Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Shannon Nelson | 5652 | 99.98% | 8 | 88.89% |
Heiner Kallweit | 1 | 0.02% | 1 | 11.11% |
Total | 5653 | 9 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2017 - 2019 Pensando Systems, Inc */ #include <linux/ip.h> #include <linux/ipv6.h> #include <linux/if_vlan.h> #include <net/ip6_checksum.h> #include "ionic.h" #include "ionic_lif.h" #include "ionic_txrx.h" static void ionic_rx_clean(struct ionic_queue *q, struct ionic_desc_info *desc_info, struct ionic_cq_info *cq_info, void *cb_arg); static inline void ionic_txq_post(struct ionic_queue *q, bool ring_dbell, ionic_desc_cb cb_func, void *cb_arg) { DEBUG_STATS_TXQ_POST(q_to_qcq(q), q->head->desc, ring_dbell); ionic_q_post(q, ring_dbell, cb_func, cb_arg); } static inline void ionic_rxq_post(struct ionic_queue *q, bool ring_dbell, ionic_desc_cb cb_func, void *cb_arg) { ionic_q_post(q, ring_dbell, cb_func, cb_arg); DEBUG_STATS_RX_BUFF_CNT(q_to_qcq(q)); } static inline struct netdev_queue *q_to_ndq(struct ionic_queue *q) { return netdev_get_tx_queue(q->lif->netdev, q->index); } static struct sk_buff *ionic_rx_skb_alloc(struct ionic_queue *q, unsigned int len, bool frags) { struct ionic_lif *lif = q->lif; struct ionic_rx_stats *stats; struct net_device *netdev; struct sk_buff *skb; netdev = lif->netdev; stats = q_to_rx_stats(q); if (frags) skb = napi_get_frags(&q_to_qcq(q)->napi); else skb = netdev_alloc_skb_ip_align(netdev, len); if (unlikely(!skb)) { net_warn_ratelimited("%s: SKB alloc failed on %s!\n", netdev->name, q->name); stats->alloc_err++; return NULL; } return skb; } static struct sk_buff *ionic_rx_frags(struct ionic_queue *q, struct ionic_desc_info *desc_info, struct ionic_cq_info *cq_info) { struct ionic_rxq_comp *comp = cq_info->cq_desc; struct device *dev = q->lif->ionic->dev; struct ionic_page_info *page_info; struct sk_buff *skb; unsigned int i; u16 frag_len; u16 len; page_info = &desc_info->pages[0]; len = le16_to_cpu(comp->len); prefetch(page_address(page_info->page) + NET_IP_ALIGN); skb = ionic_rx_skb_alloc(q, len, true); if (unlikely(!skb)) return NULL; i = comp->num_sg_elems + 1; do { if (unlikely(!page_info->page)) { struct napi_struct *napi = &q_to_qcq(q)->napi; napi->skb = NULL; dev_kfree_skb(skb); return NULL; } frag_len = min(len, (u16)PAGE_SIZE); len -= frag_len; dma_unmap_page(dev, dma_unmap_addr(page_info, dma_addr), PAGE_SIZE, DMA_FROM_DEVICE); skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page_info->page, 0, frag_len, PAGE_SIZE); page_info->page = NULL; page_info++; i--; } while (i > 0); return skb; } static struct sk_buff *ionic_rx_copybreak(struct ionic_queue *q, struct ionic_desc_info *desc_info, struct ionic_cq_info *cq_info) { struct ionic_rxq_comp *comp = cq_info->cq_desc; struct device *dev = q->lif->ionic->dev; struct ionic_page_info *page_info; struct sk_buff *skb; u16 len; page_info = &desc_info->pages[0]; len = le16_to_cpu(comp->len); skb = ionic_rx_skb_alloc(q, len, false); if (unlikely(!skb)) return NULL; if (unlikely(!page_info->page)) { dev_kfree_skb(skb); return NULL; } dma_sync_single_for_cpu(dev, dma_unmap_addr(page_info, dma_addr), len, DMA_FROM_DEVICE); skb_copy_to_linear_data(skb, page_address(page_info->page), len); dma_sync_single_for_device(dev, dma_unmap_addr(page_info, dma_addr), len, DMA_FROM_DEVICE); skb_put(skb, len); skb->protocol = eth_type_trans(skb, q->lif->netdev); return skb; } static void ionic_rx_clean(struct ionic_queue *q, struct ionic_desc_info *desc_info, struct ionic_cq_info *cq_info, void *cb_arg) { struct ionic_rxq_comp *comp = cq_info->cq_desc; struct ionic_qcq *qcq = q_to_qcq(q); struct ionic_rx_stats *stats; struct net_device *netdev; struct sk_buff *skb; stats = q_to_rx_stats(q); netdev = q->lif->netdev; if (comp->status) { stats->dropped++; return; } stats->pkts++; stats->bytes += le16_to_cpu(comp->len); if (le16_to_cpu(comp->len) <= q->lif->rx_copybreak) skb = ionic_rx_copybreak(q, desc_info, cq_info); else skb = ionic_rx_frags(q, desc_info, cq_info); if (unlikely(!skb)) { stats->dropped++; return; } skb_record_rx_queue(skb, q->index); if (likely(netdev->features & NETIF_F_RXHASH)) { switch (comp->pkt_type_color & IONIC_RXQ_COMP_PKT_TYPE_MASK) { case IONIC_PKT_TYPE_IPV4: case IONIC_PKT_TYPE_IPV6: skb_set_hash(skb, le32_to_cpu(comp->rss_hash), PKT_HASH_TYPE_L3); break; case IONIC_PKT_TYPE_IPV4_TCP: case IONIC_PKT_TYPE_IPV6_TCP: case IONIC_PKT_TYPE_IPV4_UDP: case IONIC_PKT_TYPE_IPV6_UDP: skb_set_hash(skb, le32_to_cpu(comp->rss_hash), PKT_HASH_TYPE_L4); break; } } if (likely(netdev->features & NETIF_F_RXCSUM)) { if (comp->csum_flags & IONIC_RXQ_COMP_CSUM_F_CALC) { skb->ip_summed = CHECKSUM_COMPLETE; skb->csum = (__wsum)le16_to_cpu(comp->csum); stats->csum_complete++; } } else { stats->csum_none++; } if (unlikely((comp->csum_flags & IONIC_RXQ_COMP_CSUM_F_TCP_BAD) || (comp->csum_flags & IONIC_RXQ_COMP_CSUM_F_UDP_BAD) || (comp->csum_flags & IONIC_RXQ_COMP_CSUM_F_IP_BAD))) stats->csum_error++; if (likely(netdev->features & NETIF_F_HW_VLAN_CTAG_RX) && (comp->csum_flags & IONIC_RXQ_COMP_CSUM_F_VLAN)) { __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), le16_to_cpu(comp->vlan_tci)); stats->vlan_stripped++; } if (le16_to_cpu(comp->len) <= q->lif->rx_copybreak) napi_gro_receive(&qcq->napi, skb); else napi_gro_frags(&qcq->napi); } static bool ionic_rx_service(struct ionic_cq *cq, struct ionic_cq_info *cq_info) { struct ionic_rxq_comp *comp = cq_info->cq_desc; struct ionic_queue *q = cq->bound_q; struct ionic_desc_info *desc_info; if (!color_match(comp->pkt_type_color, cq->done_color)) return false; /* check for empty queue */ if (q->tail->index == q->head->index) return false; desc_info = q->tail; if (desc_info->index != le16_to_cpu(comp->comp_index)) return false; q->tail = desc_info->next; /* clean the related q entry, only one per qc completion */ ionic_rx_clean(q, desc_info, cq_info, desc_info->cb_arg); desc_info->cb = NULL; desc_info->cb_arg = NULL; return true; } static u32 ionic_rx_walk_cq(struct ionic_cq *rxcq, u32 limit) { u32 work_done = 0; while (ionic_rx_service(rxcq, rxcq->tail)) { if (rxcq->tail->last) rxcq->done_color = !rxcq->done_color; rxcq->tail = rxcq->tail->next; DEBUG_STATS_CQE_CNT(rxcq); if (++work_done >= limit) break; } return work_done; } void ionic_rx_flush(struct ionic_cq *cq) { struct ionic_dev *idev = &cq->lif->ionic->idev; u32 work_done; work_done = ionic_rx_walk_cq(cq, cq->num_descs); if (work_done) ionic_intr_credits(idev->intr_ctrl, cq->bound_intr->index, work_done, IONIC_INTR_CRED_RESET_COALESCE); } static struct page *ionic_rx_page_alloc(struct ionic_queue *q, dma_addr_t *dma_addr) { struct ionic_lif *lif = q->lif; struct ionic_rx_stats *stats; struct net_device *netdev; struct device *dev; struct page *page; netdev = lif->netdev; dev = lif->ionic->dev; stats = q_to_rx_stats(q); page = alloc_page(GFP_ATOMIC); if (unlikely(!page)) { net_err_ratelimited("%s: Page alloc failed on %s!\n", netdev->name, q->name); stats->alloc_err++; return NULL; } *dma_addr = dma_map_page(dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(dev, *dma_addr))) { __free_page(page); net_err_ratelimited("%s: DMA single map failed on %s!\n", netdev->name, q->name); stats->dma_map_err++; return NULL; } return page; } static void ionic_rx_page_free(struct ionic_queue *q, struct page *page, dma_addr_t dma_addr) { struct ionic_lif *lif = q->lif; struct net_device *netdev; struct device *dev; netdev = lif->netdev; dev = lif->ionic->dev; if (unlikely(!page)) { net_err_ratelimited("%s: Trying to free unallocated buffer on %s!\n", netdev->name, q->name); return; } dma_unmap_page(dev, dma_addr, PAGE_SIZE, DMA_FROM_DEVICE); __free_page(page); } #define IONIC_RX_RING_DOORBELL_STRIDE ((1 << 5) - 1) #define IONIC_RX_RING_HEAD_BUF_SZ 2048 void ionic_rx_fill(struct ionic_queue *q) { struct net_device *netdev = q->lif->netdev; struct ionic_desc_info *desc_info; struct ionic_page_info *page_info; struct ionic_rxq_sg_desc *sg_desc; struct ionic_rxq_sg_elem *sg_elem; struct ionic_rxq_desc *desc; unsigned int remain_len; unsigned int seg_len; unsigned int nfrags; bool ring_doorbell; unsigned int i, j; unsigned int len; len = netdev->mtu + ETH_HLEN; nfrags = round_up(len, PAGE_SIZE) / PAGE_SIZE; for (i = ionic_q_space_avail(q); i; i--) { remain_len = len; desc_info = q->head; desc = desc_info->desc; sg_desc = desc_info->sg_desc; page_info = &desc_info->pages[0]; if (page_info->page) { /* recycle the buffer */ ring_doorbell = ((q->head->index + 1) & IONIC_RX_RING_DOORBELL_STRIDE) == 0; ionic_rxq_post(q, ring_doorbell, ionic_rx_clean, NULL); continue; } /* fill main descriptor - pages[0] */ desc->opcode = (nfrags > 1) ? IONIC_RXQ_DESC_OPCODE_SG : IONIC_RXQ_DESC_OPCODE_SIMPLE; desc_info->npages = nfrags; page_info->page = ionic_rx_page_alloc(q, &page_info->dma_addr); if (unlikely(!page_info->page)) { desc->addr = 0; desc->len = 0; return; } desc->addr = cpu_to_le64(page_info->dma_addr); seg_len = min_t(unsigned int, PAGE_SIZE, len); desc->len = cpu_to_le16(seg_len); remain_len -= seg_len; page_info++; /* fill sg descriptors - pages[1..n] */ for (j = 0; j < nfrags - 1; j++) { if (page_info->page) /* recycle the sg buffer */ continue; sg_elem = &sg_desc->elems[j]; page_info->page = ionic_rx_page_alloc(q, &page_info->dma_addr); if (unlikely(!page_info->page)) { sg_elem->addr = 0; sg_elem->len = 0; return; } sg_elem->addr = cpu_to_le64(page_info->dma_addr); seg_len = min_t(unsigned int, PAGE_SIZE, remain_len); sg_elem->len = cpu_to_le16(seg_len); remain_len -= seg_len; page_info++; } ring_doorbell = ((q->head->index + 1) & IONIC_RX_RING_DOORBELL_STRIDE) == 0; ionic_rxq_post(q, ring_doorbell, ionic_rx_clean, NULL); } } static void ionic_rx_fill_cb(void *arg) { ionic_rx_fill(arg); } void ionic_rx_empty(struct ionic_queue *q) { struct ionic_desc_info *cur; struct ionic_rxq_desc *desc; unsigned int i; for (cur = q->tail; cur != q->head; cur = cur->next) { desc = cur->desc; desc->addr = 0; desc->len = 0; for (i = 0; i < cur->npages; i++) { if (likely(cur->pages[i].page)) { ionic_rx_page_free(q, cur->pages[i].page, cur->pages[i].dma_addr); cur->pages[i].page = NULL; cur->pages[i].dma_addr = 0; } } cur->cb_arg = NULL; } } int ionic_rx_napi(struct napi_struct *napi, int budget) { struct ionic_qcq *qcq = napi_to_qcq(napi); struct ionic_cq *rxcq = napi_to_cq(napi); unsigned int qi = rxcq->bound_q->index; struct ionic_dev *idev; struct ionic_lif *lif; struct ionic_cq *txcq; u32 work_done = 0; u32 flags = 0; lif = rxcq->bound_q->lif; idev = &lif->ionic->idev; txcq = &lif->txqcqs[qi].qcq->cq; ionic_tx_flush(txcq); work_done = ionic_rx_walk_cq(rxcq, budget); if (work_done) ionic_rx_fill_cb(rxcq->bound_q); if (work_done < budget && napi_complete_done(napi, work_done)) { flags |= IONIC_INTR_CRED_UNMASK; DEBUG_STATS_INTR_REARM(rxcq->bound_intr); } if (work_done || flags) { flags |= IONIC_INTR_CRED_RESET_COALESCE; ionic_intr_credits(idev->intr_ctrl, rxcq->bound_intr->index, work_done, flags); } DEBUG_STATS_NAPI_POLL(qcq, work_done); return work_done; } static dma_addr_t ionic_tx_map_single(struct ionic_queue *q, void *data, size_t len) { struct ionic_tx_stats *stats = q_to_tx_stats(q); struct device *dev = q->lif->ionic->dev; dma_addr_t dma_addr; dma_addr = dma_map_single(dev, data, len, DMA_TO_DEVICE); if (dma_mapping_error(dev, dma_addr)) { net_warn_ratelimited("%s: DMA single map failed on %s!\n", q->lif->netdev->name, q->name); stats->dma_map_err++; return 0; } return dma_addr; } static dma_addr_t ionic_tx_map_frag(struct ionic_queue *q, const skb_frag_t *frag, size_t offset, size_t len) { struct ionic_tx_stats *stats = q_to_tx_stats(q); struct device *dev = q->lif->ionic->dev; dma_addr_t dma_addr; dma_addr = skb_frag_dma_map(dev, frag, offset, len, DMA_TO_DEVICE); if (dma_mapping_error(dev, dma_addr)) { net_warn_ratelimited("%s: DMA frag map failed on %s!\n", q->lif->netdev->name, q->name); stats->dma_map_err++; } return dma_addr; } static void ionic_tx_clean(struct ionic_queue *q, struct ionic_desc_info *desc_info, struct ionic_cq_info *cq_info, void *cb_arg) { struct ionic_txq_sg_desc *sg_desc = desc_info->sg_desc; struct ionic_txq_sg_elem *elem = sg_desc->elems; struct ionic_tx_stats *stats = q_to_tx_stats(q); struct ionic_txq_desc *desc = desc_info->desc; struct device *dev = q->lif->ionic->dev; u8 opcode, flags, nsge; u16 queue_index; unsigned int i; u64 addr; decode_txq_desc_cmd(le64_to_cpu(desc->cmd), &opcode, &flags, &nsge, &addr); /* use unmap_single only if either this is not TSO, * or this is first descriptor of a TSO */ if (opcode != IONIC_TXQ_DESC_OPCODE_TSO || flags & IONIC_TXQ_DESC_FLAG_TSO_SOT) dma_unmap_single(dev, (dma_addr_t)addr, le16_to_cpu(desc->len), DMA_TO_DEVICE); else dma_unmap_page(dev, (dma_addr_t)addr, le16_to_cpu(desc->len), DMA_TO_DEVICE); for (i = 0; i < nsge; i++, elem++) dma_unmap_page(dev, (dma_addr_t)le64_to_cpu(elem->addr), le16_to_cpu(elem->len), DMA_TO_DEVICE); if (cb_arg) { struct sk_buff *skb = cb_arg; u32 len = skb->len; queue_index = skb_get_queue_mapping(skb); if (unlikely(__netif_subqueue_stopped(q->lif->netdev, queue_index))) { netif_wake_subqueue(q->lif->netdev, queue_index); q->wake++; } dev_kfree_skb_any(skb); stats->clean++; netdev_tx_completed_queue(q_to_ndq(q), 1, len); } } void ionic_tx_flush(struct ionic_cq *cq) { struct ionic_txq_comp *comp = cq->tail->cq_desc; struct ionic_dev *idev = &cq->lif->ionic->idev; struct ionic_queue *q = cq->bound_q; struct ionic_desc_info *desc_info; unsigned int work_done = 0; /* walk the completed cq entries */ while (work_done < cq->num_descs && color_match(comp->color, cq->done_color)) { /* clean the related q entries, there could be * several q entries completed for each cq completion */ do { desc_info = q->tail; q->tail = desc_info->next; ionic_tx_clean(q, desc_info, cq->tail, desc_info->cb_arg); desc_info->cb = NULL; desc_info->cb_arg = NULL; } while (desc_info->index != le16_to_cpu(comp->comp_index)); if (cq->tail->last) cq->done_color = !cq->done_color; cq->tail = cq->tail->next; comp = cq->tail->cq_desc; DEBUG_STATS_CQE_CNT(cq); work_done++; } if (work_done) ionic_intr_credits(idev->intr_ctrl, cq->bound_intr->index, work_done, 0); } void ionic_tx_empty(struct ionic_queue *q) { struct ionic_desc_info *desc_info; int done = 0; /* walk the not completed tx entries, if any */ while (q->head != q->tail) { desc_info = q->tail; q->tail = desc_info->next; ionic_tx_clean(q, desc_info, NULL, desc_info->cb_arg); desc_info->cb = NULL; desc_info->cb_arg = NULL; done++; } } static int ionic_tx_tcp_inner_pseudo_csum(struct sk_buff *skb) { int err; err = skb_cow_head(skb, 0); if (err) return err; if (skb->protocol == cpu_to_be16(ETH_P_IP)) { inner_ip_hdr(skb)->check = 0; inner_tcp_hdr(skb)->check = ~csum_tcpudp_magic(inner_ip_hdr(skb)->saddr, inner_ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); } else if (skb->protocol == cpu_to_be16(ETH_P_IPV6)) { inner_tcp_hdr(skb)->check = ~csum_ipv6_magic(&inner_ipv6_hdr(skb)->saddr, &inner_ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); } return 0; } static int ionic_tx_tcp_pseudo_csum(struct sk_buff *skb) { int err; err = skb_cow_head(skb, 0); if (err) return err; if (skb->protocol == cpu_to_be16(ETH_P_IP)) { ip_hdr(skb)->check = 0; tcp_hdr(skb)->check = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); } else if (skb->protocol == cpu_to_be16(ETH_P_IPV6)) { tcp_v6_gso_csum_prep(skb); } return 0; } static void ionic_tx_tso_post(struct ionic_queue *q, struct ionic_txq_desc *desc, struct sk_buff *skb, dma_addr_t addr, u8 nsge, u16 len, unsigned int hdrlen, unsigned int mss, bool outer_csum, u16 vlan_tci, bool has_vlan, bool start, bool done) { u8 flags = 0; u64 cmd; flags |= has_vlan ? IONIC_TXQ_DESC_FLAG_VLAN : 0; flags |= outer_csum ? IONIC_TXQ_DESC_FLAG_ENCAP : 0; flags |= start ? IONIC_TXQ_DESC_FLAG_TSO_SOT : 0; flags |= done ? IONIC_TXQ_DESC_FLAG_TSO_EOT : 0; cmd = encode_txq_desc_cmd(IONIC_TXQ_DESC_OPCODE_TSO, flags, nsge, addr); desc->cmd = cpu_to_le64(cmd); desc->len = cpu_to_le16(len); desc->vlan_tci = cpu_to_le16(vlan_tci); desc->hdr_len = cpu_to_le16(hdrlen); desc->mss = cpu_to_le16(mss); if (done) { skb_tx_timestamp(skb); netdev_tx_sent_queue(q_to_ndq(q), skb->len); ionic_txq_post(q, !netdev_xmit_more(), ionic_tx_clean, skb); } else { ionic_txq_post(q, false, ionic_tx_clean, NULL); } } static struct ionic_txq_desc *ionic_tx_tso_next(struct ionic_queue *q, struct ionic_txq_sg_elem **elem) { struct ionic_txq_sg_desc *sg_desc = q->head->sg_desc; struct ionic_txq_desc *desc = q->head->desc; *elem = sg_desc->elems; return desc; } static int ionic_tx_tso(struct ionic_queue *q, struct sk_buff *skb) { struct ionic_tx_stats *stats = q_to_tx_stats(q); struct ionic_desc_info *abort = q->head; struct device *dev = q->lif->ionic->dev; struct ionic_desc_info *rewind = abort; struct ionic_txq_sg_elem *elem; struct ionic_txq_desc *desc; unsigned int frag_left = 0; unsigned int offset = 0; unsigned int len_left; dma_addr_t desc_addr; unsigned int hdrlen; unsigned int nfrags; unsigned int seglen; u64 total_bytes = 0; u64 total_pkts = 0; unsigned int left; unsigned int len; unsigned int mss; skb_frag_t *frag; bool start, done; bool outer_csum; bool has_vlan; u16 desc_len; u8 desc_nsge; u16 vlan_tci; bool encap; int err; mss = skb_shinfo(skb)->gso_size; nfrags = skb_shinfo(skb)->nr_frags; len_left = skb->len - skb_headlen(skb); outer_csum = (skb_shinfo(skb)->gso_type & SKB_GSO_GRE_CSUM) || (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM); has_vlan = !!skb_vlan_tag_present(skb); vlan_tci = skb_vlan_tag_get(skb); encap = skb->encapsulation; /* Preload inner-most TCP csum field with IP pseudo hdr * calculated with IP length set to zero. HW will later * add in length to each TCP segment resulting from the TSO. */ if (encap) err = ionic_tx_tcp_inner_pseudo_csum(skb); else err = ionic_tx_tcp_pseudo_csum(skb); if (err) return err; if (encap) hdrlen = skb_inner_transport_header(skb) - skb->data + inner_tcp_hdrlen(skb); else hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb); seglen = hdrlen + mss; left = skb_headlen(skb); desc = ionic_tx_tso_next(q, &elem); start = true; /* Chop skb->data up into desc segments */ while (left > 0) { len = min(seglen, left); frag_left = seglen - len; desc_addr = ionic_tx_map_single(q, skb->data + offset, len); if (dma_mapping_error(dev, desc_addr)) goto err_out_abort; desc_len = len; desc_nsge = 0; left -= len; offset += len; if (nfrags > 0 && frag_left > 0) continue; done = (nfrags == 0 && left == 0); ionic_tx_tso_post(q, desc, skb, desc_addr, desc_nsge, desc_len, hdrlen, mss, outer_csum, vlan_tci, has_vlan, start, done); total_pkts++; total_bytes += start ? len : len + hdrlen; desc = ionic_tx_tso_next(q, &elem); start = false; seglen = mss; } /* Chop skb frags into desc segments */ for (frag = skb_shinfo(skb)->frags; len_left; frag++) { offset = 0; left = skb_frag_size(frag); len_left -= left; nfrags--; stats->frags++; while (left > 0) { if (frag_left > 0) { len = min(frag_left, left); frag_left -= len; elem->addr = cpu_to_le64(ionic_tx_map_frag(q, frag, offset, len)); if (dma_mapping_error(dev, elem->addr)) goto err_out_abort; elem->len = cpu_to_le16(len); elem++; desc_nsge++; left -= len; offset += len; if (nfrags > 0 && frag_left > 0) continue; done = (nfrags == 0 && left == 0); ionic_tx_tso_post(q, desc, skb, desc_addr, desc_nsge, desc_len, hdrlen, mss, outer_csum, vlan_tci, has_vlan, start, done); total_pkts++; total_bytes += start ? len : len + hdrlen; desc = ionic_tx_tso_next(q, &elem); start = false; } else { len = min(mss, left); frag_left = mss - len; desc_addr = ionic_tx_map_frag(q, frag, offset, len); if (dma_mapping_error(dev, desc_addr)) goto err_out_abort; desc_len = len; desc_nsge = 0; left -= len; offset += len; if (nfrags > 0 && frag_left > 0) continue; done = (nfrags == 0 && left == 0); ionic_tx_tso_post(q, desc, skb, desc_addr, desc_nsge, desc_len, hdrlen, mss, outer_csum, vlan_tci, has_vlan, start, done); total_pkts++; total_bytes += start ? len : len + hdrlen; desc = ionic_tx_tso_next(q, &elem); start = false; } } } stats->pkts += total_pkts; stats->bytes += total_bytes; stats->tso++; stats->tso_bytes += total_bytes; return 0; err_out_abort: while (rewind->desc != q->head->desc) { ionic_tx_clean(q, rewind, NULL, NULL); rewind = rewind->next; } q->head = abort; return -ENOMEM; } static int ionic_tx_calc_csum(struct ionic_queue *q, struct sk_buff *skb) { struct ionic_tx_stats *stats = q_to_tx_stats(q); struct ionic_txq_desc *desc = q->head->desc; struct device *dev = q->lif->ionic->dev; dma_addr_t dma_addr; bool has_vlan; u8 flags = 0; bool encap; u64 cmd; has_vlan = !!skb_vlan_tag_present(skb); encap = skb->encapsulation; dma_addr = ionic_tx_map_single(q, skb->data, skb_headlen(skb)); if (dma_mapping_error(dev, dma_addr)) return -ENOMEM; flags |= has_vlan ? IONIC_TXQ_DESC_FLAG_VLAN : 0; flags |= encap ? IONIC_TXQ_DESC_FLAG_ENCAP : 0; cmd = encode_txq_desc_cmd(IONIC_TXQ_DESC_OPCODE_CSUM_PARTIAL, flags, skb_shinfo(skb)->nr_frags, dma_addr); desc->cmd = cpu_to_le64(cmd); desc->len = cpu_to_le16(skb_headlen(skb)); desc->csum_start = cpu_to_le16(skb_checksum_start_offset(skb)); desc->csum_offset = cpu_to_le16(skb->csum_offset); if (has_vlan) { desc->vlan_tci = cpu_to_le16(skb_vlan_tag_get(skb)); stats->vlan_inserted++; } if (skb->csum_not_inet) stats->crc32_csum++; else stats->csum++; return 0; } static int ionic_tx_calc_no_csum(struct ionic_queue *q, struct sk_buff *skb) { struct ionic_tx_stats *stats = q_to_tx_stats(q); struct ionic_txq_desc *desc = q->head->desc; struct device *dev = q->lif->ionic->dev; dma_addr_t dma_addr; bool has_vlan; u8 flags = 0; bool encap; u64 cmd; has_vlan = !!skb_vlan_tag_present(skb); encap = skb->encapsulation; dma_addr = ionic_tx_map_single(q, skb->data, skb_headlen(skb)); if (dma_mapping_error(dev, dma_addr)) return -ENOMEM; flags |= has_vlan ? IONIC_TXQ_DESC_FLAG_VLAN : 0; flags |= encap ? IONIC_TXQ_DESC_FLAG_ENCAP : 0; cmd = encode_txq_desc_cmd(IONIC_TXQ_DESC_OPCODE_CSUM_NONE, flags, skb_shinfo(skb)->nr_frags, dma_addr); desc->cmd = cpu_to_le64(cmd); desc->len = cpu_to_le16(skb_headlen(skb)); if (has_vlan) { desc->vlan_tci = cpu_to_le16(skb_vlan_tag_get(skb)); stats->vlan_inserted++; } stats->csum_none++; return 0; } static int ionic_tx_skb_frags(struct ionic_queue *q, struct sk_buff *skb) { struct ionic_txq_sg_desc *sg_desc = q->head->sg_desc; unsigned int len_left = skb->len - skb_headlen(skb); struct ionic_txq_sg_elem *elem = sg_desc->elems; struct ionic_tx_stats *stats = q_to_tx_stats(q); struct device *dev = q->lif->ionic->dev; dma_addr_t dma_addr; skb_frag_t *frag; u16 len; for (frag = skb_shinfo(skb)->frags; len_left; frag++, elem++) { len = skb_frag_size(frag); elem->len = cpu_to_le16(len); dma_addr = ionic_tx_map_frag(q, frag, 0, len); if (dma_mapping_error(dev, dma_addr)) return -ENOMEM; elem->addr = cpu_to_le64(dma_addr); len_left -= len; stats->frags++; } return 0; } static int ionic_tx(struct ionic_queue *q, struct sk_buff *skb) { struct ionic_tx_stats *stats = q_to_tx_stats(q); int err; /* set up the initial descriptor */ if (skb->ip_summed == CHECKSUM_PARTIAL) err = ionic_tx_calc_csum(q, skb); else err = ionic_tx_calc_no_csum(q, skb); if (err) return err; /* add frags */ err = ionic_tx_skb_frags(q, skb); if (err) return err; skb_tx_timestamp(skb); stats->pkts++; stats->bytes += skb->len; netdev_tx_sent_queue(q_to_ndq(q), skb->len); ionic_txq_post(q, !netdev_xmit_more(), ionic_tx_clean, skb); return 0; } static int ionic_tx_descs_needed(struct ionic_queue *q, struct sk_buff *skb) { int sg_elems = q->lif->qtype_info[IONIC_QTYPE_TXQ].max_sg_elems; struct ionic_tx_stats *stats = q_to_tx_stats(q); int err; /* If TSO, need roundup(skb->len/mss) descs */ if (skb_is_gso(skb)) return (skb->len / skb_shinfo(skb)->gso_size) + 1; /* If non-TSO, just need 1 desc and nr_frags sg elems */ if (skb_shinfo(skb)->nr_frags <= sg_elems) return 1; /* Too many frags, so linearize */ err = skb_linearize(skb); if (err) return err; stats->linearize++; /* Need 1 desc and zero sg elems */ return 1; } static int ionic_maybe_stop_tx(struct ionic_queue *q, int ndescs) { int stopped = 0; if (unlikely(!ionic_q_has_space(q, ndescs))) { netif_stop_subqueue(q->lif->netdev, q->index); q->stop++; stopped = 1; /* Might race with ionic_tx_clean, check again */ smp_rmb(); if (ionic_q_has_space(q, ndescs)) { netif_wake_subqueue(q->lif->netdev, q->index); stopped = 0; } } return stopped; } netdev_tx_t ionic_start_xmit(struct sk_buff *skb, struct net_device *netdev) { u16 queue_index = skb_get_queue_mapping(skb); struct ionic_lif *lif = netdev_priv(netdev); struct ionic_queue *q; int ndescs; int err; if (unlikely(!test_bit(IONIC_LIF_F_UP, lif->state))) { dev_kfree_skb(skb); return NETDEV_TX_OK; } if (unlikely(!lif_to_txqcq(lif, queue_index))) queue_index = 0; q = lif_to_txq(lif, queue_index); ndescs = ionic_tx_descs_needed(q, skb); if (ndescs < 0) goto err_out_drop; if (unlikely(ionic_maybe_stop_tx(q, ndescs))) return NETDEV_TX_BUSY; if (skb_is_gso(skb)) err = ionic_tx_tso(q, skb); else err = ionic_tx(q, skb); if (err) goto err_out_drop; /* Stop the queue if there aren't descriptors for the next packet. * Since our SG lists per descriptor take care of most of the possible * fragmentation, we don't need to have many descriptors available. */ ionic_maybe_stop_tx(q, 4); return NETDEV_TX_OK; err_out_drop: q->stop++; q->drop++; dev_kfree_skb(skb); return NETDEV_TX_OK; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1