Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jose Abreu | 979 | 42.09% | 3 | 6.25% |
Giuseppe Cavallaro | 621 | 26.70% | 10 | 20.83% |
Corentin Labbe | 176 | 7.57% | 8 | 16.67% |
Kweh, Hock Leong | 169 | 7.27% | 2 | 4.17% |
Alexandre Torgue | 102 | 4.39% | 1 | 2.08% |
Srinivas Kandagatla | 87 | 3.74% | 3 | 6.25% |
Martin Blumenstingl | 48 | 2.06% | 4 | 8.33% |
Sjoerd Simons | 39 | 1.68% | 1 | 2.08% |
Phil Reid | 29 | 1.25% | 2 | 4.17% |
Andrew Lunn | 20 | 0.86% | 2 | 4.17% |
Romain Perier | 16 | 0.69% | 1 | 2.08% |
Deepak Sikri | 10 | 0.43% | 1 | 2.08% |
Joao Pinto | 8 | 0.34% | 1 | 2.08% |
Thierry Reding | 6 | 0.26% | 1 | 2.08% |
Florian Fainelli | 5 | 0.21% | 1 | 2.08% |
Marek Vašut | 2 | 0.09% | 1 | 2.08% |
Alexey Dobriyan | 2 | 0.09% | 1 | 2.08% |
Tejun Heo | 2 | 0.09% | 1 | 2.08% |
Thomas Gleixner | 2 | 0.09% | 1 | 2.08% |
Niklas Cassel | 1 | 0.04% | 1 | 2.08% |
Alessandro Rubini | 1 | 0.04% | 1 | 2.08% |
Dinh Nguyen | 1 | 0.04% | 1 | 2.08% |
Total | 2326 | 48 |
// SPDX-License-Identifier: GPL-2.0-only /******************************************************************************* STMMAC Ethernet Driver -- MDIO bus implementation Provides Bus interface for MII registers Copyright (C) 2007-2009 STMicroelectronics Ltd Author: Carl Shaw <carl.shaw@st.com> Maintainer: Giuseppe Cavallaro <peppe.cavallaro@st.com> *******************************************************************************/ #include <linux/gpio/consumer.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/mii.h> #include <linux/of_mdio.h> #include <linux/phy.h> #include <linux/property.h> #include <linux/slab.h> #include "dwxgmac2.h" #include "stmmac.h" #define MII_BUSY 0x00000001 #define MII_WRITE 0x00000002 #define MII_DATA_MASK GENMASK(15, 0) /* GMAC4 defines */ #define MII_GMAC4_GOC_SHIFT 2 #define MII_GMAC4_REG_ADDR_SHIFT 16 #define MII_GMAC4_WRITE (1 << MII_GMAC4_GOC_SHIFT) #define MII_GMAC4_READ (3 << MII_GMAC4_GOC_SHIFT) #define MII_GMAC4_C45E BIT(1) /* XGMAC defines */ #define MII_XGMAC_SADDR BIT(18) #define MII_XGMAC_CMD_SHIFT 16 #define MII_XGMAC_WRITE (1 << MII_XGMAC_CMD_SHIFT) #define MII_XGMAC_READ (3 << MII_XGMAC_CMD_SHIFT) #define MII_XGMAC_BUSY BIT(22) #define MII_XGMAC_MAX_C22ADDR 3 #define MII_XGMAC_C22P_MASK GENMASK(MII_XGMAC_MAX_C22ADDR, 0) #define MII_XGMAC_PA_SHIFT 16 #define MII_XGMAC_DA_SHIFT 21 static int stmmac_xgmac2_c45_format(struct stmmac_priv *priv, int phyaddr, int phyreg, u32 *hw_addr) { u32 tmp; /* Set port as Clause 45 */ tmp = readl(priv->ioaddr + XGMAC_MDIO_C22P); tmp &= ~BIT(phyaddr); writel(tmp, priv->ioaddr + XGMAC_MDIO_C22P); *hw_addr = (phyaddr << MII_XGMAC_PA_SHIFT) | (phyreg & 0xffff); *hw_addr |= (phyreg >> MII_DEVADDR_C45_SHIFT) << MII_XGMAC_DA_SHIFT; return 0; } static int stmmac_xgmac2_c22_format(struct stmmac_priv *priv, int phyaddr, int phyreg, u32 *hw_addr) { u32 tmp; /* HW does not support C22 addr >= 4 */ if (phyaddr > MII_XGMAC_MAX_C22ADDR) return -ENODEV; /* Set port as Clause 22 */ tmp = readl(priv->ioaddr + XGMAC_MDIO_C22P); tmp &= ~MII_XGMAC_C22P_MASK; tmp |= BIT(phyaddr); writel(tmp, priv->ioaddr + XGMAC_MDIO_C22P); *hw_addr = (phyaddr << MII_XGMAC_PA_SHIFT) | (phyreg & 0x1f); return 0; } static int stmmac_xgmac2_mdio_read(struct mii_bus *bus, int phyaddr, int phyreg) { struct net_device *ndev = bus->priv; struct stmmac_priv *priv = netdev_priv(ndev); unsigned int mii_address = priv->hw->mii.addr; unsigned int mii_data = priv->hw->mii.data; u32 tmp, addr, value = MII_XGMAC_BUSY; int ret; /* Wait until any existing MII operation is complete */ if (readl_poll_timeout(priv->ioaddr + mii_data, tmp, !(tmp & MII_XGMAC_BUSY), 100, 10000)) return -EBUSY; if (phyreg & MII_ADDR_C45) { phyreg &= ~MII_ADDR_C45; ret = stmmac_xgmac2_c45_format(priv, phyaddr, phyreg, &addr); if (ret) return ret; } else { ret = stmmac_xgmac2_c22_format(priv, phyaddr, phyreg, &addr); if (ret) return ret; value |= MII_XGMAC_SADDR; } value |= (priv->clk_csr << priv->hw->mii.clk_csr_shift) & priv->hw->mii.clk_csr_mask; value |= MII_XGMAC_READ; /* Wait until any existing MII operation is complete */ if (readl_poll_timeout(priv->ioaddr + mii_data, tmp, !(tmp & MII_XGMAC_BUSY), 100, 10000)) return -EBUSY; /* Set the MII address register to read */ writel(addr, priv->ioaddr + mii_address); writel(value, priv->ioaddr + mii_data); /* Wait until any existing MII operation is complete */ if (readl_poll_timeout(priv->ioaddr + mii_data, tmp, !(tmp & MII_XGMAC_BUSY), 100, 10000)) return -EBUSY; /* Read the data from the MII data register */ return readl(priv->ioaddr + mii_data) & GENMASK(15, 0); } static int stmmac_xgmac2_mdio_write(struct mii_bus *bus, int phyaddr, int phyreg, u16 phydata) { struct net_device *ndev = bus->priv; struct stmmac_priv *priv = netdev_priv(ndev); unsigned int mii_address = priv->hw->mii.addr; unsigned int mii_data = priv->hw->mii.data; u32 addr, tmp, value = MII_XGMAC_BUSY; int ret; /* Wait until any existing MII operation is complete */ if (readl_poll_timeout(priv->ioaddr + mii_data, tmp, !(tmp & MII_XGMAC_BUSY), 100, 10000)) return -EBUSY; if (phyreg & MII_ADDR_C45) { phyreg &= ~MII_ADDR_C45; ret = stmmac_xgmac2_c45_format(priv, phyaddr, phyreg, &addr); if (ret) return ret; } else { ret = stmmac_xgmac2_c22_format(priv, phyaddr, phyreg, &addr); if (ret) return ret; value |= MII_XGMAC_SADDR; } value |= (priv->clk_csr << priv->hw->mii.clk_csr_shift) & priv->hw->mii.clk_csr_mask; value |= phydata; value |= MII_XGMAC_WRITE; /* Wait until any existing MII operation is complete */ if (readl_poll_timeout(priv->ioaddr + mii_data, tmp, !(tmp & MII_XGMAC_BUSY), 100, 10000)) return -EBUSY; /* Set the MII address register to write */ writel(addr, priv->ioaddr + mii_address); writel(value, priv->ioaddr + mii_data); /* Wait until any existing MII operation is complete */ return readl_poll_timeout(priv->ioaddr + mii_data, tmp, !(tmp & MII_XGMAC_BUSY), 100, 10000); } /** * stmmac_mdio_read * @bus: points to the mii_bus structure * @phyaddr: MII addr * @phyreg: MII reg * Description: it reads data from the MII register from within the phy device. * For the 7111 GMAC, we must set the bit 0 in the MII address register while * accessing the PHY registers. * Fortunately, it seems this has no drawback for the 7109 MAC. */ static int stmmac_mdio_read(struct mii_bus *bus, int phyaddr, int phyreg) { struct net_device *ndev = bus->priv; struct stmmac_priv *priv = netdev_priv(ndev); unsigned int mii_address = priv->hw->mii.addr; unsigned int mii_data = priv->hw->mii.data; u32 value = MII_BUSY; int data = 0; u32 v; value |= (phyaddr << priv->hw->mii.addr_shift) & priv->hw->mii.addr_mask; value |= (phyreg << priv->hw->mii.reg_shift) & priv->hw->mii.reg_mask; value |= (priv->clk_csr << priv->hw->mii.clk_csr_shift) & priv->hw->mii.clk_csr_mask; if (priv->plat->has_gmac4) { value |= MII_GMAC4_READ; if (phyreg & MII_ADDR_C45) { value |= MII_GMAC4_C45E; value &= ~priv->hw->mii.reg_mask; value |= ((phyreg >> MII_DEVADDR_C45_SHIFT) << priv->hw->mii.reg_shift) & priv->hw->mii.reg_mask; data |= (phyreg & MII_REGADDR_C45_MASK) << MII_GMAC4_REG_ADDR_SHIFT; } } if (readl_poll_timeout(priv->ioaddr + mii_address, v, !(v & MII_BUSY), 100, 10000)) return -EBUSY; writel(data, priv->ioaddr + mii_data); writel(value, priv->ioaddr + mii_address); if (readl_poll_timeout(priv->ioaddr + mii_address, v, !(v & MII_BUSY), 100, 10000)) return -EBUSY; /* Read the data from the MII data register */ data = (int)readl(priv->ioaddr + mii_data) & MII_DATA_MASK; return data; } /** * stmmac_mdio_write * @bus: points to the mii_bus structure * @phyaddr: MII addr * @phyreg: MII reg * @phydata: phy data * Description: it writes the data into the MII register from within the device. */ static int stmmac_mdio_write(struct mii_bus *bus, int phyaddr, int phyreg, u16 phydata) { struct net_device *ndev = bus->priv; struct stmmac_priv *priv = netdev_priv(ndev); unsigned int mii_address = priv->hw->mii.addr; unsigned int mii_data = priv->hw->mii.data; u32 value = MII_BUSY; int data = phydata; u32 v; value |= (phyaddr << priv->hw->mii.addr_shift) & priv->hw->mii.addr_mask; value |= (phyreg << priv->hw->mii.reg_shift) & priv->hw->mii.reg_mask; value |= (priv->clk_csr << priv->hw->mii.clk_csr_shift) & priv->hw->mii.clk_csr_mask; if (priv->plat->has_gmac4) { value |= MII_GMAC4_WRITE; if (phyreg & MII_ADDR_C45) { value |= MII_GMAC4_C45E; value &= ~priv->hw->mii.reg_mask; value |= ((phyreg >> MII_DEVADDR_C45_SHIFT) << priv->hw->mii.reg_shift) & priv->hw->mii.reg_mask; data |= (phyreg & MII_REGADDR_C45_MASK) << MII_GMAC4_REG_ADDR_SHIFT; } } else { value |= MII_WRITE; } /* Wait until any existing MII operation is complete */ if (readl_poll_timeout(priv->ioaddr + mii_address, v, !(v & MII_BUSY), 100, 10000)) return -EBUSY; /* Set the MII address register to write */ writel(data, priv->ioaddr + mii_data); writel(value, priv->ioaddr + mii_address); /* Wait until any existing MII operation is complete */ return readl_poll_timeout(priv->ioaddr + mii_address, v, !(v & MII_BUSY), 100, 10000); } /** * stmmac_mdio_reset * @bus: points to the mii_bus structure * Description: reset the MII bus */ int stmmac_mdio_reset(struct mii_bus *bus) { #if IS_ENABLED(CONFIG_STMMAC_PLATFORM) struct net_device *ndev = bus->priv; struct stmmac_priv *priv = netdev_priv(ndev); unsigned int mii_address = priv->hw->mii.addr; #ifdef CONFIG_OF if (priv->device->of_node) { struct gpio_desc *reset_gpio; u32 delays[3] = { 0, 0, 0 }; reset_gpio = devm_gpiod_get_optional(priv->device, "snps,reset", GPIOD_OUT_LOW); if (IS_ERR(reset_gpio)) return PTR_ERR(reset_gpio); device_property_read_u32_array(priv->device, "snps,reset-delays-us", delays, ARRAY_SIZE(delays)); if (delays[0]) msleep(DIV_ROUND_UP(delays[0], 1000)); gpiod_set_value_cansleep(reset_gpio, 1); if (delays[1]) msleep(DIV_ROUND_UP(delays[1], 1000)); gpiod_set_value_cansleep(reset_gpio, 0); if (delays[2]) msleep(DIV_ROUND_UP(delays[2], 1000)); } #endif /* This is a workaround for problems with the STE101P PHY. * It doesn't complete its reset until at least one clock cycle * on MDC, so perform a dummy mdio read. To be updated for GMAC4 * if needed. */ if (!priv->plat->has_gmac4) writel(0, priv->ioaddr + mii_address); #endif return 0; } /** * stmmac_mdio_register * @ndev: net device structure * Description: it registers the MII bus */ int stmmac_mdio_register(struct net_device *ndev) { int err = 0; struct mii_bus *new_bus; struct stmmac_priv *priv = netdev_priv(ndev); struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data; struct device_node *mdio_node = priv->plat->mdio_node; struct device *dev = ndev->dev.parent; int addr, found, max_addr; if (!mdio_bus_data) return 0; new_bus = mdiobus_alloc(); if (!new_bus) return -ENOMEM; if (mdio_bus_data->irqs) memcpy(new_bus->irq, mdio_bus_data->irqs, sizeof(new_bus->irq)); new_bus->name = "stmmac"; if (priv->plat->has_xgmac) { new_bus->read = &stmmac_xgmac2_mdio_read; new_bus->write = &stmmac_xgmac2_mdio_write; /* Right now only C22 phys are supported */ max_addr = MII_XGMAC_MAX_C22ADDR + 1; /* Check if DT specified an unsupported phy addr */ if (priv->plat->phy_addr > MII_XGMAC_MAX_C22ADDR) dev_err(dev, "Unsupported phy_addr (max=%d)\n", MII_XGMAC_MAX_C22ADDR); } else { new_bus->read = &stmmac_mdio_read; new_bus->write = &stmmac_mdio_write; max_addr = PHY_MAX_ADDR; } if (mdio_bus_data->has_xpcs) { priv->hw->xpcs = mdio_xpcs_get_ops(); if (!priv->hw->xpcs) { err = -ENODEV; goto bus_register_fail; } } if (mdio_bus_data->needs_reset) new_bus->reset = &stmmac_mdio_reset; snprintf(new_bus->id, MII_BUS_ID_SIZE, "%s-%x", new_bus->name, priv->plat->bus_id); new_bus->priv = ndev; new_bus->phy_mask = mdio_bus_data->phy_mask; new_bus->parent = priv->device; err = of_mdiobus_register(new_bus, mdio_node); if (err != 0) { dev_err(dev, "Cannot register the MDIO bus\n"); goto bus_register_fail; } /* Looks like we need a dummy read for XGMAC only and C45 PHYs */ if (priv->plat->has_xgmac) stmmac_xgmac2_mdio_read(new_bus, 0, MII_ADDR_C45); if (priv->plat->phy_node || mdio_node) goto bus_register_done; found = 0; for (addr = 0; addr < max_addr; addr++) { struct phy_device *phydev = mdiobus_get_phy(new_bus, addr); if (!phydev) continue; /* * If an IRQ was provided to be assigned after * the bus probe, do it here. */ if (!mdio_bus_data->irqs && (mdio_bus_data->probed_phy_irq > 0)) { new_bus->irq[addr] = mdio_bus_data->probed_phy_irq; phydev->irq = mdio_bus_data->probed_phy_irq; } /* * If we're going to bind the MAC to this PHY bus, * and no PHY number was provided to the MAC, * use the one probed here. */ if (priv->plat->phy_addr == -1) priv->plat->phy_addr = addr; phy_attached_info(phydev); found = 1; } /* Try to probe the XPCS by scanning all addresses. */ if (priv->hw->xpcs) { struct mdio_xpcs_args *xpcs = &priv->hw->xpcs_args; int ret, mode = priv->plat->phy_interface; max_addr = PHY_MAX_ADDR; xpcs->bus = new_bus; for (addr = 0; addr < max_addr; addr++) { xpcs->addr = addr; ret = stmmac_xpcs_probe(priv, xpcs, mode); if (!ret) { found = 1; break; } } } if (!found && !mdio_node) { dev_warn(dev, "No PHY found\n"); mdiobus_unregister(new_bus); mdiobus_free(new_bus); return -ENODEV; } bus_register_done: priv->mii = new_bus; return 0; bus_register_fail: mdiobus_free(new_bus); return err; } /** * stmmac_mdio_unregister * @ndev: net device structure * Description: it unregisters the MII bus */ int stmmac_mdio_unregister(struct net_device *ndev) { struct stmmac_priv *priv = netdev_priv(ndev); if (!priv->mii) return 0; mdiobus_unregister(priv->mii); priv->mii->priv = NULL; mdiobus_free(priv->mii); priv->mii = NULL; return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1