ndev, const struct ethtool_link_ksettings *cmd) { struct mtk_mac *mac = netdev_priv(ndev); if (unlikely(test_bit(MTK_RESETTING, &mac->hw->state))) return -EBUSY; return phylink_ethtool_ksettings_set(mac->phylink, cmd); } static void mtk_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct mtk_mac *mac = netdev_priv(dev); strlcpy(info->driver, mac->hw->dev->driver->name, sizeof(info->driver)); strlcpy(info->bus_info, dev_name(mac->hw->dev), sizeof(info->bus_info)); info->n_stats = ARRAY_SIZE(mtk_ethtool_stats); } static u32 mtk_get_msglevel(struct net_device *dev) { struct mtk_mac *mac = netdev_priv(dev); return mac->hw->msg_enable; } static void mtk_set_msglevel(struct net_device *dev, u32 value) { struct mtk_mac *mac = netdev_priv(dev); mac->hw->msg_enable = value; } static int mtk_nway_reset(struct net_device *dev) { struct mtk_mac *mac = netdev_priv(dev); if (unlikely(test_bit(MTK_RESETTING, &mac->hw->state))) return -EBUSY; if (!mac->phylink) return -ENOTSUPP; return phylink_ethtool_nway_reset(mac->phylink); } static void mtk_get_strings(struct net_device *dev, u32 stringset, u8 *data) { int i; switch (stringset) { case ETH_SS_STATS: for (i = 0; i < ARRAY_SIZE(mtk_ethtool_stats); i++) { memcpy(data, mtk_ethtool_stats[i].str, ETH_GSTRING_LEN); data += ETH_GSTRING_LEN; } break; } } static int mtk_get_sset_count(struct net_device *dev, int sset) { switch (sset) { case ETH_SS_STATS: return ARRAY_SIZE(mtk_ethtool_stats); default: return -EOPNOTSUPP; } } static void mtk_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_hw_stats *hwstats = mac->hw_stats; u64 *data_src, *data_dst; unsigned int start; int i; if (unlikely(test_bit(MTK_RESETTING, &mac->hw->state))) return; if (netif_running(dev) && netif_device_present(dev)) { if (spin_trylock_bh(&hwstats->stats_lock)) { mtk_stats_update_mac(mac); spin_unlock_bh(&hwstats->stats_lock); } } data_src = (u64 *)hwstats; do { data_dst = data; start = u64_stats_fetch_begin_irq(&hwstats->syncp); for (i = 0; i < ARRAY_SIZE(mtk_ethtool_stats); i++) *data_dst++ = *(data_src + mtk_ethtool_stats[i].offset); } while (u64_stats_fetch_retry_irq(&hwstats->syncp, start)); } static int mtk_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd, u32 *rule_locs) { int ret = -EOPNOTSUPP; switch (cmd->cmd) { case ETHTOOL_GRXRINGS: if (dev->hw_features & NETIF_F_LRO) { cmd->data = MTK_MAX_RX_RING_NUM; ret = 0; } break; case ETHTOOL_GRXCLSRLCNT: if (dev->hw_features & NETIF_F_LRO) { struct mtk_mac *mac = netdev_priv(dev); cmd->rule_cnt = mac->hwlro_ip_cnt; ret = 0; } break; case ETHTOOL_GRXCLSRULE: if (dev->hw_features & NETIF_F_LRO) ret = mtk_hwlro_get_fdir_entry(dev, cmd); break; case ETHTOOL_GRXCLSRLALL: if (dev->hw_features & NETIF_F_LRO) ret = mtk_hwlro_get_fdir_all(dev, cmd, rule_locs); break; default: break; } return ret; } static int mtk_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd) { int ret = -EOPNOTSUPP; switch (cmd->cmd) { case ETHTOOL_SRXCLSRLINS: if (dev->hw_features & NETIF_F_LRO) ret = mtk_hwlro_add_ipaddr(dev, cmd); break; case ETHTOOL_SRXCLSRLDEL: if (dev->hw_features & NETIF_F_LRO) ret = mtk_hwlro_del_ipaddr(dev, cmd); break; default: break; } return ret; } static const struct ethtool_ops mtk_ethtool_ops = { .get_link_ksettings = mtk_get_link_ksettings, .set_link_ksettings = mtk_set_link_ksettings, .get_drvinfo = mtk_get_drvinfo, .get_msglevel = mtk_get_msglevel, .set_msglevel = mtk_set_msglevel, .nway_reset = mtk_nway_reset, .get_link = ethtool_op_get_link, .get_strings = mtk_get_strings, .get_sset_count = mtk_get_sset_count, .get_ethtool_stats = mtk_get_ethtool_stats, .get_rxnfc = mtk_get_rxnfc, .set_rxnfc = mtk_set_rxnfc, }; static const struct net_device_ops mtk_netdev_ops = { .ndo_init = mtk_init, .ndo_uninit = mtk_uninit, .ndo_open = mtk_open, .ndo_stop = mtk_stop, .ndo_start_xmit = mtk_start_xmit, .ndo_set_mac_address = mtk_set_mac_address, .ndo_validate_addr = eth_validate_addr, .ndo_do_ioctl = mtk_do_ioctl, .ndo_tx_timeout = mtk_tx_timeout, .ndo_get_stats64 = mtk_get_stats64, .ndo_fix_features = mtk_fix_features, .ndo_set_features = mtk_set_features, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = mtk_poll_controller, #endif }; static int mtk_add_mac(struct mtk_eth *eth, struct device_node *np) { const __be32 *_id = of_get_property(np, "reg", NULL); phy_interface_t phy_mode; struct phylink *phylink; struct mtk_mac *mac; int id, err; if (!_id) { dev_err(eth->dev, "missing mac id\n"); return -EINVAL; } id = be32_to_cpup(_id); if (id >= MTK_MAC_COUNT) { dev_err(eth->dev, "%d is not a valid mac id\n", id); return -EINVAL; } if (eth->netdev[id]) { dev_err(eth->dev, "duplicate mac id found: %d\n", id); return -EINVAL; } eth->netdev[id] = alloc_etherdev(sizeof(*mac)); if (!eth->netdev[id]) { dev_err(eth->dev, "alloc_etherdev failed\n"); return -ENOMEM; } mac = netdev_priv(eth->netdev[id]); eth->mac[id] = mac; mac->id = id; mac->hw = eth; mac->of_node = np; memset(mac->hwlro_ip, 0, sizeof(mac->hwlro_ip)); mac->hwlro_ip_cnt = 0; mac->hw_stats = devm_kzalloc(eth->dev, sizeof(*mac->hw_stats), GFP_KERNEL); if (!mac->hw_stats) { dev_err(eth->dev, "failed to allocate counter memory\n"); err = -ENOMEM; goto free_netdev; } spin_lock_init(&mac->hw_stats->stats_lock); u64_stats_init(&mac->hw_stats->syncp); mac->hw_stats->reg_offset = id * MTK_STAT_OFFSET; /* phylink create */ err = of_get_phy_mode(np, &phy_mode); if (err) { dev_err(eth->dev, "incorrect phy-mode\n"); goto free_netdev; } /* mac config is not set */ mac->interface = PHY_INTERFACE_MODE_NA; mac->mode = MLO_AN_PHY; mac->speed = SPEED_UNKNOWN; mac->phylink_config.dev = ð->netdev[id]->dev; mac->phylink_config.type = PHYLINK_NETDEV; phylink = phylink_create(&mac->phylink_config, of_fwnode_handle(mac->of_node), phy_mode, &mtk_phylink_ops); if (IS_ERR(phylink)) { err = PTR_ERR(phylink); goto free_netdev; } mac->phylink = phylink; SET_NETDEV_DEV(eth->netdev[id], eth->dev); eth->netdev[id]->watchdog_timeo = 5 * HZ; eth->netdev[id]->netdev_ops = &mtk_netdev_ops; eth->netdev[id]->base_addr = (unsigned long)eth->base; eth->netdev[id]->hw_features = eth->soc->hw_features; if (eth->hwlro) eth->netdev[id]->hw_features |= NETIF_F_LRO; eth->netdev[id]->vlan_features = eth->soc->hw_features & ~(NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX); eth->netdev[id]->features |= eth->soc->hw_features; eth->netdev[id]->ethtool_ops = &mtk_ethtool_ops; eth->netdev[id]->irq = eth->irq[0]; eth->netdev[id]->dev.of_node = np; eth->netdev[id]->max_mtu = MTK_MAX_RX_LENGTH - MTK_RX_ETH_HLEN; return 0; free_netdev: free_netdev(eth->netdev[id]); return err; } static int mtk_probe(struct platform_device *pdev) { struct device_node *mac_np; struct mtk_eth *eth; int err, i; eth = devm_kzalloc(&pdev->dev, sizeof(*eth), GFP_KERNEL); if (!eth) return -ENOMEM; eth->soc = of_device_get_match_data(&pdev->dev); eth->dev = &pdev->dev; eth->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(eth->base)) return PTR_ERR(eth->base); if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) { eth->tx_int_mask_reg = MTK_QDMA_INT_MASK; eth->tx_int_status_reg = MTK_QDMA_INT_STATUS; } else { eth->tx_int_mask_reg = MTK_PDMA_INT_MASK; eth->tx_int_status_reg = MTK_PDMA_INT_STATUS; } if (MTK_HAS_CAPS(eth->soc->caps, MTK_SOC_MT7628)) { eth->rx_dma_l4_valid = RX_DMA_L4_VALID_PDMA; eth->ip_align = NET_IP_ALIGN; } else { eth->rx_dma_l4_valid = RX_DMA_L4_VALID; } spin_lock_init(ð->page_lock); spin_lock_init(ð->tx_irq_lock); spin_lock_init(ð->rx_irq_lock); if (!MTK_HAS_CAPS(eth->soc->caps, MTK_SOC_MT7628)) { eth->ethsys = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, "mediatek,ethsys"); if (IS_ERR(eth->ethsys)) { dev_err(&pdev->dev, "no ethsys regmap found\n"); return PTR_ERR(eth->ethsys); } } if (MTK_HAS_CAPS(eth->soc->caps, MTK_INFRA)) { eth->infra = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, "mediatek,infracfg"); if (IS_ERR(eth->infra)) { dev_err(&pdev->dev, "no infracfg regmap found\n"); return PTR_ERR(eth->infra); } } if (MTK_HAS_CAPS(eth->soc->caps, MTK_SGMII)) { eth->sgmii = devm_kzalloc(eth->dev, sizeof(*eth->sgmii), GFP_KERNEL); if (!eth->sgmii) return -ENOMEM; err = mtk_sgmii_init(eth->sgmii, pdev->dev.of_node, eth->soc->ana_rgc3); if (err) return err; } if (eth->soc->required_pctl) { eth->pctl = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, "mediatek,pctl"); if (IS_ERR(eth->pctl)) { dev_err(&pdev->dev, "no pctl regmap found\n"); return PTR_ERR(eth->pctl); } } for (i = 0; i < 3; i++) { if (MTK_HAS_CAPS(eth->soc->caps, MTK_SHARED_INT) && i > 0) eth->irq[i] = eth->irq[0]; else eth->irq[i] = platform_get_irq(pdev, i); if (eth->irq[i] < 0) { dev_err(&pdev->dev, "no IRQ%d resource found\n", i); return -ENXIO; } } for (i = 0; i < ARRAY_SIZE(eth->clks); i++) { eth->clks[i] = devm_clk_get(eth->dev, mtk_clks_source_name[i]); if (IS_ERR(eth->clks[i])) { if (PTR_ERR(eth->clks[i]) == -EPROBE_DEFER) return -EPROBE_DEFER; if (eth->soc->required_clks & BIT(i)) { dev_err(&pdev->dev, "clock %s not found\n", mtk_clks_source_name[i]); return -EINVAL; } eth->clks[i] = NULL; } } eth->msg_enable = netif_msg_init(mtk_msg_level, MTK_DEFAULT_MSG_ENABLE); INIT_WORK(ð->pending_work, mtk_pending_work); err = mtk_hw_init(eth); if (err) return err; eth->hwlro = MTK_HAS_CAPS(eth->soc->caps, MTK_HWLRO); for_each_child_of_node(pdev->dev.of_node, mac_np) { if (!of_device_is_compatible(mac_np, "mediatek,eth-mac")) continue; if (!of_device_is_available(mac_np)) continue; err = mtk_add_mac(eth, mac_np); if (err) { of_node_put(mac_np); goto err_deinit_hw; } } if (MTK_HAS_CAPS(eth->soc->caps, MTK_SHARED_INT)) { err = devm_request_irq(eth->dev, eth->irq[0], mtk_handle_irq, 0, dev_name(eth->dev), eth); } else { err = devm_request_irq(eth->dev, eth->irq[1], mtk_handle_irq_tx, 0, dev_name(eth->dev), eth); if (err) goto err_free_dev; err = devm_request_irq(eth->dev, eth->irq[2], mtk_handle_irq_rx, 0, dev_name(eth->dev), eth); } if (err) goto err_free_dev; /* No MT7628/88 support yet */ if (!MTK_HAS_CAPS(eth->soc->caps, MTK_SOC_MT7628)) { err = mtk_mdio_init(eth); if (err) goto err_free_dev; } for (i = 0; i < MTK_MAX_DEVS; i++) { if (!eth->netdev[i]) continue; err = register_netdev(eth->netdev[i]); if (err) { dev_err(eth->dev, "error bringing up device\n"); goto err_deinit_mdio; } else netif_info(eth, probe, eth->netdev[i], "mediatek frame engine at 0x%08lx, irq %d\n", eth->netdev[i]->base_addr, eth->irq[0]); } /* we run 2 devices on the same DMA ring so we need a dummy device * for NAPI to work */ init_dummy_netdev(ð->dummy_dev); netif_napi_add(ð->dummy_dev, ð->tx_napi, mtk_napi_tx, MTK_NAPI_WEIGHT); netif_napi_add(ð->dummy_dev, ð->rx_napi, mtk_napi_rx, MTK_NAPI_WEIGHT); platform_set_drvdata(pdev, eth); return 0; err_deinit_mdio: mtk_mdio_cleanup(eth); err_free_dev: mtk_free_dev(eth); err_deinit_hw: mtk_hw_deinit(eth); return err; } static int mtk_remove(struct platform_device *pdev) { struct mtk_eth *eth = platform_get_drvdata(pdev); struct mtk_mac *mac; int i; /* stop all devices to make sure that dma is properly shut down */ for (i = 0; i < MTK_MAC_COUNT; i++) { if (!eth->netdev[i]) continue; mtk_stop(eth->netdev[i]); mac = netdev_priv(eth->netdev[i]); phylink_disconnect_phy(mac->phylink); } mtk_hw_deinit(eth); netif_napi_del(ð->tx_napi); netif_napi_del(ð->rx_napi); mtk_cleanup(eth); mtk_mdio_cleanup(eth); return 0; } static const struct mtk_soc_data mt2701_data = { .caps = MT7623_CAPS | MTK_HWLRO, .hw_features = MTK_HW_FEATURES, .required_clks = MT7623_CLKS_BITMAP, .required_pctl = true, }; static const struct mtk_soc_data mt7621_data = { .caps = MT7621_CAPS, .hw_features = MTK_HW_FEATURES, .required_clks = MT7621_CLKS_BITMAP, .required_pctl = false, }; static const struct mtk_soc_data mt7622_data = { .ana_rgc3 = 0x2028, .caps = MT7622_CAPS | MTK_HWLRO, .hw_features = MTK_HW_FEATURES, .required_clks = MT7622_CLKS_BITMAP, .required_pctl = false, }; static const struct mtk_soc_data mt7623_data = { .caps = MT7623_CAPS | MTK_HWLRO, .hw_features = MTK_HW_FEATURES, .required_clks = MT7623_CLKS_BITMAP, .required_pctl = true, }; static const struct mtk_soc_data mt7629_data = { .ana_rgc3 = 0x128, .caps = MT7629_CAPS | MTK_HWLRO, .hw_features = MTK_HW_FEATURES, .required_clks = MT7629_CLKS_BITMAP, .required_pctl = false, }; static const struct mtk_soc_data rt5350_data = { .caps = MT7628_CAPS, .hw_features = MTK_HW_FEATURES_MT7628, .required_clks = MT7628_CLKS_BITMAP, .required_pctl = false, }; const struct of_device_id of_mtk_match[] = { { .compatible = "mediatek,mt2701-eth", .data = &mt2701_data}, { .compatible = "mediatek,mt7621-eth", .data = &mt7621_data}, { .compatible = "mediatek,mt7622-eth", .data = &mt7622_data}, { .compatible = "mediatek,mt7623-eth", .data = &mt7623_data}, { .compatible = "mediatek,mt7629-eth", .data = &mt7629_data}, { .compatible = "ralink,rt5350-eth", .data = &rt5350_data}, {}, }; MODULE_DEVICE_TABLE(of, of_mtk_match); static struct platform_driver mtk_driver = { .probe = mtk_probe, .remove = mtk_remove, .driver = { .name = "mtk_soc_eth", .of_match_table = of_mtk_match, }, }; module_platform_driver(mtk_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("John Crispin <blogic@openwrt.org>"); MODULE_DESCRIPTION("Ethernet driver for MediaTek SoC");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1