Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Swen Schillig | 965 | 45.03% | 10 | 18.18% |
Christof Schmitt | 448 | 20.91% | 13 | 23.64% |
Andrew Morton | 195 | 9.10% | 2 | 3.64% |
Julian Wiedmann | 145 | 6.77% | 5 | 9.09% |
Martin Schwidefsky | 109 | 5.09% | 1 | 1.82% |
Sebastian Ott | 73 | 3.41% | 1 | 1.82% |
Martin Peschke | 62 | 2.89% | 4 | 7.27% |
Benjamin Block | 59 | 2.75% | 2 | 3.64% |
Steffen Maier | 35 | 1.63% | 4 | 7.27% |
Jan Glauber | 15 | 0.70% | 2 | 3.64% |
Heiko Carstens | 14 | 0.65% | 3 | 5.45% |
Peter Zijlstra | 7 | 0.33% | 1 | 1.82% |
Andreas Herrmann | 4 | 0.19% | 1 | 1.82% |
Maxim Shchetynin | 4 | 0.19% | 1 | 1.82% |
FUJITA Tomonori | 3 | 0.14% | 2 | 3.64% |
Tejun Heo | 3 | 0.14% | 1 | 1.82% |
Greg Kroah-Hartman | 1 | 0.05% | 1 | 1.82% |
Lucas De Marchi | 1 | 0.05% | 1 | 1.82% |
Total | 2143 | 55 |
// SPDX-License-Identifier: GPL-2.0 /* * zfcp device driver * * Setup and helper functions to access QDIO. * * Copyright IBM Corp. 2002, 2020 */ #define KMSG_COMPONENT "zfcp" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/slab.h> #include <linux/module.h> #include "zfcp_ext.h" #include "zfcp_qdio.h" static bool enable_multibuffer = true; module_param_named(datarouter, enable_multibuffer, bool, 0400); MODULE_PARM_DESC(datarouter, "Enable hardware data router support (default on)"); static void zfcp_qdio_handler_error(struct zfcp_qdio *qdio, char *dbftag, unsigned int qdio_err) { struct zfcp_adapter *adapter = qdio->adapter; dev_warn(&adapter->ccw_device->dev, "A QDIO problem occurred\n"); if (qdio_err & QDIO_ERROR_SLSB_STATE) { zfcp_qdio_siosl(adapter); zfcp_erp_adapter_shutdown(adapter, 0, dbftag); return; } zfcp_erp_adapter_reopen(adapter, ZFCP_STATUS_ADAPTER_LINK_UNPLUGGED | ZFCP_STATUS_COMMON_ERP_FAILED, dbftag); } static void zfcp_qdio_zero_sbals(struct qdio_buffer *sbal[], int first, int cnt) { int i, sbal_idx; for (i = first; i < first + cnt; i++) { sbal_idx = i % QDIO_MAX_BUFFERS_PER_Q; memset(sbal[sbal_idx], 0, sizeof(struct qdio_buffer)); } } /* this needs to be called prior to updating the queue fill level */ static inline void zfcp_qdio_account(struct zfcp_qdio *qdio) { unsigned long long now, span; int used; now = get_tod_clock_monotonic(); span = (now - qdio->req_q_time) >> 12; used = QDIO_MAX_BUFFERS_PER_Q - atomic_read(&qdio->req_q_free); qdio->req_q_util += used * span; qdio->req_q_time = now; } static void zfcp_qdio_int_req(struct ccw_device *cdev, unsigned int qdio_err, int queue_no, int idx, int count, unsigned long parm) { struct zfcp_qdio *qdio = (struct zfcp_qdio *) parm; if (unlikely(qdio_err)) { zfcp_qdio_handler_error(qdio, "qdireq1", qdio_err); return; } /* cleanup all SBALs being program-owned now */ zfcp_qdio_zero_sbals(qdio->req_q, idx, count); spin_lock_irq(&qdio->stat_lock); zfcp_qdio_account(qdio); spin_unlock_irq(&qdio->stat_lock); atomic_add(count, &qdio->req_q_free); wake_up(&qdio->req_q_wq); } static void zfcp_qdio_int_resp(struct ccw_device *cdev, unsigned int qdio_err, int queue_no, int idx, int count, unsigned long parm) { struct zfcp_qdio *qdio = (struct zfcp_qdio *) parm; struct zfcp_adapter *adapter = qdio->adapter; int sbal_no, sbal_idx; if (unlikely(qdio_err)) { if (zfcp_adapter_multi_buffer_active(adapter)) { void *pl[ZFCP_QDIO_MAX_SBALS_PER_REQ + 1]; struct qdio_buffer_element *sbale; u64 req_id; u8 scount; memset(pl, 0, ZFCP_QDIO_MAX_SBALS_PER_REQ * sizeof(void *)); sbale = qdio->res_q[idx]->element; req_id = sbale->addr; scount = min(sbale->scount + 1, ZFCP_QDIO_MAX_SBALS_PER_REQ + 1); /* incl. signaling SBAL */ for (sbal_no = 0; sbal_no < scount; sbal_no++) { sbal_idx = (idx + sbal_no) % QDIO_MAX_BUFFERS_PER_Q; pl[sbal_no] = qdio->res_q[sbal_idx]; } zfcp_dbf_hba_def_err(adapter, req_id, scount, pl); } zfcp_qdio_handler_error(qdio, "qdires1", qdio_err); return; } /* * go through all SBALs from input queue currently * returned by QDIO layer */ for (sbal_no = 0; sbal_no < count; sbal_no++) { sbal_idx = (idx + sbal_no) % QDIO_MAX_BUFFERS_PER_Q; /* go through all SBALEs of SBAL */ zfcp_fsf_reqid_check(qdio, sbal_idx); } /* * put SBALs back to response queue */ if (do_QDIO(cdev, QDIO_FLAG_SYNC_INPUT, 0, idx, count)) zfcp_erp_adapter_reopen(qdio->adapter, 0, "qdires2"); } static struct qdio_buffer_element * zfcp_qdio_sbal_chain(struct zfcp_qdio *qdio, struct zfcp_qdio_req *q_req) { struct qdio_buffer_element *sbale; /* set last entry flag in current SBALE of current SBAL */ sbale = zfcp_qdio_sbale_curr(qdio, q_req); sbale->eflags |= SBAL_EFLAGS_LAST_ENTRY; /* don't exceed last allowed SBAL */ if (q_req->sbal_last == q_req->sbal_limit) return NULL; /* set chaining flag in first SBALE of current SBAL */ sbale = zfcp_qdio_sbale_req(qdio, q_req); sbale->sflags |= SBAL_SFLAGS0_MORE_SBALS; /* calculate index of next SBAL */ q_req->sbal_last++; q_req->sbal_last %= QDIO_MAX_BUFFERS_PER_Q; /* keep this requests number of SBALs up-to-date */ q_req->sbal_number++; BUG_ON(q_req->sbal_number > ZFCP_QDIO_MAX_SBALS_PER_REQ); /* start at first SBALE of new SBAL */ q_req->sbale_curr = 0; /* set storage-block type for new SBAL */ sbale = zfcp_qdio_sbale_curr(qdio, q_req); sbale->sflags |= q_req->sbtype; return sbale; } static struct qdio_buffer_element * zfcp_qdio_sbale_next(struct zfcp_qdio *qdio, struct zfcp_qdio_req *q_req) { if (q_req->sbale_curr == qdio->max_sbale_per_sbal - 1) return zfcp_qdio_sbal_chain(qdio, q_req); q_req->sbale_curr++; return zfcp_qdio_sbale_curr(qdio, q_req); } /** * zfcp_qdio_sbals_from_sg - fill SBALs from scatter-gather list * @qdio: pointer to struct zfcp_qdio * @q_req: pointer to struct zfcp_qdio_req * @sg: scatter-gather list * Returns: zero or -EINVAL on error */ int zfcp_qdio_sbals_from_sg(struct zfcp_qdio *qdio, struct zfcp_qdio_req *q_req, struct scatterlist *sg) { struct qdio_buffer_element *sbale; /* set storage-block type for this request */ sbale = zfcp_qdio_sbale_req(qdio, q_req); sbale->sflags |= q_req->sbtype; for (; sg; sg = sg_next(sg)) { sbale = zfcp_qdio_sbale_next(qdio, q_req); if (!sbale) { atomic_inc(&qdio->req_q_full); zfcp_qdio_zero_sbals(qdio->req_q, q_req->sbal_first, q_req->sbal_number); return -EINVAL; } sbale->addr = sg_phys(sg); sbale->length = sg->length; } return 0; } static int zfcp_qdio_sbal_check(struct zfcp_qdio *qdio) { if (atomic_read(&qdio->req_q_free) || !(atomic_read(&qdio->adapter->status) & ZFCP_STATUS_ADAPTER_QDIOUP)) return 1; return 0; } /** * zfcp_qdio_sbal_get - get free sbal in request queue, wait if necessary * @qdio: pointer to struct zfcp_qdio * * The req_q_lock must be held by the caller of this function, and * this function may only be called from process context; it will * sleep when waiting for a free sbal. * * Returns: 0 on success, -EIO if there is no free sbal after waiting. */ int zfcp_qdio_sbal_get(struct zfcp_qdio *qdio) { long ret; ret = wait_event_interruptible_lock_irq_timeout(qdio->req_q_wq, zfcp_qdio_sbal_check(qdio), qdio->req_q_lock, 5 * HZ); if (!(atomic_read(&qdio->adapter->status) & ZFCP_STATUS_ADAPTER_QDIOUP)) return -EIO; if (ret > 0) return 0; if (!ret) { atomic_inc(&qdio->req_q_full); /* assume hanging outbound queue, try queue recovery */ zfcp_erp_adapter_reopen(qdio->adapter, 0, "qdsbg_1"); } return -EIO; } /** * zfcp_qdio_send - set PCI flag in first SBALE and send req to QDIO * @qdio: pointer to struct zfcp_qdio * @q_req: pointer to struct zfcp_qdio_req * Returns: 0 on success, error otherwise */ int zfcp_qdio_send(struct zfcp_qdio *qdio, struct zfcp_qdio_req *q_req) { int retval; u8 sbal_number = q_req->sbal_number; spin_lock(&qdio->stat_lock); zfcp_qdio_account(qdio); spin_unlock(&qdio->stat_lock); retval = do_QDIO(qdio->adapter->ccw_device, QDIO_FLAG_SYNC_OUTPUT, 0, q_req->sbal_first, sbal_number); if (unlikely(retval)) { zfcp_qdio_zero_sbals(qdio->req_q, q_req->sbal_first, sbal_number); return retval; } /* account for transferred buffers */ atomic_sub(sbal_number, &qdio->req_q_free); qdio->req_q_idx += sbal_number; qdio->req_q_idx %= QDIO_MAX_BUFFERS_PER_Q; return 0; } /** * zfcp_qdio_allocate - allocate queue memory and initialize QDIO data * @qdio: pointer to struct zfcp_qdio * Returns: -ENOMEM on memory allocation error or return value from * qdio_allocate */ static int zfcp_qdio_allocate(struct zfcp_qdio *qdio) { int ret; ret = qdio_alloc_buffers(qdio->req_q, QDIO_MAX_BUFFERS_PER_Q); if (ret) return -ENOMEM; ret = qdio_alloc_buffers(qdio->res_q, QDIO_MAX_BUFFERS_PER_Q); if (ret) goto free_req_q; init_waitqueue_head(&qdio->req_q_wq); ret = qdio_allocate(qdio->adapter->ccw_device, 1, 1); if (ret) goto free_res_q; return 0; free_res_q: qdio_free_buffers(qdio->res_q, QDIO_MAX_BUFFERS_PER_Q); free_req_q: qdio_free_buffers(qdio->req_q, QDIO_MAX_BUFFERS_PER_Q); return ret; } /** * zfcp_close_qdio - close qdio queues for an adapter * @qdio: pointer to structure zfcp_qdio */ void zfcp_qdio_close(struct zfcp_qdio *qdio) { struct zfcp_adapter *adapter = qdio->adapter; int idx, count; if (!(atomic_read(&adapter->status) & ZFCP_STATUS_ADAPTER_QDIOUP)) return; /* clear QDIOUP flag, thus do_QDIO is not called during qdio_shutdown */ spin_lock_irq(&qdio->req_q_lock); atomic_andnot(ZFCP_STATUS_ADAPTER_QDIOUP, &adapter->status); spin_unlock_irq(&qdio->req_q_lock); wake_up(&qdio->req_q_wq); qdio_shutdown(adapter->ccw_device, QDIO_FLAG_CLEANUP_USING_CLEAR); /* cleanup used outbound sbals */ count = atomic_read(&qdio->req_q_free); if (count < QDIO_MAX_BUFFERS_PER_Q) { idx = (qdio->req_q_idx + count) % QDIO_MAX_BUFFERS_PER_Q; count = QDIO_MAX_BUFFERS_PER_Q - count; zfcp_qdio_zero_sbals(qdio->req_q, idx, count); } qdio->req_q_idx = 0; atomic_set(&qdio->req_q_free, 0); } void zfcp_qdio_shost_update(struct zfcp_adapter *const adapter, const struct zfcp_qdio *const qdio) { struct Scsi_Host *const shost = adapter->scsi_host; if (shost == NULL) return; shost->sg_tablesize = qdio->max_sbale_per_req; shost->max_sectors = qdio->max_sbale_per_req * 8; } /** * zfcp_qdio_open - prepare and initialize response queue * @qdio: pointer to struct zfcp_qdio * Returns: 0 on success, otherwise -EIO */ int zfcp_qdio_open(struct zfcp_qdio *qdio) { struct qdio_buffer **input_sbals[1] = {qdio->res_q}; struct qdio_buffer **output_sbals[1] = {qdio->req_q}; struct qdio_buffer_element *sbale; struct qdio_initialize init_data = {0}; struct zfcp_adapter *adapter = qdio->adapter; struct ccw_device *cdev = adapter->ccw_device; struct qdio_ssqd_desc ssqd; int cc; if (atomic_read(&adapter->status) & ZFCP_STATUS_ADAPTER_QDIOUP) return -EIO; atomic_andnot(ZFCP_STATUS_ADAPTER_SIOSL_ISSUED, &qdio->adapter->status); init_data.q_format = QDIO_ZFCP_QFMT; memcpy(init_data.adapter_name, dev_name(&cdev->dev), 8); ASCEBC(init_data.adapter_name, 8); init_data.qib_rflags = QIB_RFLAGS_ENABLE_DATA_DIV; if (enable_multibuffer) init_data.qdr_ac |= QDR_AC_MULTI_BUFFER_ENABLE; init_data.no_input_qs = 1; init_data.no_output_qs = 1; init_data.input_handler = zfcp_qdio_int_resp; init_data.output_handler = zfcp_qdio_int_req; init_data.int_parm = (unsigned long) qdio; init_data.input_sbal_addr_array = input_sbals; init_data.output_sbal_addr_array = output_sbals; init_data.scan_threshold = QDIO_MAX_BUFFERS_PER_Q - ZFCP_QDIO_MAX_SBALS_PER_REQ * 2; if (qdio_establish(cdev, &init_data)) goto failed_establish; if (qdio_get_ssqd_desc(cdev, &ssqd)) goto failed_qdio; if (ssqd.qdioac2 & CHSC_AC2_DATA_DIV_ENABLED) atomic_or(ZFCP_STATUS_ADAPTER_DATA_DIV_ENABLED, &qdio->adapter->status); if (ssqd.qdioac2 & CHSC_AC2_MULTI_BUFFER_ENABLED) { atomic_or(ZFCP_STATUS_ADAPTER_MB_ACT, &adapter->status); qdio->max_sbale_per_sbal = QDIO_MAX_ELEMENTS_PER_BUFFER; } else { atomic_andnot(ZFCP_STATUS_ADAPTER_MB_ACT, &adapter->status); qdio->max_sbale_per_sbal = QDIO_MAX_ELEMENTS_PER_BUFFER - 1; } qdio->max_sbale_per_req = ZFCP_QDIO_MAX_SBALS_PER_REQ * qdio->max_sbale_per_sbal - 2; if (qdio_activate(cdev)) goto failed_qdio; for (cc = 0; cc < QDIO_MAX_BUFFERS_PER_Q; cc++) { sbale = &(qdio->res_q[cc]->element[0]); sbale->length = 0; sbale->eflags = SBAL_EFLAGS_LAST_ENTRY; sbale->sflags = 0; sbale->addr = 0; } if (do_QDIO(cdev, QDIO_FLAG_SYNC_INPUT, 0, 0, QDIO_MAX_BUFFERS_PER_Q)) goto failed_qdio; /* set index of first available SBALS / number of available SBALS */ qdio->req_q_idx = 0; atomic_set(&qdio->req_q_free, QDIO_MAX_BUFFERS_PER_Q); atomic_or(ZFCP_STATUS_ADAPTER_QDIOUP, &qdio->adapter->status); zfcp_qdio_shost_update(adapter, qdio); return 0; failed_qdio: qdio_shutdown(cdev, QDIO_FLAG_CLEANUP_USING_CLEAR); failed_establish: dev_err(&cdev->dev, "Setting up the QDIO connection to the FCP adapter failed\n"); return -EIO; } void zfcp_qdio_destroy(struct zfcp_qdio *qdio) { if (!qdio) return; if (qdio->adapter->ccw_device) qdio_free(qdio->adapter->ccw_device); qdio_free_buffers(qdio->req_q, QDIO_MAX_BUFFERS_PER_Q); qdio_free_buffers(qdio->res_q, QDIO_MAX_BUFFERS_PER_Q); kfree(qdio); } int zfcp_qdio_setup(struct zfcp_adapter *adapter) { struct zfcp_qdio *qdio; qdio = kzalloc(sizeof(struct zfcp_qdio), GFP_KERNEL); if (!qdio) return -ENOMEM; qdio->adapter = adapter; if (zfcp_qdio_allocate(qdio)) { kfree(qdio); return -ENOMEM; } spin_lock_init(&qdio->req_q_lock); spin_lock_init(&qdio->stat_lock); adapter->qdio = qdio; return 0; } /** * zfcp_qdio_siosl - Trigger logging in FCP channel * @adapter: The zfcp_adapter where to trigger logging * * Call the cio siosl function to trigger hardware logging. This * wrapper function sets a flag to ensure hardware logging is only * triggered once before going through qdio shutdown. * * The triggers are always run from qdio tasklet context, so no * additional synchronization is necessary. */ void zfcp_qdio_siosl(struct zfcp_adapter *adapter) { int rc; if (atomic_read(&adapter->status) & ZFCP_STATUS_ADAPTER_SIOSL_ISSUED) return; rc = ccw_device_siosl(adapter->ccw_device); if (!rc) atomic_or(ZFCP_STATUS_ADAPTER_SIOSL_ISSUED, &adapter->status); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1