Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Linus Torvalds | 733 | 99.86% | 1 | 50.00% |
Michal Marek | 1 | 0.14% | 1 | 50.00% |
Total | 734 | 2 |
/* * Copyright (c) 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)queue.h 8.5 (Berkeley) 8/20/94 * $FreeBSD: src/sys/sys/queue.h,v 1.38 2000/05/26 02:06:56 jake Exp $ */ #ifndef _SYS_QUEUE_H_ #define _SYS_QUEUE_H_ /* * This file defines five types of data structures: singly-linked lists, * singly-linked tail queues, lists, tail queues, and circular queues. * * A singly-linked list is headed by a single forward pointer. The elements * are singly linked for minimum space and pointer manipulation overhead at * the expense of O(n) removal for arbitrary elements. New elements can be * added to the list after an existing element or at the head of the list. * Elements being removed from the head of the list should use the explicit * macro for this purpose for optimum efficiency. A singly-linked list may * only be traversed in the forward direction. Singly-linked lists are ideal * for applications with large datasets and few or no removals or for * implementing a LIFO queue. * * A singly-linked tail queue is headed by a pair of pointers, one to the * head of the list and the other to the tail of the list. The elements are * singly linked for minimum space and pointer manipulation overhead at the * expense of O(n) removal for arbitrary elements. New elements can be added * to the list after an existing element, at the head of the list, or at the * end of the list. Elements being removed from the head of the tail queue * should use the explicit macro for this purpose for optimum efficiency. * A singly-linked tail queue may only be traversed in the forward direction. * Singly-linked tail queues are ideal for applications with large datasets * and few or no removals or for implementing a FIFO queue. * * A list is headed by a single forward pointer (or an array of forward * pointers for a hash table header). The elements are doubly linked * so that an arbitrary element can be removed without a need to * traverse the list. New elements can be added to the list before * or after an existing element or at the head of the list. A list * may only be traversed in the forward direction. * * A tail queue is headed by a pair of pointers, one to the head of the * list and the other to the tail of the list. The elements are doubly * linked so that an arbitrary element can be removed without a need to * traverse the list. New elements can be added to the list before or * after an existing element, at the head of the list, or at the end of * the list. A tail queue may be traversed in either direction. * * A circle queue is headed by a pair of pointers, one to the head of the * list and the other to the tail of the list. The elements are doubly * linked so that an arbitrary element can be removed without a need to * traverse the list. New elements can be added to the list before or after * an existing element, at the head of the list, or at the end of the list. * A circle queue may be traversed in either direction, but has a more * complex end of list detection. * * For details on the use of these macros, see the queue(3) manual page. * * * SLIST LIST STAILQ TAILQ CIRCLEQ * _HEAD + + + + + * _HEAD_INITIALIZER + + + + + * _ENTRY + + + + + * _INIT + + + + + * _EMPTY + + + + + * _FIRST + + + + + * _NEXT + + + + + * _PREV - - - + + * _LAST - - + + + * _FOREACH + + + + + * _FOREACH_REVERSE - - - + + * _INSERT_HEAD + + + + + * _INSERT_BEFORE - + - + + * _INSERT_AFTER + + + + + * _INSERT_TAIL - - + + + * _REMOVE_HEAD + - + - - * _REMOVE + + + + + * */ /* * Singly-linked List declarations. */ #define SLIST_HEAD(name, type) \ struct name { \ struct type *slh_first; /* first element */ \ } #define SLIST_HEAD_INITIALIZER(head) \ { NULL } #define SLIST_ENTRY(type) \ struct { \ struct type *sle_next; /* next element */ \ } /* * Singly-linked List functions. */ #define SLIST_EMPTY(head) ((head)->slh_first == NULL) #define SLIST_FIRST(head) ((head)->slh_first) #define SLIST_FOREACH(var, head, field) \ for ((var) = SLIST_FIRST((head)); \ (var); \ (var) = SLIST_NEXT((var), field)) #define SLIST_INIT(head) do { \ SLIST_FIRST((head)) = NULL; \ } while (0) #define SLIST_INSERT_AFTER(slistelm, elm, field) do { \ SLIST_NEXT((elm), field) = SLIST_NEXT((slistelm), field); \ SLIST_NEXT((slistelm), field) = (elm); \ } while (0) #define SLIST_INSERT_HEAD(head, elm, field) do { \ SLIST_NEXT((elm), field) = SLIST_FIRST((head)); \ SLIST_FIRST((head)) = (elm); \ } while (0) #define SLIST_NEXT(elm, field) ((elm)->field.sle_next) #define SLIST_REMOVE(head, elm, type, field) do { \ if (SLIST_FIRST((head)) == (elm)) { \ SLIST_REMOVE_HEAD((head), field); \ } \ else { \ struct type *curelm = SLIST_FIRST((head)); \ while (SLIST_NEXT(curelm, field) != (elm)) \ curelm = SLIST_NEXT(curelm, field); \ SLIST_NEXT(curelm, field) = \ SLIST_NEXT(SLIST_NEXT(curelm, field), field); \ } \ } while (0) #define SLIST_REMOVE_HEAD(head, field) do { \ SLIST_FIRST((head)) = SLIST_NEXT(SLIST_FIRST((head)), field); \ } while (0) /* * Singly-linked Tail queue declarations. */ #define STAILQ_HEAD(name, type) \ struct name { \ struct type *stqh_first;/* first element */ \ struct type **stqh_last;/* addr of last next element */ \ } #define STAILQ_HEAD_INITIALIZER(head) \ { NULL, &(head).stqh_first } #define STAILQ_ENTRY(type) \ struct { \ struct type *stqe_next; /* next element */ \ } /* * Singly-linked Tail queue functions. */ #define STAILQ_EMPTY(head) ((head)->stqh_first == NULL) #define STAILQ_FIRST(head) ((head)->stqh_first) #define STAILQ_FOREACH(var, head, field) \ for((var) = STAILQ_FIRST((head)); \ (var); \ (var) = STAILQ_NEXT((var), field)) #define STAILQ_INIT(head) do { \ STAILQ_FIRST((head)) = NULL; \ (head)->stqh_last = &STAILQ_FIRST((head)); \ } while (0) #define STAILQ_INSERT_AFTER(head, tqelm, elm, field) do { \ if ((STAILQ_NEXT((elm), field) = STAILQ_NEXT((tqelm), field)) == NULL)\ (head)->stqh_last = &STAILQ_NEXT((elm), field); \ STAILQ_NEXT((tqelm), field) = (elm); \ } while (0) #define STAILQ_INSERT_HEAD(head, elm, field) do { \ if ((STAILQ_NEXT((elm), field) = STAILQ_FIRST((head))) == NULL) \ (head)->stqh_last = &STAILQ_NEXT((elm), field); \ STAILQ_FIRST((head)) = (elm); \ } while (0) #define STAILQ_INSERT_TAIL(head, elm, field) do { \ STAILQ_NEXT((elm), field) = NULL; \ STAILQ_LAST((head)) = (elm); \ (head)->stqh_last = &STAILQ_NEXT((elm), field); \ } while (0) #define STAILQ_LAST(head) (*(head)->stqh_last) #define STAILQ_NEXT(elm, field) ((elm)->field.stqe_next) #define STAILQ_REMOVE(head, elm, type, field) do { \ if (STAILQ_FIRST((head)) == (elm)) { \ STAILQ_REMOVE_HEAD(head, field); \ } \ else { \ struct type *curelm = STAILQ_FIRST((head)); \ while (STAILQ_NEXT(curelm, field) != (elm)) \ curelm = STAILQ_NEXT(curelm, field); \ if ((STAILQ_NEXT(curelm, field) = \ STAILQ_NEXT(STAILQ_NEXT(curelm, field), field)) == NULL)\ (head)->stqh_last = &STAILQ_NEXT((curelm), field);\ } \ } while (0) #define STAILQ_REMOVE_HEAD(head, field) do { \ if ((STAILQ_FIRST((head)) = \ STAILQ_NEXT(STAILQ_FIRST((head)), field)) == NULL) \ (head)->stqh_last = &STAILQ_FIRST((head)); \ } while (0) #define STAILQ_REMOVE_HEAD_UNTIL(head, elm, field) do { \ if ((STAILQ_FIRST((head)) = STAILQ_NEXT((elm), field)) == NULL) \ (head)->stqh_last = &STAILQ_FIRST((head)); \ } while (0) /* * List declarations. */ #define BSD_LIST_HEAD(name, type) \ struct name { \ struct type *lh_first; /* first element */ \ } #define LIST_HEAD_INITIALIZER(head) \ { NULL } #define LIST_ENTRY(type) \ struct { \ struct type *le_next; /* next element */ \ struct type **le_prev; /* address of previous next element */ \ } /* * List functions. */ #define LIST_EMPTY(head) ((head)->lh_first == NULL) #define LIST_FIRST(head) ((head)->lh_first) #define LIST_FOREACH(var, head, field) \ for ((var) = LIST_FIRST((head)); \ (var); \ (var) = LIST_NEXT((var), field)) #define LIST_INIT(head) do { \ LIST_FIRST((head)) = NULL; \ } while (0) #define LIST_INSERT_AFTER(listelm, elm, field) do { \ if ((LIST_NEXT((elm), field) = LIST_NEXT((listelm), field)) != NULL)\ LIST_NEXT((listelm), field)->field.le_prev = \ &LIST_NEXT((elm), field); \ LIST_NEXT((listelm), field) = (elm); \ (elm)->field.le_prev = &LIST_NEXT((listelm), field); \ } while (0) #define LIST_INSERT_BEFORE(listelm, elm, field) do { \ (elm)->field.le_prev = (listelm)->field.le_prev; \ LIST_NEXT((elm), field) = (listelm); \ *(listelm)->field.le_prev = (elm); \ (listelm)->field.le_prev = &LIST_NEXT((elm), field); \ } while (0) #define LIST_INSERT_HEAD(head, elm, field) do { \ if ((LIST_NEXT((elm), field) = LIST_FIRST((head))) != NULL) \ LIST_FIRST((head))->field.le_prev = &LIST_NEXT((elm), field);\ LIST_FIRST((head)) = (elm); \ (elm)->field.le_prev = &LIST_FIRST((head)); \ } while (0) #define LIST_NEXT(elm, field) ((elm)->field.le_next) #define LIST_REMOVE(elm, field) do { \ if (LIST_NEXT((elm), field) != NULL) \ LIST_NEXT((elm), field)->field.le_prev = \ (elm)->field.le_prev; \ *(elm)->field.le_prev = LIST_NEXT((elm), field); \ } while (0) /* * Tail queue declarations. */ #define TAILQ_HEAD(name, type) \ struct name { \ struct type *tqh_first; /* first element */ \ struct type **tqh_last; /* addr of last next element */ \ } #define TAILQ_HEAD_INITIALIZER(head) \ { NULL, &(head).tqh_first } #define TAILQ_ENTRY(type) \ struct { \ struct type *tqe_next; /* next element */ \ struct type **tqe_prev; /* address of previous next element */ \ } /* * Tail queue functions. */ #define TAILQ_EMPTY(head) ((head)->tqh_first == NULL) #define TAILQ_FIRST(head) ((head)->tqh_first) #define TAILQ_FOREACH(var, head, field) \ for ((var) = TAILQ_FIRST((head)); \ (var); \ (var) = TAILQ_NEXT((var), field)) #define TAILQ_FOREACH_REVERSE(var, head, headname, field) \ for ((var) = TAILQ_LAST((head), headname); \ (var); \ (var) = TAILQ_PREV((var), headname, field)) #define TAILQ_INIT(head) do { \ TAILQ_FIRST((head)) = NULL; \ (head)->tqh_last = &TAILQ_FIRST((head)); \ } while (0) #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \ if ((TAILQ_NEXT((elm), field) = TAILQ_NEXT((listelm), field)) != NULL)\ TAILQ_NEXT((elm), field)->field.tqe_prev = \ &TAILQ_NEXT((elm), field); \ else \ (head)->tqh_last = &TAILQ_NEXT((elm), field); \ TAILQ_NEXT((listelm), field) = (elm); \ (elm)->field.tqe_prev = &TAILQ_NEXT((listelm), field); \ } while (0) #define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \ (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \ TAILQ_NEXT((elm), field) = (listelm); \ *(listelm)->field.tqe_prev = (elm); \ (listelm)->field.tqe_prev = &TAILQ_NEXT((elm), field); \ } while (0) #define TAILQ_INSERT_HEAD(head, elm, field) do { \ if ((TAILQ_NEXT((elm), field) = TAILQ_FIRST((head))) != NULL) \ TAILQ_FIRST((head))->field.tqe_prev = \ &TAILQ_NEXT((elm), field); \ else \ (head)->tqh_last = &TAILQ_NEXT((elm), field); \ TAILQ_FIRST((head)) = (elm); \ (elm)->field.tqe_prev = &TAILQ_FIRST((head)); \ } while (0) #define TAILQ_INSERT_TAIL(head, elm, field) do { \ TAILQ_NEXT((elm), field) = NULL; \ (elm)->field.tqe_prev = (head)->tqh_last; \ *(head)->tqh_last = (elm); \ (head)->tqh_last = &TAILQ_NEXT((elm), field); \ } while (0) #define TAILQ_LAST(head, headname) \ (*(((struct headname *)((head)->tqh_last))->tqh_last)) #define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next) #define TAILQ_PREV(elm, headname, field) \ (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last)) #define TAILQ_REMOVE(head, elm, field) do { \ if ((TAILQ_NEXT((elm), field)) != NULL) \ TAILQ_NEXT((elm), field)->field.tqe_prev = \ (elm)->field.tqe_prev; \ else \ (head)->tqh_last = (elm)->field.tqe_prev; \ *(elm)->field.tqe_prev = TAILQ_NEXT((elm), field); \ } while (0) /* * Circular queue declarations. */ #define CIRCLEQ_HEAD(name, type) \ struct name { \ struct type *cqh_first; /* first element */ \ struct type *cqh_last; /* last element */ \ } #define CIRCLEQ_HEAD_INITIALIZER(head) \ { (void *)&(head), (void *)&(head) } #define CIRCLEQ_ENTRY(type) \ struct { \ struct type *cqe_next; /* next element */ \ struct type *cqe_prev; /* previous element */ \ } /* * Circular queue functions. */ #define CIRCLEQ_EMPTY(head) ((head)->cqh_first == (void *)(head)) #define CIRCLEQ_FIRST(head) ((head)->cqh_first) #define CIRCLEQ_FOREACH(var, head, field) \ for ((var) = CIRCLEQ_FIRST((head)); \ (var) != (void *)(head); \ (var) = CIRCLEQ_NEXT((var), field)) #define CIRCLEQ_FOREACH_REVERSE(var, head, field) \ for ((var) = CIRCLEQ_LAST((head)); \ (var) != (void *)(head); \ (var) = CIRCLEQ_PREV((var), field)) #define CIRCLEQ_INIT(head) do { \ CIRCLEQ_FIRST((head)) = (void *)(head); \ CIRCLEQ_LAST((head)) = (void *)(head); \ } while (0) #define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \ CIRCLEQ_NEXT((elm), field) = CIRCLEQ_NEXT((listelm), field); \ CIRCLEQ_PREV((elm), field) = (listelm); \ if (CIRCLEQ_NEXT((listelm), field) == (void *)(head)) \ CIRCLEQ_LAST((head)) = (elm); \ else \ CIRCLEQ_PREV(CIRCLEQ_NEXT((listelm), field), field) = (elm);\ CIRCLEQ_NEXT((listelm), field) = (elm); \ } while (0) #define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \ CIRCLEQ_NEXT((elm), field) = (listelm); \ CIRCLEQ_PREV((elm), field) = CIRCLEQ_PREV((listelm), field); \ if (CIRCLEQ_PREV((listelm), field) == (void *)(head)) \ CIRCLEQ_FIRST((head)) = (elm); \ else \ CIRCLEQ_NEXT(CIRCLEQ_PREV((listelm), field), field) = (elm);\ CIRCLEQ_PREV((listelm), field) = (elm); \ } while (0) #define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \ CIRCLEQ_NEXT((elm), field) = CIRCLEQ_FIRST((head)); \ CIRCLEQ_PREV((elm), field) = (void *)(head); \ if (CIRCLEQ_LAST((head)) == (void *)(head)) \ CIRCLEQ_LAST((head)) = (elm); \ else \ CIRCLEQ_PREV(CIRCLEQ_FIRST((head)), field) = (elm); \ CIRCLEQ_FIRST((head)) = (elm); \ } while (0) #define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \ CIRCLEQ_NEXT((elm), field) = (void *)(head); \ CIRCLEQ_PREV((elm), field) = CIRCLEQ_LAST((head)); \ if (CIRCLEQ_FIRST((head)) == (void *)(head)) \ CIRCLEQ_FIRST((head)) = (elm); \ else \ CIRCLEQ_NEXT(CIRCLEQ_LAST((head)), field) = (elm); \ CIRCLEQ_LAST((head)) = (elm); \ } while (0) #define CIRCLEQ_LAST(head) ((head)->cqh_last) #define CIRCLEQ_NEXT(elm,field) ((elm)->field.cqe_next) #define CIRCLEQ_PREV(elm,field) ((elm)->field.cqe_prev) #define CIRCLEQ_REMOVE(head, elm, field) do { \ if (CIRCLEQ_NEXT((elm), field) == (void *)(head)) \ CIRCLEQ_LAST((head)) = CIRCLEQ_PREV((elm), field); \ else \ CIRCLEQ_PREV(CIRCLEQ_NEXT((elm), field), field) = \ CIRCLEQ_PREV((elm), field); \ if (CIRCLEQ_PREV((elm), field) == (void *)(head)) \ CIRCLEQ_FIRST((head)) = CIRCLEQ_NEXT((elm), field); \ else \ CIRCLEQ_NEXT(CIRCLEQ_PREV((elm), field), field) = \ CIRCLEQ_NEXT((elm), field); \ } while (0) #endif /* !_SYS_QUEUE_H_ */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1