Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Yaniv Gardi | 730 | 86.90% | 1 | 14.29% |
Vivek Gautam | 99 | 11.79% | 2 | 28.57% |
Evan Green | 5 | 0.60% | 1 | 14.29% |
Grygorii Strashko | 3 | 0.36% | 1 | 14.29% |
Thomas Gleixner | 2 | 0.24% | 1 | 14.29% |
Axel Lin | 1 | 0.12% | 1 | 14.29% |
Total | 840 | 7 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2013-2015, Linux Foundation. All rights reserved. */ #include "phy-qcom-ufs-qmp-20nm.h" #define UFS_PHY_NAME "ufs_phy_qmp_20nm" static int ufs_qcom_phy_qmp_20nm_phy_calibrate(struct ufs_qcom_phy *ufs_qcom_phy, bool is_rate_B) { struct ufs_qcom_phy_calibration *tbl_A, *tbl_B; int tbl_size_A, tbl_size_B; u8 major = ufs_qcom_phy->host_ctrl_rev_major; u16 minor = ufs_qcom_phy->host_ctrl_rev_minor; u16 step = ufs_qcom_phy->host_ctrl_rev_step; int err; if ((major == 0x1) && (minor == 0x002) && (step == 0x0000)) { tbl_size_A = ARRAY_SIZE(phy_cal_table_rate_A_1_2_0); tbl_A = phy_cal_table_rate_A_1_2_0; } else if ((major == 0x1) && (minor == 0x003) && (step == 0x0000)) { tbl_size_A = ARRAY_SIZE(phy_cal_table_rate_A_1_3_0); tbl_A = phy_cal_table_rate_A_1_3_0; } else { dev_err(ufs_qcom_phy->dev, "%s: Unknown UFS-PHY version, no calibration values\n", __func__); err = -ENODEV; goto out; } tbl_size_B = ARRAY_SIZE(phy_cal_table_rate_B); tbl_B = phy_cal_table_rate_B; err = ufs_qcom_phy_calibrate(ufs_qcom_phy, tbl_A, tbl_size_A, tbl_B, tbl_size_B, is_rate_B); if (err) dev_err(ufs_qcom_phy->dev, "%s: ufs_qcom_phy_calibrate() failed %d\n", __func__, err); out: return err; } static void ufs_qcom_phy_qmp_20nm_advertise_quirks(struct ufs_qcom_phy *phy_common) { phy_common->quirks = UFS_QCOM_PHY_QUIRK_HIBERN8_EXIT_AFTER_PHY_PWR_COLLAPSE; } static int ufs_qcom_phy_qmp_20nm_set_mode(struct phy *generic_phy, enum phy_mode mode, int submode) { struct ufs_qcom_phy *phy_common = get_ufs_qcom_phy(generic_phy); phy_common->mode = PHY_MODE_INVALID; if (mode > 0) phy_common->mode = mode; return 0; } static void ufs_qcom_phy_qmp_20nm_power_control(struct ufs_qcom_phy *phy, bool val) { bool hibern8_exit_after_pwr_collapse = phy->quirks & UFS_QCOM_PHY_QUIRK_HIBERN8_EXIT_AFTER_PHY_PWR_COLLAPSE; if (val) { writel_relaxed(0x1, phy->mmio + UFS_PHY_POWER_DOWN_CONTROL); /* * Before any transactions involving PHY, ensure PHY knows * that it's analog rail is powered ON. */ mb(); if (hibern8_exit_after_pwr_collapse) { /* * Give atleast 1us delay after restoring PHY analog * power. */ usleep_range(1, 2); writel_relaxed(0x0A, phy->mmio + QSERDES_COM_SYSCLK_EN_SEL_TXBAND); writel_relaxed(0x08, phy->mmio + QSERDES_COM_SYSCLK_EN_SEL_TXBAND); /* * Make sure workaround is deactivated before proceeding * with normal PHY operations. */ mb(); } } else { if (hibern8_exit_after_pwr_collapse) { writel_relaxed(0x0A, phy->mmio + QSERDES_COM_SYSCLK_EN_SEL_TXBAND); writel_relaxed(0x02, phy->mmio + QSERDES_COM_SYSCLK_EN_SEL_TXBAND); /* * Make sure that above workaround is activated before * PHY analog power collapse. */ mb(); } writel_relaxed(0x0, phy->mmio + UFS_PHY_POWER_DOWN_CONTROL); /* * ensure that PHY knows its PHY analog rail is going * to be powered down */ mb(); } } static void ufs_qcom_phy_qmp_20nm_set_tx_lane_enable(struct ufs_qcom_phy *phy, u32 val) { writel_relaxed(val & UFS_PHY_TX_LANE_ENABLE_MASK, phy->mmio + UFS_PHY_TX_LANE_ENABLE); mb(); } static inline void ufs_qcom_phy_qmp_20nm_start_serdes(struct ufs_qcom_phy *phy) { u32 tmp; tmp = readl_relaxed(phy->mmio + UFS_PHY_PHY_START); tmp &= ~MASK_SERDES_START; tmp |= (1 << OFFSET_SERDES_START); writel_relaxed(tmp, phy->mmio + UFS_PHY_PHY_START); mb(); } static int ufs_qcom_phy_qmp_20nm_is_pcs_ready(struct ufs_qcom_phy *phy_common) { int err = 0; u32 val; err = readl_poll_timeout(phy_common->mmio + UFS_PHY_PCS_READY_STATUS, val, (val & MASK_PCS_READY), 10, 1000000); if (err) dev_err(phy_common->dev, "%s: poll for pcs failed err = %d\n", __func__, err); return err; } static const struct phy_ops ufs_qcom_phy_qmp_20nm_phy_ops = { .power_on = ufs_qcom_phy_power_on, .power_off = ufs_qcom_phy_power_off, .set_mode = ufs_qcom_phy_qmp_20nm_set_mode, .owner = THIS_MODULE, }; static struct ufs_qcom_phy_specific_ops phy_20nm_ops = { .calibrate = ufs_qcom_phy_qmp_20nm_phy_calibrate, .start_serdes = ufs_qcom_phy_qmp_20nm_start_serdes, .is_physical_coding_sublayer_ready = ufs_qcom_phy_qmp_20nm_is_pcs_ready, .set_tx_lane_enable = ufs_qcom_phy_qmp_20nm_set_tx_lane_enable, .power_control = ufs_qcom_phy_qmp_20nm_power_control, }; static int ufs_qcom_phy_qmp_20nm_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct phy *generic_phy; struct ufs_qcom_phy_qmp_20nm *phy; struct ufs_qcom_phy *phy_common; int err = 0; phy = devm_kzalloc(dev, sizeof(*phy), GFP_KERNEL); if (!phy) { err = -ENOMEM; goto out; } phy_common = &phy->common_cfg; generic_phy = ufs_qcom_phy_generic_probe(pdev, phy_common, &ufs_qcom_phy_qmp_20nm_phy_ops, &phy_20nm_ops); if (!generic_phy) { err = -EIO; goto out; } err = ufs_qcom_phy_init_clks(phy_common); if (err) goto out; err = ufs_qcom_phy_init_vregulators(phy_common); if (err) goto out; ufs_qcom_phy_qmp_20nm_advertise_quirks(phy_common); phy_set_drvdata(generic_phy, phy); strlcpy(phy_common->name, UFS_PHY_NAME, sizeof(phy_common->name)); out: return err; } static const struct of_device_id ufs_qcom_phy_qmp_20nm_of_match[] = { {.compatible = "qcom,ufs-phy-qmp-20nm"}, {}, }; MODULE_DEVICE_TABLE(of, ufs_qcom_phy_qmp_20nm_of_match); static struct platform_driver ufs_qcom_phy_qmp_20nm_driver = { .probe = ufs_qcom_phy_qmp_20nm_probe, .driver = { .of_match_table = ufs_qcom_phy_qmp_20nm_of_match, .name = "ufs_qcom_phy_qmp_20nm", }, }; module_platform_driver(ufs_qcom_phy_qmp_20nm_driver); MODULE_DESCRIPTION("Universal Flash Storage (UFS) QCOM PHY QMP 20nm"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1