Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Johan Hovold | 1137 | 25.65% | 18 | 30.51% |
David Brownell | 1120 | 25.27% | 3 | 5.08% |
Marcin Niestroj | 691 | 15.59% | 1 | 1.69% |
Lokesh Vutla | 402 | 9.07% | 4 | 6.78% |
J Keerthy | 310 | 6.99% | 5 | 8.47% |
Alexandre Belloni | 291 | 6.56% | 7 | 11.86% |
Afzal Mohammed | 134 | 3.02% | 2 | 3.39% |
Tero Kristo | 69 | 1.56% | 1 | 1.69% |
John Stultz | 61 | 1.38% | 1 | 1.69% |
Vaibhav Hiremath | 53 | 1.20% | 1 | 1.69% |
Sekhar Nori | 41 | 0.92% | 3 | 5.08% |
Hebbar Gururaja | 31 | 0.70% | 1 | 1.69% |
Manish Vishwanathrao Badarkhe (same as Manish Badarkhe?) | 17 | 0.38% | 1 | 1.69% |
Jingoo Han | 16 | 0.36% | 1 | 1.69% |
Andreas Platschek | 16 | 0.36% | 1 | 1.69% |
Adrian Bunk | 12 | 0.27% | 1 | 1.69% |
Mark A. Greer | 11 | 0.25% | 1 | 1.69% |
Kay Sievers | 8 | 0.18% | 1 | 1.69% |
Dmitry Torokhov | 4 | 0.09% | 1 | 1.69% |
Nathan Chancellor | 3 | 0.07% | 1 | 1.69% |
Yong Zhang | 2 | 0.05% | 1 | 1.69% |
Yue haibing | 2 | 0.05% | 1 | 1.69% |
Julia Lawall | 1 | 0.02% | 1 | 1.69% |
Mika Westerberg | 1 | 0.02% | 1 | 1.69% |
Total | 4433 | 59 |
// SPDX-License-Identifier: GPL-2.0+ /* * TI OMAP Real Time Clock interface for Linux * * Copyright (C) 2003 MontaVista Software, Inc. * Author: George G. Davis <gdavis@mvista.com> or <source@mvista.com> * * Copyright (C) 2006 David Brownell (new RTC framework) * Copyright (C) 2014 Johan Hovold <johan@kernel.org> */ #include <linux/bcd.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/io.h> #include <linux/ioport.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/pinctrl/pinctrl.h> #include <linux/pinctrl/pinconf.h> #include <linux/pinctrl/pinconf-generic.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/rtc.h> /* * The OMAP RTC is a year/month/day/hours/minutes/seconds BCD clock * with century-range alarm matching, driven by the 32kHz clock. * * The main user-visible ways it differs from PC RTCs are by omitting * "don't care" alarm fields and sub-second periodic IRQs, and having * an autoadjust mechanism to calibrate to the true oscillator rate. * * Board-specific wiring options include using split power mode with * RTC_OFF_NOFF used as the reset signal (so the RTC won't be reset), * and wiring RTC_WAKE_INT (so the RTC alarm can wake the system from * low power modes) for OMAP1 boards (OMAP-L138 has this built into * the SoC). See the BOARD-SPECIFIC CUSTOMIZATION comment. */ /* RTC registers */ #define OMAP_RTC_SECONDS_REG 0x00 #define OMAP_RTC_MINUTES_REG 0x04 #define OMAP_RTC_HOURS_REG 0x08 #define OMAP_RTC_DAYS_REG 0x0C #define OMAP_RTC_MONTHS_REG 0x10 #define OMAP_RTC_YEARS_REG 0x14 #define OMAP_RTC_WEEKS_REG 0x18 #define OMAP_RTC_ALARM_SECONDS_REG 0x20 #define OMAP_RTC_ALARM_MINUTES_REG 0x24 #define OMAP_RTC_ALARM_HOURS_REG 0x28 #define OMAP_RTC_ALARM_DAYS_REG 0x2c #define OMAP_RTC_ALARM_MONTHS_REG 0x30 #define OMAP_RTC_ALARM_YEARS_REG 0x34 #define OMAP_RTC_CTRL_REG 0x40 #define OMAP_RTC_STATUS_REG 0x44 #define OMAP_RTC_INTERRUPTS_REG 0x48 #define OMAP_RTC_COMP_LSB_REG 0x4c #define OMAP_RTC_COMP_MSB_REG 0x50 #define OMAP_RTC_OSC_REG 0x54 #define OMAP_RTC_SCRATCH0_REG 0x60 #define OMAP_RTC_SCRATCH1_REG 0x64 #define OMAP_RTC_SCRATCH2_REG 0x68 #define OMAP_RTC_KICK0_REG 0x6c #define OMAP_RTC_KICK1_REG 0x70 #define OMAP_RTC_IRQWAKEEN 0x7c #define OMAP_RTC_ALARM2_SECONDS_REG 0x80 #define OMAP_RTC_ALARM2_MINUTES_REG 0x84 #define OMAP_RTC_ALARM2_HOURS_REG 0x88 #define OMAP_RTC_ALARM2_DAYS_REG 0x8c #define OMAP_RTC_ALARM2_MONTHS_REG 0x90 #define OMAP_RTC_ALARM2_YEARS_REG 0x94 #define OMAP_RTC_PMIC_REG 0x98 /* OMAP_RTC_CTRL_REG bit fields: */ #define OMAP_RTC_CTRL_SPLIT BIT(7) #define OMAP_RTC_CTRL_DISABLE BIT(6) #define OMAP_RTC_CTRL_SET_32_COUNTER BIT(5) #define OMAP_RTC_CTRL_TEST BIT(4) #define OMAP_RTC_CTRL_MODE_12_24 BIT(3) #define OMAP_RTC_CTRL_AUTO_COMP BIT(2) #define OMAP_RTC_CTRL_ROUND_30S BIT(1) #define OMAP_RTC_CTRL_STOP BIT(0) /* OMAP_RTC_STATUS_REG bit fields: */ #define OMAP_RTC_STATUS_POWER_UP BIT(7) #define OMAP_RTC_STATUS_ALARM2 BIT(7) #define OMAP_RTC_STATUS_ALARM BIT(6) #define OMAP_RTC_STATUS_1D_EVENT BIT(5) #define OMAP_RTC_STATUS_1H_EVENT BIT(4) #define OMAP_RTC_STATUS_1M_EVENT BIT(3) #define OMAP_RTC_STATUS_1S_EVENT BIT(2) #define OMAP_RTC_STATUS_RUN BIT(1) #define OMAP_RTC_STATUS_BUSY BIT(0) /* OMAP_RTC_INTERRUPTS_REG bit fields: */ #define OMAP_RTC_INTERRUPTS_IT_ALARM2 BIT(4) #define OMAP_RTC_INTERRUPTS_IT_ALARM BIT(3) #define OMAP_RTC_INTERRUPTS_IT_TIMER BIT(2) /* OMAP_RTC_OSC_REG bit fields: */ #define OMAP_RTC_OSC_32KCLK_EN BIT(6) #define OMAP_RTC_OSC_SEL_32KCLK_SRC BIT(3) #define OMAP_RTC_OSC_OSC32K_GZ_DISABLE BIT(4) /* OMAP_RTC_IRQWAKEEN bit fields: */ #define OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN BIT(1) /* OMAP_RTC_PMIC bit fields: */ #define OMAP_RTC_PMIC_POWER_EN_EN BIT(16) #define OMAP_RTC_PMIC_EXT_WKUP_EN(x) BIT(x) #define OMAP_RTC_PMIC_EXT_WKUP_POL(x) BIT(4 + x) /* OMAP_RTC_KICKER values */ #define KICK0_VALUE 0x83e70b13 #define KICK1_VALUE 0x95a4f1e0 struct omap_rtc; struct omap_rtc_device_type { bool has_32kclk_en; bool has_irqwakeen; bool has_pmic_mode; bool has_power_up_reset; void (*lock)(struct omap_rtc *rtc); void (*unlock)(struct omap_rtc *rtc); }; struct omap_rtc { struct rtc_device *rtc; void __iomem *base; struct clk *clk; int irq_alarm; int irq_timer; u8 interrupts_reg; bool is_pmic_controller; bool has_ext_clk; bool is_suspending; const struct omap_rtc_device_type *type; struct pinctrl_dev *pctldev; }; static inline u8 rtc_read(struct omap_rtc *rtc, unsigned int reg) { return readb(rtc->base + reg); } static inline u32 rtc_readl(struct omap_rtc *rtc, unsigned int reg) { return readl(rtc->base + reg); } static inline void rtc_write(struct omap_rtc *rtc, unsigned int reg, u8 val) { writeb(val, rtc->base + reg); } static inline void rtc_writel(struct omap_rtc *rtc, unsigned int reg, u32 val) { writel(val, rtc->base + reg); } static void am3352_rtc_unlock(struct omap_rtc *rtc) { rtc_writel(rtc, OMAP_RTC_KICK0_REG, KICK0_VALUE); rtc_writel(rtc, OMAP_RTC_KICK1_REG, KICK1_VALUE); } static void am3352_rtc_lock(struct omap_rtc *rtc) { rtc_writel(rtc, OMAP_RTC_KICK0_REG, 0); rtc_writel(rtc, OMAP_RTC_KICK1_REG, 0); } static void default_rtc_unlock(struct omap_rtc *rtc) { } static void default_rtc_lock(struct omap_rtc *rtc) { } /* * We rely on the rtc framework to handle locking (rtc->ops_lock), * so the only other requirement is that register accesses which * require BUSY to be clear are made with IRQs locally disabled */ static void rtc_wait_not_busy(struct omap_rtc *rtc) { int count; u8 status; /* BUSY may stay active for 1/32768 second (~30 usec) */ for (count = 0; count < 50; count++) { status = rtc_read(rtc, OMAP_RTC_STATUS_REG); if (!(status & OMAP_RTC_STATUS_BUSY)) break; udelay(1); } /* now we have ~15 usec to read/write various registers */ } static irqreturn_t rtc_irq(int irq, void *dev_id) { struct omap_rtc *rtc = dev_id; unsigned long events = 0; u8 irq_data; irq_data = rtc_read(rtc, OMAP_RTC_STATUS_REG); /* alarm irq? */ if (irq_data & OMAP_RTC_STATUS_ALARM) { rtc->type->unlock(rtc); rtc_write(rtc, OMAP_RTC_STATUS_REG, OMAP_RTC_STATUS_ALARM); rtc->type->lock(rtc); events |= RTC_IRQF | RTC_AF; } /* 1/sec periodic/update irq? */ if (irq_data & OMAP_RTC_STATUS_1S_EVENT) events |= RTC_IRQF | RTC_UF; rtc_update_irq(rtc->rtc, 1, events); return IRQ_HANDLED; } static int omap_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled) { struct omap_rtc *rtc = dev_get_drvdata(dev); u8 reg, irqwake_reg = 0; local_irq_disable(); rtc_wait_not_busy(rtc); reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG); if (rtc->type->has_irqwakeen) irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN); if (enabled) { reg |= OMAP_RTC_INTERRUPTS_IT_ALARM; irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN; } else { reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM; irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN; } rtc_wait_not_busy(rtc); rtc->type->unlock(rtc); rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg); if (rtc->type->has_irqwakeen) rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg); rtc->type->lock(rtc); local_irq_enable(); return 0; } /* this hardware doesn't support "don't care" alarm fields */ static void tm2bcd(struct rtc_time *tm) { tm->tm_sec = bin2bcd(tm->tm_sec); tm->tm_min = bin2bcd(tm->tm_min); tm->tm_hour = bin2bcd(tm->tm_hour); tm->tm_mday = bin2bcd(tm->tm_mday); tm->tm_mon = bin2bcd(tm->tm_mon + 1); tm->tm_year = bin2bcd(tm->tm_year - 100); } static void bcd2tm(struct rtc_time *tm) { tm->tm_sec = bcd2bin(tm->tm_sec); tm->tm_min = bcd2bin(tm->tm_min); tm->tm_hour = bcd2bin(tm->tm_hour); tm->tm_mday = bcd2bin(tm->tm_mday); tm->tm_mon = bcd2bin(tm->tm_mon) - 1; /* epoch == 1900 */ tm->tm_year = bcd2bin(tm->tm_year) + 100; } static void omap_rtc_read_time_raw(struct omap_rtc *rtc, struct rtc_time *tm) { tm->tm_sec = rtc_read(rtc, OMAP_RTC_SECONDS_REG); tm->tm_min = rtc_read(rtc, OMAP_RTC_MINUTES_REG); tm->tm_hour = rtc_read(rtc, OMAP_RTC_HOURS_REG); tm->tm_mday = rtc_read(rtc, OMAP_RTC_DAYS_REG); tm->tm_mon = rtc_read(rtc, OMAP_RTC_MONTHS_REG); tm->tm_year = rtc_read(rtc, OMAP_RTC_YEARS_REG); } static int omap_rtc_read_time(struct device *dev, struct rtc_time *tm) { struct omap_rtc *rtc = dev_get_drvdata(dev); /* we don't report wday/yday/isdst ... */ local_irq_disable(); rtc_wait_not_busy(rtc); omap_rtc_read_time_raw(rtc, tm); local_irq_enable(); bcd2tm(tm); return 0; } static int omap_rtc_set_time(struct device *dev, struct rtc_time *tm) { struct omap_rtc *rtc = dev_get_drvdata(dev); tm2bcd(tm); local_irq_disable(); rtc_wait_not_busy(rtc); rtc->type->unlock(rtc); rtc_write(rtc, OMAP_RTC_YEARS_REG, tm->tm_year); rtc_write(rtc, OMAP_RTC_MONTHS_REG, tm->tm_mon); rtc_write(rtc, OMAP_RTC_DAYS_REG, tm->tm_mday); rtc_write(rtc, OMAP_RTC_HOURS_REG, tm->tm_hour); rtc_write(rtc, OMAP_RTC_MINUTES_REG, tm->tm_min); rtc_write(rtc, OMAP_RTC_SECONDS_REG, tm->tm_sec); rtc->type->lock(rtc); local_irq_enable(); return 0; } static int omap_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm) { struct omap_rtc *rtc = dev_get_drvdata(dev); u8 interrupts; local_irq_disable(); rtc_wait_not_busy(rtc); alm->time.tm_sec = rtc_read(rtc, OMAP_RTC_ALARM_SECONDS_REG); alm->time.tm_min = rtc_read(rtc, OMAP_RTC_ALARM_MINUTES_REG); alm->time.tm_hour = rtc_read(rtc, OMAP_RTC_ALARM_HOURS_REG); alm->time.tm_mday = rtc_read(rtc, OMAP_RTC_ALARM_DAYS_REG); alm->time.tm_mon = rtc_read(rtc, OMAP_RTC_ALARM_MONTHS_REG); alm->time.tm_year = rtc_read(rtc, OMAP_RTC_ALARM_YEARS_REG); local_irq_enable(); bcd2tm(&alm->time); interrupts = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG); alm->enabled = !!(interrupts & OMAP_RTC_INTERRUPTS_IT_ALARM); return 0; } static int omap_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm) { struct omap_rtc *rtc = dev_get_drvdata(dev); u8 reg, irqwake_reg = 0; tm2bcd(&alm->time); local_irq_disable(); rtc_wait_not_busy(rtc); rtc->type->unlock(rtc); rtc_write(rtc, OMAP_RTC_ALARM_YEARS_REG, alm->time.tm_year); rtc_write(rtc, OMAP_RTC_ALARM_MONTHS_REG, alm->time.tm_mon); rtc_write(rtc, OMAP_RTC_ALARM_DAYS_REG, alm->time.tm_mday); rtc_write(rtc, OMAP_RTC_ALARM_HOURS_REG, alm->time.tm_hour); rtc_write(rtc, OMAP_RTC_ALARM_MINUTES_REG, alm->time.tm_min); rtc_write(rtc, OMAP_RTC_ALARM_SECONDS_REG, alm->time.tm_sec); reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG); if (rtc->type->has_irqwakeen) irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN); if (alm->enabled) { reg |= OMAP_RTC_INTERRUPTS_IT_ALARM; irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN; } else { reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM; irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN; } rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg); if (rtc->type->has_irqwakeen) rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg); rtc->type->lock(rtc); local_irq_enable(); return 0; } static struct omap_rtc *omap_rtc_power_off_rtc; /** * omap_rtc_power_off_program: Set the pmic power off sequence. The RTC * generates pmic_pwr_enable control, which can be used to control an external * PMIC. */ int omap_rtc_power_off_program(struct device *dev) { struct omap_rtc *rtc = omap_rtc_power_off_rtc; struct rtc_time tm; unsigned long now; int seconds; u32 val; rtc->type->unlock(rtc); /* enable pmic_power_en control */ val = rtc_readl(rtc, OMAP_RTC_PMIC_REG); rtc_writel(rtc, OMAP_RTC_PMIC_REG, val | OMAP_RTC_PMIC_POWER_EN_EN); again: /* Clear any existing ALARM2 event */ rtc_writel(rtc, OMAP_RTC_STATUS_REG, OMAP_RTC_STATUS_ALARM2); /* set alarm one second from now */ omap_rtc_read_time_raw(rtc, &tm); seconds = tm.tm_sec; bcd2tm(&tm); now = rtc_tm_to_time64(&tm); rtc_time64_to_tm(now + 1, &tm); tm2bcd(&tm); rtc_wait_not_busy(rtc); rtc_write(rtc, OMAP_RTC_ALARM2_SECONDS_REG, tm.tm_sec); rtc_write(rtc, OMAP_RTC_ALARM2_MINUTES_REG, tm.tm_min); rtc_write(rtc, OMAP_RTC_ALARM2_HOURS_REG, tm.tm_hour); rtc_write(rtc, OMAP_RTC_ALARM2_DAYS_REG, tm.tm_mday); rtc_write(rtc, OMAP_RTC_ALARM2_MONTHS_REG, tm.tm_mon); rtc_write(rtc, OMAP_RTC_ALARM2_YEARS_REG, tm.tm_year); /* * enable ALARM2 interrupt * * NOTE: this fails on AM3352 if rtc_write (writeb) is used */ val = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG); rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG, val | OMAP_RTC_INTERRUPTS_IT_ALARM2); /* Retry in case roll over happened before alarm was armed. */ if (rtc_read(rtc, OMAP_RTC_SECONDS_REG) != seconds) { val = rtc_read(rtc, OMAP_RTC_STATUS_REG); if (!(val & OMAP_RTC_STATUS_ALARM2)) goto again; } rtc->type->lock(rtc); return 0; } EXPORT_SYMBOL(omap_rtc_power_off_program); /* * omap_rtc_poweroff: RTC-controlled power off * * The RTC can be used to control an external PMIC via the pmic_power_en pin, * which can be configured to transition to OFF on ALARM2 events. * * Notes: * The one-second alarm offset is the shortest offset possible as the alarm * registers must be set before the next timer update and the offset * calculation is too heavy for everything to be done within a single access * period (~15 us). * * Called with local interrupts disabled. */ static void omap_rtc_power_off(void) { struct rtc_device *rtc = omap_rtc_power_off_rtc->rtc; u32 val; omap_rtc_power_off_program(rtc->dev.parent); /* Set PMIC power enable and EXT_WAKEUP in case PB power on is used */ omap_rtc_power_off_rtc->type->unlock(omap_rtc_power_off_rtc); val = rtc_readl(omap_rtc_power_off_rtc, OMAP_RTC_PMIC_REG); val |= OMAP_RTC_PMIC_POWER_EN_EN | OMAP_RTC_PMIC_EXT_WKUP_POL(0) | OMAP_RTC_PMIC_EXT_WKUP_EN(0); rtc_writel(omap_rtc_power_off_rtc, OMAP_RTC_PMIC_REG, val); omap_rtc_power_off_rtc->type->lock(omap_rtc_power_off_rtc); /* * Wait for alarm to trigger (within one second) and external PMIC to * power off the system. Add a 500 ms margin for external latencies * (e.g. debounce circuits). */ mdelay(1500); } static const struct rtc_class_ops omap_rtc_ops = { .read_time = omap_rtc_read_time, .set_time = omap_rtc_set_time, .read_alarm = omap_rtc_read_alarm, .set_alarm = omap_rtc_set_alarm, .alarm_irq_enable = omap_rtc_alarm_irq_enable, }; static const struct omap_rtc_device_type omap_rtc_default_type = { .has_power_up_reset = true, .lock = default_rtc_lock, .unlock = default_rtc_unlock, }; static const struct omap_rtc_device_type omap_rtc_am3352_type = { .has_32kclk_en = true, .has_irqwakeen = true, .has_pmic_mode = true, .lock = am3352_rtc_lock, .unlock = am3352_rtc_unlock, }; static const struct omap_rtc_device_type omap_rtc_da830_type = { .lock = am3352_rtc_lock, .unlock = am3352_rtc_unlock, }; static const struct platform_device_id omap_rtc_id_table[] = { { .name = "omap_rtc", .driver_data = (kernel_ulong_t)&omap_rtc_default_type, }, { .name = "am3352-rtc", .driver_data = (kernel_ulong_t)&omap_rtc_am3352_type, }, { .name = "da830-rtc", .driver_data = (kernel_ulong_t)&omap_rtc_da830_type, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(platform, omap_rtc_id_table); static const struct of_device_id omap_rtc_of_match[] = { { .compatible = "ti,am3352-rtc", .data = &omap_rtc_am3352_type, }, { .compatible = "ti,da830-rtc", .data = &omap_rtc_da830_type, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, omap_rtc_of_match); static const struct pinctrl_pin_desc rtc_pins_desc[] = { PINCTRL_PIN(0, "ext_wakeup0"), PINCTRL_PIN(1, "ext_wakeup1"), PINCTRL_PIN(2, "ext_wakeup2"), PINCTRL_PIN(3, "ext_wakeup3"), }; static int rtc_pinctrl_get_groups_count(struct pinctrl_dev *pctldev) { return 0; } static const char *rtc_pinctrl_get_group_name(struct pinctrl_dev *pctldev, unsigned int group) { return NULL; } static const struct pinctrl_ops rtc_pinctrl_ops = { .get_groups_count = rtc_pinctrl_get_groups_count, .get_group_name = rtc_pinctrl_get_group_name, .dt_node_to_map = pinconf_generic_dt_node_to_map_pin, .dt_free_map = pinconf_generic_dt_free_map, }; #define PIN_CONFIG_ACTIVE_HIGH (PIN_CONFIG_END + 1) static const struct pinconf_generic_params rtc_params[] = { {"ti,active-high", PIN_CONFIG_ACTIVE_HIGH, 0}, }; #ifdef CONFIG_DEBUG_FS static const struct pin_config_item rtc_conf_items[ARRAY_SIZE(rtc_params)] = { PCONFDUMP(PIN_CONFIG_ACTIVE_HIGH, "input active high", NULL, false), }; #endif static int rtc_pinconf_get(struct pinctrl_dev *pctldev, unsigned int pin, unsigned long *config) { struct omap_rtc *rtc = pinctrl_dev_get_drvdata(pctldev); unsigned int param = pinconf_to_config_param(*config); u32 val; u16 arg = 0; val = rtc_readl(rtc, OMAP_RTC_PMIC_REG); switch (param) { case PIN_CONFIG_INPUT_ENABLE: if (!(val & OMAP_RTC_PMIC_EXT_WKUP_EN(pin))) return -EINVAL; break; case PIN_CONFIG_ACTIVE_HIGH: if (val & OMAP_RTC_PMIC_EXT_WKUP_POL(pin)) return -EINVAL; break; default: return -ENOTSUPP; } *config = pinconf_to_config_packed(param, arg); return 0; } static int rtc_pinconf_set(struct pinctrl_dev *pctldev, unsigned int pin, unsigned long *configs, unsigned int num_configs) { struct omap_rtc *rtc = pinctrl_dev_get_drvdata(pctldev); u32 val; unsigned int param; u32 param_val; int i; val = rtc_readl(rtc, OMAP_RTC_PMIC_REG); /* active low by default */ val |= OMAP_RTC_PMIC_EXT_WKUP_POL(pin); for (i = 0; i < num_configs; i++) { param = pinconf_to_config_param(configs[i]); param_val = pinconf_to_config_argument(configs[i]); switch (param) { case PIN_CONFIG_INPUT_ENABLE: if (param_val) val |= OMAP_RTC_PMIC_EXT_WKUP_EN(pin); else val &= ~OMAP_RTC_PMIC_EXT_WKUP_EN(pin); break; case PIN_CONFIG_ACTIVE_HIGH: val &= ~OMAP_RTC_PMIC_EXT_WKUP_POL(pin); break; default: dev_err(&rtc->rtc->dev, "Property %u not supported\n", param); return -ENOTSUPP; } } rtc->type->unlock(rtc); rtc_writel(rtc, OMAP_RTC_PMIC_REG, val); rtc->type->lock(rtc); return 0; } static const struct pinconf_ops rtc_pinconf_ops = { .is_generic = true, .pin_config_get = rtc_pinconf_get, .pin_config_set = rtc_pinconf_set, }; static struct pinctrl_desc rtc_pinctrl_desc = { .pins = rtc_pins_desc, .npins = ARRAY_SIZE(rtc_pins_desc), .pctlops = &rtc_pinctrl_ops, .confops = &rtc_pinconf_ops, .custom_params = rtc_params, .num_custom_params = ARRAY_SIZE(rtc_params), #ifdef CONFIG_DEBUG_FS .custom_conf_items = rtc_conf_items, #endif .owner = THIS_MODULE, }; static int omap_rtc_scratch_read(void *priv, unsigned int offset, void *_val, size_t bytes) { struct omap_rtc *rtc = priv; u32 *val = _val; int i; for (i = 0; i < bytes / 4; i++) val[i] = rtc_readl(rtc, OMAP_RTC_SCRATCH0_REG + offset + (i * 4)); return 0; } static int omap_rtc_scratch_write(void *priv, unsigned int offset, void *_val, size_t bytes) { struct omap_rtc *rtc = priv; u32 *val = _val; int i; rtc->type->unlock(rtc); for (i = 0; i < bytes / 4; i++) rtc_writel(rtc, OMAP_RTC_SCRATCH0_REG + offset + (i * 4), val[i]); rtc->type->lock(rtc); return 0; } static struct nvmem_config omap_rtc_nvmem_config = { .name = "omap_rtc_scratch", .word_size = 4, .stride = 4, .size = OMAP_RTC_KICK0_REG - OMAP_RTC_SCRATCH0_REG, .reg_read = omap_rtc_scratch_read, .reg_write = omap_rtc_scratch_write, }; static int omap_rtc_probe(struct platform_device *pdev) { struct omap_rtc *rtc; u8 reg, mask, new_ctrl; const struct platform_device_id *id_entry; const struct of_device_id *of_id; int ret; rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL); if (!rtc) return -ENOMEM; of_id = of_match_device(omap_rtc_of_match, &pdev->dev); if (of_id) { rtc->type = of_id->data; rtc->is_pmic_controller = rtc->type->has_pmic_mode && of_device_is_system_power_controller(pdev->dev.of_node); } else { id_entry = platform_get_device_id(pdev); rtc->type = (void *)id_entry->driver_data; } rtc->irq_timer = platform_get_irq(pdev, 0); if (rtc->irq_timer <= 0) return -ENOENT; rtc->irq_alarm = platform_get_irq(pdev, 1); if (rtc->irq_alarm <= 0) return -ENOENT; rtc->clk = devm_clk_get(&pdev->dev, "ext-clk"); if (!IS_ERR(rtc->clk)) rtc->has_ext_clk = true; else rtc->clk = devm_clk_get(&pdev->dev, "int-clk"); if (!IS_ERR(rtc->clk)) clk_prepare_enable(rtc->clk); rtc->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(rtc->base)) { clk_disable_unprepare(rtc->clk); return PTR_ERR(rtc->base); } platform_set_drvdata(pdev, rtc); /* Enable the clock/module so that we can access the registers */ pm_runtime_enable(&pdev->dev); pm_runtime_get_sync(&pdev->dev); rtc->type->unlock(rtc); /* * disable interrupts * * NOTE: ALARM2 is not cleared on AM3352 if rtc_write (writeb) is used */ rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG, 0); /* enable RTC functional clock */ if (rtc->type->has_32kclk_en) { reg = rtc_read(rtc, OMAP_RTC_OSC_REG); rtc_writel(rtc, OMAP_RTC_OSC_REG, reg | OMAP_RTC_OSC_32KCLK_EN); } /* clear old status */ reg = rtc_read(rtc, OMAP_RTC_STATUS_REG); mask = OMAP_RTC_STATUS_ALARM; if (rtc->type->has_pmic_mode) mask |= OMAP_RTC_STATUS_ALARM2; if (rtc->type->has_power_up_reset) { mask |= OMAP_RTC_STATUS_POWER_UP; if (reg & OMAP_RTC_STATUS_POWER_UP) dev_info(&pdev->dev, "RTC power up reset detected\n"); } if (reg & mask) rtc_write(rtc, OMAP_RTC_STATUS_REG, reg & mask); /* On boards with split power, RTC_ON_NOFF won't reset the RTC */ reg = rtc_read(rtc, OMAP_RTC_CTRL_REG); if (reg & OMAP_RTC_CTRL_STOP) dev_info(&pdev->dev, "already running\n"); /* force to 24 hour mode */ new_ctrl = reg & (OMAP_RTC_CTRL_SPLIT | OMAP_RTC_CTRL_AUTO_COMP); new_ctrl |= OMAP_RTC_CTRL_STOP; /* * BOARD-SPECIFIC CUSTOMIZATION CAN GO HERE: * * - Device wake-up capability setting should come through chip * init logic. OMAP1 boards should initialize the "wakeup capable" * flag in the platform device if the board is wired right for * being woken up by RTC alarm. For OMAP-L138, this capability * is built into the SoC by the "Deep Sleep" capability. * * - Boards wired so RTC_ON_nOFF is used as the reset signal, * rather than nPWRON_RESET, should forcibly enable split * power mode. (Some chip errata report that RTC_CTRL_SPLIT * is write-only, and always reads as zero...) */ if (new_ctrl & OMAP_RTC_CTRL_SPLIT) dev_info(&pdev->dev, "split power mode\n"); if (reg != new_ctrl) rtc_write(rtc, OMAP_RTC_CTRL_REG, new_ctrl); /* * If we have the external clock then switch to it so we can keep * ticking across suspend. */ if (rtc->has_ext_clk) { reg = rtc_read(rtc, OMAP_RTC_OSC_REG); reg &= ~OMAP_RTC_OSC_OSC32K_GZ_DISABLE; reg |= OMAP_RTC_OSC_32KCLK_EN | OMAP_RTC_OSC_SEL_32KCLK_SRC; rtc_writel(rtc, OMAP_RTC_OSC_REG, reg); } rtc->type->lock(rtc); device_init_wakeup(&pdev->dev, true); rtc->rtc = devm_rtc_allocate_device(&pdev->dev); if (IS_ERR(rtc->rtc)) { ret = PTR_ERR(rtc->rtc); goto err; } rtc->rtc->ops = &omap_rtc_ops; rtc->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000; rtc->rtc->range_max = RTC_TIMESTAMP_END_2099; omap_rtc_nvmem_config.priv = rtc; /* handle periodic and alarm irqs */ ret = devm_request_irq(&pdev->dev, rtc->irq_timer, rtc_irq, 0, dev_name(&rtc->rtc->dev), rtc); if (ret) goto err; if (rtc->irq_timer != rtc->irq_alarm) { ret = devm_request_irq(&pdev->dev, rtc->irq_alarm, rtc_irq, 0, dev_name(&rtc->rtc->dev), rtc); if (ret) goto err; } /* Support ext_wakeup pinconf */ rtc_pinctrl_desc.name = dev_name(&pdev->dev); rtc->pctldev = pinctrl_register(&rtc_pinctrl_desc, &pdev->dev, rtc); if (IS_ERR(rtc->pctldev)) { dev_err(&pdev->dev, "Couldn't register pinctrl driver\n"); ret = PTR_ERR(rtc->pctldev); goto err; } ret = rtc_register_device(rtc->rtc); if (ret) goto err_deregister_pinctrl; rtc_nvmem_register(rtc->rtc, &omap_rtc_nvmem_config); if (rtc->is_pmic_controller) { if (!pm_power_off) { omap_rtc_power_off_rtc = rtc; pm_power_off = omap_rtc_power_off; } } return 0; err_deregister_pinctrl: pinctrl_unregister(rtc->pctldev); err: clk_disable_unprepare(rtc->clk); device_init_wakeup(&pdev->dev, false); rtc->type->lock(rtc); pm_runtime_put_sync(&pdev->dev); pm_runtime_disable(&pdev->dev); return ret; } static int omap_rtc_remove(struct platform_device *pdev) { struct omap_rtc *rtc = platform_get_drvdata(pdev); u8 reg; if (pm_power_off == omap_rtc_power_off && omap_rtc_power_off_rtc == rtc) { pm_power_off = NULL; omap_rtc_power_off_rtc = NULL; } device_init_wakeup(&pdev->dev, 0); if (!IS_ERR(rtc->clk)) clk_disable_unprepare(rtc->clk); rtc->type->unlock(rtc); /* leave rtc running, but disable irqs */ rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0); if (rtc->has_ext_clk) { reg = rtc_read(rtc, OMAP_RTC_OSC_REG); reg &= ~OMAP_RTC_OSC_SEL_32KCLK_SRC; rtc_write(rtc, OMAP_RTC_OSC_REG, reg); } rtc->type->lock(rtc); /* Disable the clock/module */ pm_runtime_put_sync(&pdev->dev); pm_runtime_disable(&pdev->dev); /* Remove ext_wakeup pinconf */ pinctrl_unregister(rtc->pctldev); return 0; } static int __maybe_unused omap_rtc_suspend(struct device *dev) { struct omap_rtc *rtc = dev_get_drvdata(dev); rtc->interrupts_reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG); rtc->type->unlock(rtc); /* * FIXME: the RTC alarm is not currently acting as a wakeup event * source on some platforms, and in fact this enable() call is just * saving a flag that's never used... */ if (device_may_wakeup(dev)) enable_irq_wake(rtc->irq_alarm); else rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0); rtc->type->lock(rtc); rtc->is_suspending = true; return 0; } static int __maybe_unused omap_rtc_resume(struct device *dev) { struct omap_rtc *rtc = dev_get_drvdata(dev); rtc->type->unlock(rtc); if (device_may_wakeup(dev)) disable_irq_wake(rtc->irq_alarm); else rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, rtc->interrupts_reg); rtc->type->lock(rtc); rtc->is_suspending = false; return 0; } static int __maybe_unused omap_rtc_runtime_suspend(struct device *dev) { struct omap_rtc *rtc = dev_get_drvdata(dev); if (rtc->is_suspending && !rtc->has_ext_clk) return -EBUSY; return 0; } static const struct dev_pm_ops omap_rtc_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(omap_rtc_suspend, omap_rtc_resume) SET_RUNTIME_PM_OPS(omap_rtc_runtime_suspend, NULL, NULL) }; static void omap_rtc_shutdown(struct platform_device *pdev) { struct omap_rtc *rtc = platform_get_drvdata(pdev); u8 mask; /* * Keep the ALARM interrupt enabled to allow the system to power up on * alarm events. */ rtc->type->unlock(rtc); mask = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG); mask &= OMAP_RTC_INTERRUPTS_IT_ALARM; rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, mask); rtc->type->lock(rtc); } static struct platform_driver omap_rtc_driver = { .probe = omap_rtc_probe, .remove = omap_rtc_remove, .shutdown = omap_rtc_shutdown, .driver = { .name = "omap_rtc", .pm = &omap_rtc_pm_ops, .of_match_table = omap_rtc_of_match, }, .id_table = omap_rtc_id_table, }; module_platform_driver(omap_rtc_driver); MODULE_ALIAS("platform:omap_rtc"); MODULE_AUTHOR("George G. Davis (and others)"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1