Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Gregory CLEMENT | 2080 | 80.40% | 4 | 28.57% |
Russell King | 309 | 11.94% | 2 | 14.29% |
Baruch Siach | 107 | 4.14% | 1 | 7.14% |
Alexandre Belloni | 55 | 2.13% | 4 | 28.57% |
Nadav Haklai | 21 | 0.81% | 1 | 7.14% |
Stephen Boyd | 13 | 0.50% | 1 | 7.14% |
Thomas Gleixner | 2 | 0.08% | 1 | 7.14% |
Total | 2587 | 14 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * RTC driver for the Armada 38x Marvell SoCs * * Copyright (C) 2015 Marvell * * Gregory Clement <gregory.clement@free-electrons.com> */ #include <linux/delay.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/rtc.h> #define RTC_STATUS 0x0 #define RTC_STATUS_ALARM1 BIT(0) #define RTC_STATUS_ALARM2 BIT(1) #define RTC_IRQ1_CONF 0x4 #define RTC_IRQ2_CONF 0x8 #define RTC_IRQ_AL_EN BIT(0) #define RTC_IRQ_FREQ_EN BIT(1) #define RTC_IRQ_FREQ_1HZ BIT(2) #define RTC_CCR 0x18 #define RTC_CCR_MODE BIT(15) #define RTC_CONF_TEST 0x1C #define RTC_NOMINAL_TIMING BIT(13) #define RTC_TIME 0xC #define RTC_ALARM1 0x10 #define RTC_ALARM2 0x14 /* Armada38x SoC registers */ #define RTC_38X_BRIDGE_TIMING_CTL 0x0 #define RTC_38X_PERIOD_OFFS 0 #define RTC_38X_PERIOD_MASK (0x3FF << RTC_38X_PERIOD_OFFS) #define RTC_38X_READ_DELAY_OFFS 26 #define RTC_38X_READ_DELAY_MASK (0x1F << RTC_38X_READ_DELAY_OFFS) /* Armada 7K/8K registers */ #define RTC_8K_BRIDGE_TIMING_CTL0 0x0 #define RTC_8K_WRCLK_PERIOD_OFFS 0 #define RTC_8K_WRCLK_PERIOD_MASK (0xFFFF << RTC_8K_WRCLK_PERIOD_OFFS) #define RTC_8K_WRCLK_SETUP_OFFS 16 #define RTC_8K_WRCLK_SETUP_MASK (0xFFFF << RTC_8K_WRCLK_SETUP_OFFS) #define RTC_8K_BRIDGE_TIMING_CTL1 0x4 #define RTC_8K_READ_DELAY_OFFS 0 #define RTC_8K_READ_DELAY_MASK (0xFFFF << RTC_8K_READ_DELAY_OFFS) #define RTC_8K_ISR 0x10 #define RTC_8K_IMR 0x14 #define RTC_8K_ALARM2 BIT(0) #define SOC_RTC_INTERRUPT 0x8 #define SOC_RTC_ALARM1 BIT(0) #define SOC_RTC_ALARM2 BIT(1) #define SOC_RTC_ALARM1_MASK BIT(2) #define SOC_RTC_ALARM2_MASK BIT(3) #define SAMPLE_NR 100 struct value_to_freq { u32 value; u8 freq; }; struct armada38x_rtc { struct rtc_device *rtc_dev; void __iomem *regs; void __iomem *regs_soc; spinlock_t lock; int irq; bool initialized; struct value_to_freq *val_to_freq; const struct armada38x_rtc_data *data; }; #define ALARM1 0 #define ALARM2 1 #define ALARM_REG(base, alarm) ((base) + (alarm) * sizeof(u32)) struct armada38x_rtc_data { /* Initialize the RTC-MBUS bridge timing */ void (*update_mbus_timing)(struct armada38x_rtc *rtc); u32 (*read_rtc_reg)(struct armada38x_rtc *rtc, u8 rtc_reg); void (*clear_isr)(struct armada38x_rtc *rtc); void (*unmask_interrupt)(struct armada38x_rtc *rtc); u32 alarm; }; /* * According to the datasheet, the OS should wait 5us after every * register write to the RTC hard macro so that the required update * can occur without holding off the system bus * According to errata RES-3124064, Write to any RTC register * may fail. As a workaround, before writing to RTC * register, issue a dummy write of 0x0 twice to RTC Status * register. */ static void rtc_delayed_write(u32 val, struct armada38x_rtc *rtc, int offset) { writel(0, rtc->regs + RTC_STATUS); writel(0, rtc->regs + RTC_STATUS); writel(val, rtc->regs + offset); udelay(5); } /* Update RTC-MBUS bridge timing parameters */ static void rtc_update_38x_mbus_timing_params(struct armada38x_rtc *rtc) { u32 reg; reg = readl(rtc->regs_soc + RTC_38X_BRIDGE_TIMING_CTL); reg &= ~RTC_38X_PERIOD_MASK; reg |= 0x3FF << RTC_38X_PERIOD_OFFS; /* Maximum value */ reg &= ~RTC_38X_READ_DELAY_MASK; reg |= 0x1F << RTC_38X_READ_DELAY_OFFS; /* Maximum value */ writel(reg, rtc->regs_soc + RTC_38X_BRIDGE_TIMING_CTL); } static void rtc_update_8k_mbus_timing_params(struct armada38x_rtc *rtc) { u32 reg; reg = readl(rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL0); reg &= ~RTC_8K_WRCLK_PERIOD_MASK; reg |= 0x3FF << RTC_8K_WRCLK_PERIOD_OFFS; reg &= ~RTC_8K_WRCLK_SETUP_MASK; reg |= 0x29 << RTC_8K_WRCLK_SETUP_OFFS; writel(reg, rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL0); reg = readl(rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL1); reg &= ~RTC_8K_READ_DELAY_MASK; reg |= 0x3F << RTC_8K_READ_DELAY_OFFS; writel(reg, rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL1); } static u32 read_rtc_register(struct armada38x_rtc *rtc, u8 rtc_reg) { return readl(rtc->regs + rtc_reg); } static u32 read_rtc_register_38x_wa(struct armada38x_rtc *rtc, u8 rtc_reg) { int i, index_max = 0, max = 0; for (i = 0; i < SAMPLE_NR; i++) { rtc->val_to_freq[i].value = readl(rtc->regs + rtc_reg); rtc->val_to_freq[i].freq = 0; } for (i = 0; i < SAMPLE_NR; i++) { int j = 0; u32 value = rtc->val_to_freq[i].value; while (rtc->val_to_freq[j].freq) { if (rtc->val_to_freq[j].value == value) { rtc->val_to_freq[j].freq++; break; } j++; } if (!rtc->val_to_freq[j].freq) { rtc->val_to_freq[j].value = value; rtc->val_to_freq[j].freq = 1; } if (rtc->val_to_freq[j].freq > max) { index_max = j; max = rtc->val_to_freq[j].freq; } /* * If a value already has half of the sample this is the most * frequent one and we can stop the research right now */ if (max > SAMPLE_NR / 2) break; } return rtc->val_to_freq[index_max].value; } static void armada38x_clear_isr(struct armada38x_rtc *rtc) { u32 val = readl(rtc->regs_soc + SOC_RTC_INTERRUPT); writel(val & ~SOC_RTC_ALARM1, rtc->regs_soc + SOC_RTC_INTERRUPT); } static void armada38x_unmask_interrupt(struct armada38x_rtc *rtc) { u32 val = readl(rtc->regs_soc + SOC_RTC_INTERRUPT); writel(val | SOC_RTC_ALARM1_MASK, rtc->regs_soc + SOC_RTC_INTERRUPT); } static void armada8k_clear_isr(struct armada38x_rtc *rtc) { writel(RTC_8K_ALARM2, rtc->regs_soc + RTC_8K_ISR); } static void armada8k_unmask_interrupt(struct armada38x_rtc *rtc) { writel(RTC_8K_ALARM2, rtc->regs_soc + RTC_8K_IMR); } static int armada38x_rtc_read_time(struct device *dev, struct rtc_time *tm) { struct armada38x_rtc *rtc = dev_get_drvdata(dev); unsigned long time, flags; spin_lock_irqsave(&rtc->lock, flags); time = rtc->data->read_rtc_reg(rtc, RTC_TIME); spin_unlock_irqrestore(&rtc->lock, flags); rtc_time64_to_tm(time, tm); return 0; } static void armada38x_rtc_reset(struct armada38x_rtc *rtc) { u32 reg; reg = rtc->data->read_rtc_reg(rtc, RTC_CONF_TEST); /* If bits [7:0] are non-zero, assume RTC was uninitialized */ if (reg & 0xff) { rtc_delayed_write(0, rtc, RTC_CONF_TEST); msleep(500); /* Oscillator startup time */ rtc_delayed_write(0, rtc, RTC_TIME); rtc_delayed_write(SOC_RTC_ALARM1 | SOC_RTC_ALARM2, rtc, RTC_STATUS); rtc_delayed_write(RTC_NOMINAL_TIMING, rtc, RTC_CCR); } rtc->initialized = true; } static int armada38x_rtc_set_time(struct device *dev, struct rtc_time *tm) { struct armada38x_rtc *rtc = dev_get_drvdata(dev); unsigned long time, flags; time = rtc_tm_to_time64(tm); if (!rtc->initialized) armada38x_rtc_reset(rtc); spin_lock_irqsave(&rtc->lock, flags); rtc_delayed_write(time, rtc, RTC_TIME); spin_unlock_irqrestore(&rtc->lock, flags); return 0; } static int armada38x_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) { struct armada38x_rtc *rtc = dev_get_drvdata(dev); unsigned long time, flags; u32 reg = ALARM_REG(RTC_ALARM1, rtc->data->alarm); u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm); u32 val; spin_lock_irqsave(&rtc->lock, flags); time = rtc->data->read_rtc_reg(rtc, reg); val = rtc->data->read_rtc_reg(rtc, reg_irq) & RTC_IRQ_AL_EN; spin_unlock_irqrestore(&rtc->lock, flags); alrm->enabled = val ? 1 : 0; rtc_time64_to_tm(time, &alrm->time); return 0; } static int armada38x_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) { struct armada38x_rtc *rtc = dev_get_drvdata(dev); u32 reg = ALARM_REG(RTC_ALARM1, rtc->data->alarm); u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm); unsigned long time, flags; time = rtc_tm_to_time64(&alrm->time); spin_lock_irqsave(&rtc->lock, flags); rtc_delayed_write(time, rtc, reg); if (alrm->enabled) { rtc_delayed_write(RTC_IRQ_AL_EN, rtc, reg_irq); rtc->data->unmask_interrupt(rtc); } spin_unlock_irqrestore(&rtc->lock, flags); return 0; } static int armada38x_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled) { struct armada38x_rtc *rtc = dev_get_drvdata(dev); u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm); unsigned long flags; spin_lock_irqsave(&rtc->lock, flags); if (enabled) rtc_delayed_write(RTC_IRQ_AL_EN, rtc, reg_irq); else rtc_delayed_write(0, rtc, reg_irq); spin_unlock_irqrestore(&rtc->lock, flags); return 0; } static irqreturn_t armada38x_rtc_alarm_irq(int irq, void *data) { struct armada38x_rtc *rtc = data; u32 val; int event = RTC_IRQF | RTC_AF; u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm); dev_dbg(&rtc->rtc_dev->dev, "%s:irq(%d)\n", __func__, irq); spin_lock(&rtc->lock); rtc->data->clear_isr(rtc); val = rtc->data->read_rtc_reg(rtc, reg_irq); /* disable all the interrupts for alarm*/ rtc_delayed_write(0, rtc, reg_irq); /* Ack the event */ rtc_delayed_write(1 << rtc->data->alarm, rtc, RTC_STATUS); spin_unlock(&rtc->lock); if (val & RTC_IRQ_FREQ_EN) { if (val & RTC_IRQ_FREQ_1HZ) event |= RTC_UF; else event |= RTC_PF; } rtc_update_irq(rtc->rtc_dev, 1, event); return IRQ_HANDLED; } /* * The information given in the Armada 388 functional spec is complex. * They give two different formulas for calculating the offset value, * but when considering "Offset" as an 8-bit signed integer, they both * reduce down to (we shall rename "Offset" as "val" here): * * val = (f_ideal / f_measured - 1) / resolution where f_ideal = 32768 * * Converting to time, f = 1/t: * val = (t_measured / t_ideal - 1) / resolution where t_ideal = 1/32768 * * => t_measured / t_ideal = val * resolution + 1 * * "offset" in the RTC interface is defined as: * t = t0 * (1 + offset * 1e-9) * where t is the desired period, t0 is the measured period with a zero * offset, which is t_measured above. With t0 = t_measured and t = t_ideal, * offset = (t_ideal / t_measured - 1) / 1e-9 * * => t_ideal / t_measured = offset * 1e-9 + 1 * * so: * * offset * 1e-9 + 1 = 1 / (val * resolution + 1) * * We want "resolution" to be an integer, so resolution = R * 1e-9, giving * offset = 1e18 / (val * R + 1e9) - 1e9 * val = (1e18 / (offset + 1e9) - 1e9) / R * with a common transformation: * f(x) = 1e18 / (x + 1e9) - 1e9 * offset = f(val * R) * val = f(offset) / R * * Armada 38x supports two modes, fine mode (954ppb) and coarse mode (3815ppb). */ static long armada38x_ppb_convert(long ppb) { long div = ppb + 1000000000L; return div_s64(1000000000000000000LL + div / 2, div) - 1000000000L; } static int armada38x_rtc_read_offset(struct device *dev, long *offset) { struct armada38x_rtc *rtc = dev_get_drvdata(dev); unsigned long ccr, flags; long ppb_cor; spin_lock_irqsave(&rtc->lock, flags); ccr = rtc->data->read_rtc_reg(rtc, RTC_CCR); spin_unlock_irqrestore(&rtc->lock, flags); ppb_cor = (ccr & RTC_CCR_MODE ? 3815 : 954) * (s8)ccr; /* ppb_cor + 1000000000L can never be zero */ *offset = armada38x_ppb_convert(ppb_cor); return 0; } static int armada38x_rtc_set_offset(struct device *dev, long offset) { struct armada38x_rtc *rtc = dev_get_drvdata(dev); unsigned long ccr = 0; long ppb_cor, off; /* * The maximum ppb_cor is -128 * 3815 .. 127 * 3815, but we * need to clamp the input. This equates to -484270 .. 488558. * Not only is this to stop out of range "off" but also to * avoid the division by zero in armada38x_ppb_convert(). */ offset = clamp(offset, -484270L, 488558L); ppb_cor = armada38x_ppb_convert(offset); /* * Use low update mode where possible, which gives a better * resolution of correction. */ off = DIV_ROUND_CLOSEST(ppb_cor, 954); if (off > 127 || off < -128) { ccr = RTC_CCR_MODE; off = DIV_ROUND_CLOSEST(ppb_cor, 3815); } /* * Armada 388 requires a bit pattern in bits 14..8 depending on * the sign bit: { 0, ~S, S, S, S, S, S } */ ccr |= (off & 0x3fff) ^ 0x2000; rtc_delayed_write(ccr, rtc, RTC_CCR); return 0; } static const struct rtc_class_ops armada38x_rtc_ops = { .read_time = armada38x_rtc_read_time, .set_time = armada38x_rtc_set_time, .read_alarm = armada38x_rtc_read_alarm, .set_alarm = armada38x_rtc_set_alarm, .alarm_irq_enable = armada38x_rtc_alarm_irq_enable, .read_offset = armada38x_rtc_read_offset, .set_offset = armada38x_rtc_set_offset, }; static const struct rtc_class_ops armada38x_rtc_ops_noirq = { .read_time = armada38x_rtc_read_time, .set_time = armada38x_rtc_set_time, .read_alarm = armada38x_rtc_read_alarm, .read_offset = armada38x_rtc_read_offset, .set_offset = armada38x_rtc_set_offset, }; static const struct armada38x_rtc_data armada38x_data = { .update_mbus_timing = rtc_update_38x_mbus_timing_params, .read_rtc_reg = read_rtc_register_38x_wa, .clear_isr = armada38x_clear_isr, .unmask_interrupt = armada38x_unmask_interrupt, .alarm = ALARM1, }; static const struct armada38x_rtc_data armada8k_data = { .update_mbus_timing = rtc_update_8k_mbus_timing_params, .read_rtc_reg = read_rtc_register, .clear_isr = armada8k_clear_isr, .unmask_interrupt = armada8k_unmask_interrupt, .alarm = ALARM2, }; #ifdef CONFIG_OF static const struct of_device_id armada38x_rtc_of_match_table[] = { { .compatible = "marvell,armada-380-rtc", .data = &armada38x_data, }, { .compatible = "marvell,armada-8k-rtc", .data = &armada8k_data, }, {} }; MODULE_DEVICE_TABLE(of, armada38x_rtc_of_match_table); #endif static __init int armada38x_rtc_probe(struct platform_device *pdev) { struct resource *res; struct armada38x_rtc *rtc; rtc = devm_kzalloc(&pdev->dev, sizeof(struct armada38x_rtc), GFP_KERNEL); if (!rtc) return -ENOMEM; rtc->data = of_device_get_match_data(&pdev->dev); rtc->val_to_freq = devm_kcalloc(&pdev->dev, SAMPLE_NR, sizeof(struct value_to_freq), GFP_KERNEL); if (!rtc->val_to_freq) return -ENOMEM; spin_lock_init(&rtc->lock); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rtc"); rtc->regs = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(rtc->regs)) return PTR_ERR(rtc->regs); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rtc-soc"); rtc->regs_soc = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(rtc->regs_soc)) return PTR_ERR(rtc->regs_soc); rtc->irq = platform_get_irq(pdev, 0); if (rtc->irq < 0) return rtc->irq; rtc->rtc_dev = devm_rtc_allocate_device(&pdev->dev); if (IS_ERR(rtc->rtc_dev)) return PTR_ERR(rtc->rtc_dev); if (devm_request_irq(&pdev->dev, rtc->irq, armada38x_rtc_alarm_irq, 0, pdev->name, rtc) < 0) { dev_warn(&pdev->dev, "Interrupt not available.\n"); rtc->irq = -1; } platform_set_drvdata(pdev, rtc); if (rtc->irq != -1) { device_init_wakeup(&pdev->dev, 1); rtc->rtc_dev->ops = &armada38x_rtc_ops; } else { /* * If there is no interrupt available then we can't * use the alarm */ rtc->rtc_dev->ops = &armada38x_rtc_ops_noirq; } /* Update RTC-MBUS bridge timing parameters */ rtc->data->update_mbus_timing(rtc); rtc->rtc_dev->range_max = U32_MAX; return rtc_register_device(rtc->rtc_dev); } #ifdef CONFIG_PM_SLEEP static int armada38x_rtc_suspend(struct device *dev) { if (device_may_wakeup(dev)) { struct armada38x_rtc *rtc = dev_get_drvdata(dev); return enable_irq_wake(rtc->irq); } return 0; } static int armada38x_rtc_resume(struct device *dev) { if (device_may_wakeup(dev)) { struct armada38x_rtc *rtc = dev_get_drvdata(dev); /* Update RTC-MBUS bridge timing parameters */ rtc->data->update_mbus_timing(rtc); return disable_irq_wake(rtc->irq); } return 0; } #endif static SIMPLE_DEV_PM_OPS(armada38x_rtc_pm_ops, armada38x_rtc_suspend, armada38x_rtc_resume); static struct platform_driver armada38x_rtc_driver = { .driver = { .name = "armada38x-rtc", .pm = &armada38x_rtc_pm_ops, .of_match_table = of_match_ptr(armada38x_rtc_of_match_table), }, }; module_platform_driver_probe(armada38x_rtc_driver, armada38x_rtc_probe); MODULE_DESCRIPTION("Marvell Armada 38x RTC driver"); MODULE_AUTHOR("Gregory CLEMENT <gregory.clement@free-electrons.com>"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1