Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sreekanth Reddy | 20141 | 65.85% | 46 | 29.11% |
Suganath Prabu Subramani | 7096 | 23.20% | 51 | 32.28% |
Chaitra P B | 1639 | 5.36% | 15 | 9.49% |
Joe Perches | 702 | 2.30% | 3 | 1.90% |
Hannes Reinecke | 299 | 0.98% | 6 | 3.80% |
Bart Van Assche | 150 | 0.49% | 4 | 2.53% |
Calvin Owens | 141 | 0.46% | 3 | 1.90% |
Christoph Hellwig | 90 | 0.29% | 2 | 1.27% |
Greg Edwards | 82 | 0.27% | 1 | 0.63% |
Arnd Bergmann | 61 | 0.20% | 2 | 1.27% |
Martin K. Petersen | 58 | 0.19% | 1 | 0.63% |
Romain Perier | 30 | 0.10% | 2 | 1.27% |
Tomas Henzl | 27 | 0.09% | 3 | 1.90% |
Joe Lawrence | 24 | 0.08% | 1 | 0.63% |
Tina Ruchandani | 10 | 0.03% | 1 | 0.63% |
Christophe Jaillet | 7 | 0.02% | 1 | 0.63% |
Gustavo A. R. Silva | 5 | 0.02% | 2 | 1.27% |
Colin Ian King | 5 | 0.02% | 3 | 1.90% |
Stephan Günther | 4 | 0.01% | 1 | 0.63% |
Jason Yan | 3 | 0.01% | 2 | 1.27% |
Dan Carpenter | 2 | 0.01% | 1 | 0.63% |
Nathan Chancellor | 2 | 0.01% | 1 | 0.63% |
Ming Lei | 2 | 0.01% | 1 | 0.63% |
Rafael J. Wysocki | 1 | 0.00% | 1 | 0.63% |
Kees Cook | 1 | 0.00% | 1 | 0.63% |
Ming Lin | 1 | 0.00% | 1 | 0.63% |
Wei Yongjun | 1 | 0.00% | 1 | 0.63% |
Souptick Joarder | 1 | 0.00% | 1 | 0.63% |
Total | 30585 | 158 |
/* * This is the Fusion MPT base driver providing common API layer interface * for access to MPT (Message Passing Technology) firmware. * * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c * Copyright (C) 2012-2014 LSI Corporation * Copyright (C) 2013-2014 Avago Technologies * (mailto: MPT-FusionLinux.pdl@avagotech.com) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * NO WARRANTY * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is * solely responsible for determining the appropriateness of using and * distributing the Program and assumes all risks associated with its * exercise of rights under this Agreement, including but not limited to * the risks and costs of program errors, damage to or loss of data, * programs or equipment, and unavailability or interruption of operations. * DISCLAIMER OF LIABILITY * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, * USA. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/types.h> #include <linux/pci.h> #include <linux/kdev_t.h> #include <linux/blkdev.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/dma-mapping.h> #include <linux/io.h> #include <linux/time.h> #include <linux/ktime.h> #include <linux/kthread.h> #include <asm/page.h> /* To get host page size per arch */ #include <linux/aer.h> #include "mpt3sas_base.h" static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS]; #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */ /* maximum controller queue depth */ #define MAX_HBA_QUEUE_DEPTH 30000 #define MAX_CHAIN_DEPTH 100000 static int max_queue_depth = -1; module_param(max_queue_depth, int, 0444); MODULE_PARM_DESC(max_queue_depth, " max controller queue depth "); static int max_sgl_entries = -1; module_param(max_sgl_entries, int, 0444); MODULE_PARM_DESC(max_sgl_entries, " max sg entries "); static int msix_disable = -1; module_param(msix_disable, int, 0444); MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)"); static int smp_affinity_enable = 1; module_param(smp_affinity_enable, int, 0444); MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)"); static int max_msix_vectors = -1; module_param(max_msix_vectors, int, 0444); MODULE_PARM_DESC(max_msix_vectors, " max msix vectors"); static int irqpoll_weight = -1; module_param(irqpoll_weight, int, 0444); MODULE_PARM_DESC(irqpoll_weight, "irq poll weight (default= one fourth of HBA queue depth)"); static int mpt3sas_fwfault_debug; MODULE_PARM_DESC(mpt3sas_fwfault_debug, " enable detection of firmware fault and halt firmware - (default=0)"); static int perf_mode = -1; module_param(perf_mode, int, 0444); MODULE_PARM_DESC(perf_mode, "Performance mode (only for Aero/Sea Generation), options:\n\t\t" "0 - balanced: high iops mode is enabled &\n\t\t" "interrupt coalescing is enabled only on high iops queues,\n\t\t" "1 - iops: high iops mode is disabled &\n\t\t" "interrupt coalescing is enabled on all queues,\n\t\t" "2 - latency: high iops mode is disabled &\n\t\t" "interrupt coalescing is enabled on all queues with timeout value 0xA,\n" "\t\tdefault - default perf_mode is 'balanced'" ); enum mpt3sas_perf_mode { MPT_PERF_MODE_DEFAULT = -1, MPT_PERF_MODE_BALANCED = 0, MPT_PERF_MODE_IOPS = 1, MPT_PERF_MODE_LATENCY = 2, }; static int _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout); static int _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc); static void _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc); static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc); /** * mpt3sas_base_check_cmd_timeout - Function * to check timeout and command termination due * to Host reset. * * @ioc: per adapter object. * @status: Status of issued command. * @mpi_request:mf request pointer. * @sz: size of buffer. * * @Returns - 1/0 Reset to be done or Not */ u8 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc, u8 status, void *mpi_request, int sz) { u8 issue_reset = 0; if (!(status & MPT3_CMD_RESET)) issue_reset = 1; ioc_err(ioc, "Command %s\n", issue_reset == 0 ? "terminated due to Host Reset" : "Timeout"); _debug_dump_mf(mpi_request, sz); return issue_reset; } /** * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug. * @val: ? * @kp: ? * * Return: ? */ static int _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp) { int ret = param_set_int(val, kp); struct MPT3SAS_ADAPTER *ioc; if (ret) return ret; /* global ioc spinlock to protect controller list on list operations */ pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug); spin_lock(&gioc_lock); list_for_each_entry(ioc, &mpt3sas_ioc_list, list) ioc->fwfault_debug = mpt3sas_fwfault_debug; spin_unlock(&gioc_lock); return 0; } module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug, param_get_int, &mpt3sas_fwfault_debug, 0644); /** * _base_readl_aero - retry readl for max three times. * @addr - MPT Fusion system interface register address * * Retry the readl() for max three times if it gets zero value * while reading the system interface register. */ static inline u32 _base_readl_aero(const volatile void __iomem *addr) { u32 i = 0, ret_val; do { ret_val = readl(addr); i++; } while (ret_val == 0 && i < 3); return ret_val; } static inline u32 _base_readl(const volatile void __iomem *addr) { return readl(addr); } /** * _base_clone_reply_to_sys_mem - copies reply to reply free iomem * in BAR0 space. * * @ioc: per adapter object * @reply: reply message frame(lower 32bit addr) * @index: System request message index. */ static void _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply, u32 index) { /* * 256 is offset within sys register. * 256 offset MPI frame starts. Max MPI frame supported is 32. * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts */ u16 cmd_credit = ioc->facts.RequestCredit + 1; void __iomem *reply_free_iomem = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET + (cmd_credit * ioc->request_sz) + (index * sizeof(u32)); writel(reply, reply_free_iomem); } /** * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames * to system/BAR0 region. * * @dst_iomem: Pointer to the destination location in BAR0 space. * @src: Pointer to the Source data. * @size: Size of data to be copied. */ static void _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size) { int i; u32 *src_virt_mem = (u32 *)src; for (i = 0; i < size/4; i++) writel((u32)src_virt_mem[i], (void __iomem *)dst_iomem + (i * 4)); } /** * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region * * @dst_iomem: Pointer to the destination location in BAR0 space. * @src: Pointer to the Source data. * @size: Size of data to be copied. */ static void _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size) { int i; u32 *src_virt_mem = (u32 *)(src); for (i = 0; i < size/4; i++) writel((u32)src_virt_mem[i], (void __iomem *)dst_iomem + (i * 4)); } /** * _base_get_chain - Calculates and Returns virtual chain address * for the provided smid in BAR0 space. * * @ioc: per adapter object * @smid: system request message index * @sge_chain_count: Scatter gather chain count. * * Return: the chain address. */ static inline void __iomem* _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 sge_chain_count) { void __iomem *base_chain, *chain_virt; u16 cmd_credit = ioc->facts.RequestCredit + 1; base_chain = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET + (cmd_credit * ioc->request_sz) + REPLY_FREE_POOL_SIZE; chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth * ioc->request_sz) + (sge_chain_count * ioc->request_sz); return chain_virt; } /** * _base_get_chain_phys - Calculates and Returns physical address * in BAR0 for scatter gather chains, for * the provided smid. * * @ioc: per adapter object * @smid: system request message index * @sge_chain_count: Scatter gather chain count. * * Return: Physical chain address. */ static inline phys_addr_t _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 sge_chain_count) { phys_addr_t base_chain_phys, chain_phys; u16 cmd_credit = ioc->facts.RequestCredit + 1; base_chain_phys = ioc->chip_phys + MPI_FRAME_START_OFFSET + (cmd_credit * ioc->request_sz) + REPLY_FREE_POOL_SIZE; chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth * ioc->request_sz) + (sge_chain_count * ioc->request_sz); return chain_phys; } /** * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host * buffer address for the provided smid. * (Each smid can have 64K starts from 17024) * * @ioc: per adapter object * @smid: system request message index * * Return: Pointer to buffer location in BAR0. */ static void __iomem * _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) { u16 cmd_credit = ioc->facts.RequestCredit + 1; // Added extra 1 to reach end of chain. void __iomem *chain_end = _base_get_chain(ioc, cmd_credit + 1, ioc->facts.MaxChainDepth); return chain_end + (smid * 64 * 1024); } /** * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped * Host buffer Physical address for the provided smid. * (Each smid can have 64K starts from 17024) * * @ioc: per adapter object * @smid: system request message index * * Return: Pointer to buffer location in BAR0. */ static phys_addr_t _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid) { u16 cmd_credit = ioc->facts.RequestCredit + 1; phys_addr_t chain_end_phys = _base_get_chain_phys(ioc, cmd_credit + 1, ioc->facts.MaxChainDepth); return chain_end_phys + (smid * 64 * 1024); } /** * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain * lookup list and Provides chain_buffer * address for the matching dma address. * (Each smid can have 64K starts from 17024) * * @ioc: per adapter object * @chain_buffer_dma: Chain buffer dma address. * * Return: Pointer to chain buffer. Or Null on Failure. */ static void * _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc, dma_addr_t chain_buffer_dma) { u16 index, j; struct chain_tracker *ct; for (index = 0; index < ioc->scsiio_depth; index++) { for (j = 0; j < ioc->chains_needed_per_io; j++) { ct = &ioc->chain_lookup[index].chains_per_smid[j]; if (ct && ct->chain_buffer_dma == chain_buffer_dma) return ct->chain_buffer; } } ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n"); return NULL; } /** * _clone_sg_entries - MPI EP's scsiio and config requests * are handled here. Base function for * double buffering, before submitting * the requests. * * @ioc: per adapter object. * @mpi_request: mf request pointer. * @smid: system request message index. */ static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc, void *mpi_request, u16 smid) { Mpi2SGESimple32_t *sgel, *sgel_next; u32 sgl_flags, sge_chain_count = 0; bool is_write = false; u16 i = 0; void __iomem *buffer_iomem; phys_addr_t buffer_iomem_phys; void __iomem *buff_ptr; phys_addr_t buff_ptr_phys; void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO]; void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO]; phys_addr_t dst_addr_phys; MPI2RequestHeader_t *request_hdr; struct scsi_cmnd *scmd; struct scatterlist *sg_scmd = NULL; int is_scsiio_req = 0; request_hdr = (MPI2RequestHeader_t *) mpi_request; if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) { Mpi25SCSIIORequest_t *scsiio_request = (Mpi25SCSIIORequest_t *)mpi_request; sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL; is_scsiio_req = 1; } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) { Mpi2ConfigRequest_t *config_req = (Mpi2ConfigRequest_t *)mpi_request; sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE; } else return; /* From smid we can get scsi_cmd, once we have sg_scmd, * we just need to get sg_virt and sg_next to get virual * address associated with sgel->Address. */ if (is_scsiio_req) { /* Get scsi_cmd using smid */ scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); if (scmd == NULL) { ioc_err(ioc, "scmd is NULL\n"); return; } /* Get sg_scmd from scmd provided */ sg_scmd = scsi_sglist(scmd); } /* * 0 - 255 System register * 256 - 4352 MPI Frame. (This is based on maxCredit 32) * 4352 - 4864 Reply_free pool (512 byte is reserved * considering maxCredit 32. Reply need extra * room, for mCPU case kept four times of * maxCredit). * 4864 - 17152 SGE chain element. (32cmd * 3 chain of * 128 byte size = 12288) * 17152 - x Host buffer mapped with smid. * (Each smid can have 64K Max IO.) * BAR0+Last 1K MSIX Addr and Data * Total size in use 2113664 bytes of 4MB BAR0 */ buffer_iomem = _base_get_buffer_bar0(ioc, smid); buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid); buff_ptr = buffer_iomem; buff_ptr_phys = buffer_iomem_phys; WARN_ON(buff_ptr_phys > U32_MAX); if (le32_to_cpu(sgel->FlagsLength) & (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT)) is_write = true; for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) { sgl_flags = (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT); switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) { case MPI2_SGE_FLAGS_CHAIN_ELEMENT: /* * Helper function which on passing * chain_buffer_dma returns chain_buffer. Get * the virtual address for sgel->Address */ sgel_next = _base_get_chain_buffer_dma_to_chain_buffer(ioc, le32_to_cpu(sgel->Address)); if (sgel_next == NULL) return; /* * This is coping 128 byte chain * frame (not a host buffer) */ dst_chain_addr[sge_chain_count] = _base_get_chain(ioc, smid, sge_chain_count); src_chain_addr[sge_chain_count] = (void *) sgel_next; dst_addr_phys = _base_get_chain_phys(ioc, smid, sge_chain_count); WARN_ON(dst_addr_phys > U32_MAX); sgel->Address = cpu_to_le32(lower_32_bits(dst_addr_phys)); sgel = sgel_next; sge_chain_count++; break; case MPI2_SGE_FLAGS_SIMPLE_ELEMENT: if (is_write) { if (is_scsiio_req) { _base_clone_to_sys_mem(buff_ptr, sg_virt(sg_scmd), (le32_to_cpu(sgel->FlagsLength) & 0x00ffffff)); /* * FIXME: this relies on a a zero * PCI mem_offset. */ sgel->Address = cpu_to_le32((u32)buff_ptr_phys); } else { _base_clone_to_sys_mem(buff_ptr, ioc->config_vaddr, (le32_to_cpu(sgel->FlagsLength) & 0x00ffffff)); sgel->Address = cpu_to_le32((u32)buff_ptr_phys); } } buff_ptr += (le32_to_cpu(sgel->FlagsLength) & 0x00ffffff); buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) & 0x00ffffff); if ((le32_to_cpu(sgel->FlagsLength) & (MPI2_SGE_FLAGS_END_OF_BUFFER << MPI2_SGE_FLAGS_SHIFT))) goto eob_clone_chain; else { /* * Every single element in MPT will have * associated sg_next. Better to sanity that * sg_next is not NULL, but it will be a bug * if it is null. */ if (is_scsiio_req) { sg_scmd = sg_next(sg_scmd); if (sg_scmd) sgel++; else goto eob_clone_chain; } } break; } } eob_clone_chain: for (i = 0; i < sge_chain_count; i++) { if (is_scsiio_req) _base_clone_to_sys_mem(dst_chain_addr[i], src_chain_addr[i], ioc->request_sz); } } /** * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc * @arg: input argument, used to derive ioc * * Return: * 0 if controller is removed from pci subsystem. * -1 for other case. */ static int mpt3sas_remove_dead_ioc_func(void *arg) { struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg; struct pci_dev *pdev; if (!ioc) return -1; pdev = ioc->pdev; if (!pdev) return -1; pci_stop_and_remove_bus_device_locked(pdev); return 0; } /** * _base_fault_reset_work - workq handling ioc fault conditions * @work: input argument, used to derive ioc * * Context: sleep. */ static void _base_fault_reset_work(struct work_struct *work) { struct MPT3SAS_ADAPTER *ioc = container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work); unsigned long flags; u32 doorbell; int rc; struct task_struct *p; spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) || ioc->pci_error_recovery) goto rearm_timer; spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); doorbell = mpt3sas_base_get_iocstate(ioc, 0); if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) { ioc_err(ioc, "SAS host is non-operational !!!!\n"); /* It may be possible that EEH recovery can resolve some of * pci bus failure issues rather removing the dead ioc function * by considering controller is in a non-operational state. So * here priority is given to the EEH recovery. If it doesn't * not resolve this issue, mpt3sas driver will consider this * controller to non-operational state and remove the dead ioc * function. */ if (ioc->non_operational_loop++ < 5) { spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); goto rearm_timer; } /* * Call _scsih_flush_pending_cmds callback so that we flush all * pending commands back to OS. This call is required to aovid * deadlock at block layer. Dead IOC will fail to do diag reset, * and this call is safe since dead ioc will never return any * command back from HW. */ ioc->schedule_dead_ioc_flush_running_cmds(ioc); /* * Set remove_host flag early since kernel thread will * take some time to execute. */ ioc->remove_host = 1; /*Remove the Dead Host */ p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc, "%s_dead_ioc_%d", ioc->driver_name, ioc->id); if (IS_ERR(p)) ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n", __func__); else ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n", __func__); return; /* don't rearm timer */ } if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) { u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ? ioc->manu_pg11.CoreDumpTOSec : MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS; timeout /= (FAULT_POLLING_INTERVAL/1000); if (ioc->ioc_coredump_loop == 0) { mpt3sas_print_coredump_info(ioc, doorbell & MPI2_DOORBELL_DATA_MASK); /* do not accept any IOs and disable the interrupts */ spin_lock_irqsave( &ioc->ioc_reset_in_progress_lock, flags); ioc->shost_recovery = 1; spin_unlock_irqrestore( &ioc->ioc_reset_in_progress_lock, flags); _base_mask_interrupts(ioc); _base_clear_outstanding_commands(ioc); } ioc_info(ioc, "%s: CoreDump loop %d.", __func__, ioc->ioc_coredump_loop); /* Wait until CoreDump completes or times out */ if (ioc->ioc_coredump_loop++ < timeout) { spin_lock_irqsave( &ioc->ioc_reset_in_progress_lock, flags); goto rearm_timer; } } if (ioc->ioc_coredump_loop) { if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP) ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d", __func__, ioc->ioc_coredump_loop); else ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d", __func__, ioc->ioc_coredump_loop); ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE; } ioc->non_operational_loop = 0; if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) { rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); ioc_warn(ioc, "%s: hard reset: %s\n", __func__, rc == 0 ? "success" : "failed"); doorbell = mpt3sas_base_get_iocstate(ioc, 0); if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { mpt3sas_print_fault_code(ioc, doorbell & MPI2_DOORBELL_DATA_MASK); } else if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) mpt3sas_print_coredump_info(ioc, doorbell & MPI2_DOORBELL_DATA_MASK); if (rc && (doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) return; /* don't rearm timer */ } ioc->ioc_coredump_loop = 0; spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); rearm_timer: if (ioc->fault_reset_work_q) queue_delayed_work(ioc->fault_reset_work_q, &ioc->fault_reset_work, msecs_to_jiffies(FAULT_POLLING_INTERVAL)); spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); } /** * mpt3sas_base_start_watchdog - start the fault_reset_work_q * @ioc: per adapter object * * Context: sleep. */ void mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc) { unsigned long flags; if (ioc->fault_reset_work_q) return; /* initialize fault polling */ INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work); snprintf(ioc->fault_reset_work_q_name, sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status", ioc->driver_name, ioc->id); ioc->fault_reset_work_q = create_singlethread_workqueue(ioc->fault_reset_work_q_name); if (!ioc->fault_reset_work_q) { ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__); return; } spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); if (ioc->fault_reset_work_q) queue_delayed_work(ioc->fault_reset_work_q, &ioc->fault_reset_work, msecs_to_jiffies(FAULT_POLLING_INTERVAL)); spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); } /** * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q * @ioc: per adapter object * * Context: sleep. */ void mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc) { unsigned long flags; struct workqueue_struct *wq; spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); wq = ioc->fault_reset_work_q; ioc->fault_reset_work_q = NULL; spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); if (wq) { if (!cancel_delayed_work_sync(&ioc->fault_reset_work)) flush_workqueue(wq); destroy_workqueue(wq); } } /** * mpt3sas_base_fault_info - verbose translation of firmware FAULT code * @ioc: per adapter object * @fault_code: fault code */ void mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code) { ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code); } /** * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state * @ioc: per adapter object * @fault_code: fault code * * Return nothing. */ void mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code) { ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code); } /** * mpt3sas_base_wait_for_coredump_completion - Wait until coredump * completes or times out * @ioc: per adapter object * * Returns 0 for success, non-zero for failure. */ int mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc, const char *caller) { u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ? ioc->manu_pg11.CoreDumpTOSec : MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS; int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT, timeout); if (ioc_state) ioc_err(ioc, "%s: CoreDump timed out. (ioc_state=0x%x)\n", caller, ioc_state); else ioc_info(ioc, "%s: CoreDump completed. (ioc_state=0x%x)\n", caller, ioc_state); return ioc_state; } /** * mpt3sas_halt_firmware - halt's mpt controller firmware * @ioc: per adapter object * * For debugging timeout related issues. Writing 0xCOFFEE00 * to the doorbell register will halt controller firmware. With * the purpose to stop both driver and firmware, the enduser can * obtain a ring buffer from controller UART. */ void mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc) { u32 doorbell; if (!ioc->fwfault_debug) return; dump_stack(); doorbell = ioc->base_readl(&ioc->chip->Doorbell); if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { mpt3sas_print_fault_code(ioc, doorbell & MPI2_DOORBELL_DATA_MASK); } else if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) { mpt3sas_print_coredump_info(ioc, doorbell & MPI2_DOORBELL_DATA_MASK); } else { writel(0xC0FFEE00, &ioc->chip->Doorbell); ioc_err(ioc, "Firmware is halted due to command timeout\n"); } if (ioc->fwfault_debug == 2) for (;;) ; else panic("panic in %s\n", __func__); } /** * _base_sas_ioc_info - verbose translation of the ioc status * @ioc: per adapter object * @mpi_reply: reply mf payload returned from firmware * @request_hdr: request mf */ static void _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply, MPI2RequestHeader_t *request_hdr) { u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; char *desc = NULL; u16 frame_sz; char *func_str = NULL; /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */ if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION) return; if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE) return; switch (ioc_status) { /**************************************************************************** * Common IOCStatus values for all replies ****************************************************************************/ case MPI2_IOCSTATUS_INVALID_FUNCTION: desc = "invalid function"; break; case MPI2_IOCSTATUS_BUSY: desc = "busy"; break; case MPI2_IOCSTATUS_INVALID_SGL: desc = "invalid sgl"; break; case MPI2_IOCSTATUS_INTERNAL_ERROR: desc = "internal error"; break; case MPI2_IOCSTATUS_INVALID_VPID: desc = "invalid vpid"; break; case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES: desc = "insufficient resources"; break; case MPI2_IOCSTATUS_INSUFFICIENT_POWER: desc = "insufficient power"; break; case MPI2_IOCSTATUS_INVALID_FIELD: desc = "invalid field"; break; case MPI2_IOCSTATUS_INVALID_STATE: desc = "invalid state"; break; case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED: desc = "op state not supported"; break; /**************************************************************************** * Config IOCStatus values ****************************************************************************/ case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION: desc = "config invalid action"; break; case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE: desc = "config invalid type"; break; case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE: desc = "config invalid page"; break; case MPI2_IOCSTATUS_CONFIG_INVALID_DATA: desc = "config invalid data"; break; case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS: desc = "config no defaults"; break; case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT: desc = "config cant commit"; break; /**************************************************************************** * SCSI IO Reply ****************************************************************************/ case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR: case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE: case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE: case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN: case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN: case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR: case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR: case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED: case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH: case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED: case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED: case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED: break; /**************************************************************************** * For use by SCSI Initiator and SCSI Target end-to-end data protection ****************************************************************************/ case MPI2_IOCSTATUS_EEDP_GUARD_ERROR: desc = "eedp guard error"; break; case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR: desc = "eedp ref tag error"; break; case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR: desc = "eedp app tag error"; break; /**************************************************************************** * SCSI Target values ****************************************************************************/ case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX: desc = "target invalid io index"; break; case MPI2_IOCSTATUS_TARGET_ABORTED: desc = "target aborted"; break; case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE: desc = "target no conn retryable"; break; case MPI2_IOCSTATUS_TARGET_NO_CONNECTION: desc = "target no connection"; break; case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH: desc = "target xfer count mismatch"; break; case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR: desc = "target data offset error"; break; case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA: desc = "target too much write data"; break; case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT: desc = "target iu too short"; break; case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT: desc = "target ack nak timeout"; break; case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED: desc = "target nak received"; break; /**************************************************************************** * Serial Attached SCSI values ****************************************************************************/ case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED: desc = "smp request failed"; break; case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN: desc = "smp data overrun"; break; /**************************************************************************** * Diagnostic Buffer Post / Diagnostic Release values ****************************************************************************/ case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED: desc = "diagnostic released"; break; default: break; } if (!desc) return; switch (request_hdr->Function) { case MPI2_FUNCTION_CONFIG: frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size; func_str = "config_page"; break; case MPI2_FUNCTION_SCSI_TASK_MGMT: frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t); func_str = "task_mgmt"; break; case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL: frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t); func_str = "sas_iounit_ctl"; break; case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR: frame_sz = sizeof(Mpi2SepRequest_t); func_str = "enclosure"; break; case MPI2_FUNCTION_IOC_INIT: frame_sz = sizeof(Mpi2IOCInitRequest_t); func_str = "ioc_init"; break; case MPI2_FUNCTION_PORT_ENABLE: frame_sz = sizeof(Mpi2PortEnableRequest_t); func_str = "port_enable"; break; case MPI2_FUNCTION_SMP_PASSTHROUGH: frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size; func_str = "smp_passthru"; break; case MPI2_FUNCTION_NVME_ENCAPSULATED: frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) + ioc->sge_size; func_str = "nvme_encapsulated"; break; default: frame_sz = 32; func_str = "unknown"; break; } ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n", desc, ioc_status, request_hdr, func_str); _debug_dump_mf(request_hdr, frame_sz/4); } /** * _base_display_event_data - verbose translation of firmware asyn events * @ioc: per adapter object * @mpi_reply: reply mf payload returned from firmware */ static void _base_display_event_data(struct MPT3SAS_ADAPTER *ioc, Mpi2EventNotificationReply_t *mpi_reply) { char *desc = NULL; u16 event; if (!(ioc->logging_level & MPT_DEBUG_EVENTS)) return; event = le16_to_cpu(mpi_reply->Event); switch (event) { case MPI2_EVENT_LOG_DATA: desc = "Log Data"; break; case MPI2_EVENT_STATE_CHANGE: desc = "Status Change"; break; case MPI2_EVENT_HARD_RESET_RECEIVED: desc = "Hard Reset Received"; break; case MPI2_EVENT_EVENT_CHANGE: desc = "Event Change"; break; case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE: desc = "Device Status Change"; break; case MPI2_EVENT_IR_OPERATION_STATUS: if (!ioc->hide_ir_msg) desc = "IR Operation Status"; break; case MPI2_EVENT_SAS_DISCOVERY: { Mpi2EventDataSasDiscovery_t *event_data = (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData; ioc_info(ioc, "Discovery: (%s)", event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ? "start" : "stop"); if (event_data->DiscoveryStatus) pr_cont(" discovery_status(0x%08x)", le32_to_cpu(event_data->DiscoveryStatus)); pr_cont("\n"); return; } case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE: desc = "SAS Broadcast Primitive"; break; case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE: desc = "SAS Init Device Status Change"; break; case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW: desc = "SAS Init Table Overflow"; break; case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST: desc = "SAS Topology Change List"; break; case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE: desc = "SAS Enclosure Device Status Change"; break; case MPI2_EVENT_IR_VOLUME: if (!ioc->hide_ir_msg) desc = "IR Volume"; break; case MPI2_EVENT_IR_PHYSICAL_DISK: if (!ioc->hide_ir_msg) desc = "IR Physical Disk"; break; case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST: if (!ioc->hide_ir_msg) desc = "IR Configuration Change List"; break; case MPI2_EVENT_LOG_ENTRY_ADDED: if (!ioc->hide_ir_msg) desc = "Log Entry Added"; break; case MPI2_EVENT_TEMP_THRESHOLD: desc = "Temperature Threshold"; break; case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION: desc = "Cable Event"; break; case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR: desc = "SAS Device Discovery Error"; break; case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE: desc = "PCIE Device Status Change"; break; case MPI2_EVENT_PCIE_ENUMERATION: { Mpi26EventDataPCIeEnumeration_t *event_data = (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData; ioc_info(ioc, "PCIE Enumeration: (%s)", event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ? "start" : "stop"); if (event_data->EnumerationStatus) pr_cont("enumeration_status(0x%08x)", le32_to_cpu(event_data->EnumerationStatus)); pr_cont("\n"); return; } case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST: desc = "PCIE Topology Change List"; break; } if (!desc) return; ioc_info(ioc, "%s\n", desc); } /** * _base_sas_log_info - verbose translation of firmware log info * @ioc: per adapter object * @log_info: log info */ static void _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info) { union loginfo_type { u32 loginfo; struct { u32 subcode:16; u32 code:8; u32 originator:4; u32 bus_type:4; } dw; }; union loginfo_type sas_loginfo; char *originator_str = NULL; sas_loginfo.loginfo = log_info; if (sas_loginfo.dw.bus_type != 3 /*SAS*/) return; /* each nexus loss loginfo */ if (log_info == 0x31170000) return; /* eat the loginfos associated with task aborts */ if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info == 0x31140000 || log_info == 0x31130000)) return; switch (sas_loginfo.dw.originator) { case 0: originator_str = "IOP"; break; case 1: originator_str = "PL"; break; case 2: if (!ioc->hide_ir_msg) originator_str = "IR"; else originator_str = "WarpDrive"; break; } ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n", log_info, originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode); } /** * _base_display_reply_info - * @ioc: per adapter object * @smid: system request message index * @msix_index: MSIX table index supplied by the OS * @reply: reply message frame(lower 32bit addr) */ static void _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, u32 reply) { MPI2DefaultReply_t *mpi_reply; u16 ioc_status; u32 loginfo = 0; mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); if (unlikely(!mpi_reply)) { ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n", __FILE__, __LINE__, __func__); return; } ioc_status = le16_to_cpu(mpi_reply->IOCStatus); if ((ioc_status & MPI2_IOCSTATUS_MASK) && (ioc->logging_level & MPT_DEBUG_REPLY)) { _base_sas_ioc_info(ioc , mpi_reply, mpt3sas_base_get_msg_frame(ioc, smid)); } if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) { loginfo = le32_to_cpu(mpi_reply->IOCLogInfo); _base_sas_log_info(ioc, loginfo); } if (ioc_status || loginfo) { ioc_status &= MPI2_IOCSTATUS_MASK; mpt3sas_trigger_mpi(ioc, ioc_status, loginfo); } } /** * mpt3sas_base_done - base internal command completion routine * @ioc: per adapter object * @smid: system request message index * @msix_index: MSIX table index supplied by the OS * @reply: reply message frame(lower 32bit addr) * * Return: * 1 meaning mf should be freed from _base_interrupt * 0 means the mf is freed from this function. */ u8 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, u32 reply) { MPI2DefaultReply_t *mpi_reply; mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK) return mpt3sas_check_for_pending_internal_cmds(ioc, smid); if (ioc->base_cmds.status == MPT3_CMD_NOT_USED) return 1; ioc->base_cmds.status |= MPT3_CMD_COMPLETE; if (mpi_reply) { ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID; memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); } ioc->base_cmds.status &= ~MPT3_CMD_PENDING; complete(&ioc->base_cmds.done); return 1; } /** * _base_async_event - main callback handler for firmware asyn events * @ioc: per adapter object * @msix_index: MSIX table index supplied by the OS * @reply: reply message frame(lower 32bit addr) * * Return: * 1 meaning mf should be freed from _base_interrupt * 0 means the mf is freed from this function. */ static u8 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply) { Mpi2EventNotificationReply_t *mpi_reply; Mpi2EventAckRequest_t *ack_request; u16 smid; struct _event_ack_list *delayed_event_ack; mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); if (!mpi_reply) return 1; if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION) return 1; _base_display_event_data(ioc, mpi_reply); if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED)) goto out; smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); if (!smid) { delayed_event_ack = kzalloc(sizeof(*delayed_event_ack), GFP_ATOMIC); if (!delayed_event_ack) goto out; INIT_LIST_HEAD(&delayed_event_ack->list); delayed_event_ack->Event = mpi_reply->Event; delayed_event_ack->EventContext = mpi_reply->EventContext; list_add_tail(&delayed_event_ack->list, &ioc->delayed_event_ack_list); dewtprintk(ioc, ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n", le16_to_cpu(mpi_reply->Event))); goto out; } ack_request = mpt3sas_base_get_msg_frame(ioc, smid); memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t)); ack_request->Function = MPI2_FUNCTION_EVENT_ACK; ack_request->Event = mpi_reply->Event; ack_request->EventContext = mpi_reply->EventContext; ack_request->VF_ID = 0; /* TODO */ ack_request->VP_ID = 0; ioc->put_smid_default(ioc, smid); out: /* scsih callback handler */ mpt3sas_scsih_event_callback(ioc, msix_index, reply); /* ctl callback handler */ mpt3sas_ctl_event_callback(ioc, msix_index, reply); return 1; } static struct scsiio_tracker * _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) { struct scsi_cmnd *cmd; if (WARN_ON(!smid) || WARN_ON(smid >= ioc->hi_priority_smid)) return NULL; cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); if (cmd) return scsi_cmd_priv(cmd); return NULL; } /** * _base_get_cb_idx - obtain the callback index * @ioc: per adapter object * @smid: system request message index * * Return: callback index. */ static u8 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid) { int i; u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1; u8 cb_idx = 0xFF; if (smid < ioc->hi_priority_smid) { struct scsiio_tracker *st; if (smid < ctl_smid) { st = _get_st_from_smid(ioc, smid); if (st) cb_idx = st->cb_idx; } else if (smid == ctl_smid) cb_idx = ioc->ctl_cb_idx; } else if (smid < ioc->internal_smid) { i = smid - ioc->hi_priority_smid; cb_idx = ioc->hpr_lookup[i].cb_idx; } else if (smid <= ioc->hba_queue_depth) { i = smid - ioc->internal_smid; cb_idx = ioc->internal_lookup[i].cb_idx; } return cb_idx; } /** * _base_mask_interrupts - disable interrupts * @ioc: per adapter object * * Disabling ResetIRQ, Reply and Doorbell Interrupts */ static void _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc) { u32 him_register; ioc->mask_interrupts = 1; him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK; writel(him_register, &ioc->chip->HostInterruptMask); ioc->base_readl(&ioc->chip->HostInterruptMask); } /** * _base_unmask_interrupts - enable interrupts * @ioc: per adapter object * * Enabling only Reply Interrupts */ static void _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc) { u32 him_register; him_register = ioc->base_readl(&ioc->chip->HostInterruptMask); him_register &= ~MPI2_HIM_RIM; writel(him_register, &ioc->chip->HostInterruptMask); ioc->mask_interrupts = 0; } union reply_descriptor { u64 word; struct { u32 low; u32 high; } u; }; static u32 base_mod64(u64 dividend, u32 divisor) { u32 remainder; if (!divisor) pr_err("mpt3sas: DIVISOR is zero, in div fn\n"); remainder = do_div(dividend, divisor); return remainder; } /** * _base_process_reply_queue - Process reply descriptors from reply * descriptor post queue. * @reply_q: per IRQ's reply queue object. * * Return: number of reply descriptors processed from reply * descriptor queue. */ static int _base_process_reply_queue(struct adapter_reply_queue *reply_q) { union reply_descriptor rd; u64 completed_cmds; u8 request_descript_type; u16 smid; u8 cb_idx; u32 reply; u8 msix_index = reply_q->msix_index; struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; Mpi2ReplyDescriptorsUnion_t *rpf; u8 rc; completed_cmds = 0; if (!atomic_add_unless(&reply_q->busy, 1, 1)) return completed_cmds; rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index]; request_descript_type = rpf->Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) { atomic_dec(&reply_q->busy); return completed_cmds; } cb_idx = 0xFF; do { rd.word = le64_to_cpu(rpf->Words); if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX) goto out; reply = 0; smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1); if (request_descript_type == MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS || request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS || request_descript_type == MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) { cb_idx = _base_get_cb_idx(ioc, smid); if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && (likely(mpt_callbacks[cb_idx] != NULL))) { rc = mpt_callbacks[cb_idx](ioc, smid, msix_index, 0); if (rc) mpt3sas_base_free_smid(ioc, smid); } } else if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) { reply = le32_to_cpu( rpf->AddressReply.ReplyFrameAddress); if (reply > ioc->reply_dma_max_address || reply < ioc->reply_dma_min_address) reply = 0; if (smid) { cb_idx = _base_get_cb_idx(ioc, smid); if ((likely(cb_idx < MPT_MAX_CALLBACKS)) && (likely(mpt_callbacks[cb_idx] != NULL))) { rc = mpt_callbacks[cb_idx](ioc, smid, msix_index, reply); if (reply) _base_display_reply_info(ioc, smid, msix_index, reply); if (rc) mpt3sas_base_free_smid(ioc, smid); } } else { _base_async_event(ioc, msix_index, reply); } /* reply free queue handling */ if (reply) { ioc->reply_free_host_index = (ioc->reply_free_host_index == (ioc->reply_free_queue_depth - 1)) ? 0 : ioc->reply_free_host_index + 1; ioc->reply_free[ioc->reply_free_host_index] = cpu_to_le32(reply); if (ioc->is_mcpu_endpoint) _base_clone_reply_to_sys_mem(ioc, reply, ioc->reply_free_host_index); writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex); } } rpf->Words = cpu_to_le64(ULLONG_MAX); reply_q->reply_post_host_index = (reply_q->reply_post_host_index == (ioc->reply_post_queue_depth - 1)) ? 0 : reply_q->reply_post_host_index + 1; request_descript_type = reply_q->reply_post_free[reply_q->reply_post_host_index]. Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; completed_cmds++; /* Update the reply post host index after continuously * processing the threshold number of Reply Descriptors. * So that FW can find enough entries to post the Reply * Descriptors in the reply descriptor post queue. */ if (!base_mod64(completed_cmds, ioc->thresh_hold)) { if (ioc->combined_reply_queue) { writel(reply_q->reply_post_host_index | ((msix_index & 7) << MPI2_RPHI_MSIX_INDEX_SHIFT), ioc->replyPostRegisterIndex[msix_index/8]); } else { writel(reply_q->reply_post_host_index | (msix_index << MPI2_RPHI_MSIX_INDEX_SHIFT), &ioc->chip->ReplyPostHostIndex); } if (!reply_q->irq_poll_scheduled) { reply_q->irq_poll_scheduled = true; irq_poll_sched(&reply_q->irqpoll); } atomic_dec(&reply_q->busy); return completed_cmds; } if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) goto out; if (!reply_q->reply_post_host_index) rpf = reply_q->reply_post_free; else rpf++; } while (1); out: if (!completed_cmds) { atomic_dec(&reply_q->busy); return completed_cmds; } if (ioc->is_warpdrive) { writel(reply_q->reply_post_host_index, ioc->reply_post_host_index[msix_index]); atomic_dec(&reply_q->busy); return completed_cmds; } /* Update Reply Post Host Index. * For those HBA's which support combined reply queue feature * 1. Get the correct Supplemental Reply Post Host Index Register. * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host * Index Register address bank i.e replyPostRegisterIndex[], * 2. Then update this register with new reply host index value * in ReplyPostIndex field and the MSIxIndex field with * msix_index value reduced to a value between 0 and 7, * using a modulo 8 operation. Since each Supplemental Reply Post * Host Index Register supports 8 MSI-X vectors. * * For other HBA's just update the Reply Post Host Index register with * new reply host index value in ReplyPostIndex Field and msix_index * value in MSIxIndex field. */ if (ioc->combined_reply_queue) writel(reply_q->reply_post_host_index | ((msix_index & 7) << MPI2_RPHI_MSIX_INDEX_SHIFT), ioc->replyPostRegisterIndex[msix_index/8]); else writel(reply_q->reply_post_host_index | (msix_index << MPI2_RPHI_MSIX_INDEX_SHIFT), &ioc->chip->ReplyPostHostIndex); atomic_dec(&reply_q->busy); return completed_cmds; } /** * _base_interrupt - MPT adapter (IOC) specific interrupt handler. * @irq: irq number (not used) * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure * * Return: IRQ_HANDLED if processed, else IRQ_NONE. */ static irqreturn_t _base_interrupt(int irq, void *bus_id) { struct adapter_reply_queue *reply_q = bus_id; struct MPT3SAS_ADAPTER *ioc = reply_q->ioc; if (ioc->mask_interrupts) return IRQ_NONE; if (reply_q->irq_poll_scheduled) return IRQ_HANDLED; return ((_base_process_reply_queue(reply_q) > 0) ? IRQ_HANDLED : IRQ_NONE); } /** * _base_irqpoll - IRQ poll callback handler * @irqpoll - irq_poll object * @budget - irq poll weight * * returns number of reply descriptors processed */ static int _base_irqpoll(struct irq_poll *irqpoll, int budget) { struct adapter_reply_queue *reply_q; int num_entries = 0; reply_q = container_of(irqpoll, struct adapter_reply_queue, irqpoll); if (reply_q->irq_line_enable) { disable_irq(reply_q->os_irq); reply_q->irq_line_enable = false; } num_entries = _base_process_reply_queue(reply_q); if (num_entries < budget) { irq_poll_complete(irqpoll); reply_q->irq_poll_scheduled = false; reply_q->irq_line_enable = true; enable_irq(reply_q->os_irq); } return num_entries; } /** * _base_init_irqpolls - initliaze IRQ polls * @ioc: per adapter object * * returns nothing */ static void _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc) { struct adapter_reply_queue *reply_q, *next; if (list_empty(&ioc->reply_queue_list)) return; list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { irq_poll_init(&reply_q->irqpoll, ioc->hba_queue_depth/4, _base_irqpoll); reply_q->irq_poll_scheduled = false; reply_q->irq_line_enable = true; reply_q->os_irq = pci_irq_vector(ioc->pdev, reply_q->msix_index); } } /** * _base_is_controller_msix_enabled - is controller support muli-reply queues * @ioc: per adapter object * * Return: Whether or not MSI/X is enabled. */ static inline int _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc) { return (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable; } /** * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts * @ioc: per adapter object * Context: non ISR conext * * Called when a Task Management request has completed. */ void mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc) { struct adapter_reply_queue *reply_q; /* If MSIX capability is turned off * then multi-queues are not enabled */ if (!_base_is_controller_msix_enabled(ioc)) return; list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { if (ioc->shost_recovery || ioc->remove_host || ioc->pci_error_recovery) return; /* TMs are on msix_index == 0 */ if (reply_q->msix_index == 0) continue; if (reply_q->irq_poll_scheduled) { /* Calling irq_poll_disable will wait for any pending * callbacks to have completed. */ irq_poll_disable(&reply_q->irqpoll); irq_poll_enable(&reply_q->irqpoll); reply_q->irq_poll_scheduled = false; reply_q->irq_line_enable = true; enable_irq(reply_q->os_irq); continue; } synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index)); } } /** * mpt3sas_base_release_callback_handler - clear interrupt callback handler * @cb_idx: callback index */ void mpt3sas_base_release_callback_handler(u8 cb_idx) { mpt_callbacks[cb_idx] = NULL; } /** * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler * @cb_func: callback function * * Return: Index of @cb_func. */ u8 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func) { u8 cb_idx; for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--) if (mpt_callbacks[cb_idx] == NULL) break; mpt_callbacks[cb_idx] = cb_func; return cb_idx; } /** * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler */ void mpt3sas_base_initialize_callback_handler(void) { u8 cb_idx; for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++) mpt3sas_base_release_callback_handler(cb_idx); } /** * _base_build_zero_len_sge - build zero length sg entry * @ioc: per adapter object * @paddr: virtual address for SGE * * Create a zero length scatter gather entry to insure the IOCs hardware has * something to use if the target device goes brain dead and tries * to send data even when none is asked for. */ static void _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr) { u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_SIMPLE_ELEMENT) << MPI2_SGE_FLAGS_SHIFT); ioc->base_add_sg_single(paddr, flags_length, -1); } /** * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr. * @paddr: virtual address for SGE * @flags_length: SGE flags and data transfer length * @dma_addr: Physical address */ static void _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr) { Mpi2SGESimple32_t *sgel = paddr; flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING | MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; sgel->FlagsLength = cpu_to_le32(flags_length); sgel->Address = cpu_to_le32(dma_addr); } /** * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr. * @paddr: virtual address for SGE * @flags_length: SGE flags and data transfer length * @dma_addr: Physical address */ static void _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr) { Mpi2SGESimple64_t *sgel = paddr; flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING | MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; sgel->FlagsLength = cpu_to_le32(flags_length); sgel->Address = cpu_to_le64(dma_addr); } /** * _base_get_chain_buffer_tracker - obtain chain tracker * @ioc: per adapter object * @scmd: SCSI commands of the IO request * * Return: chain tracker from chain_lookup table using key as * smid and smid's chain_offset. */ static struct chain_tracker * _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, struct scsi_cmnd *scmd) { struct chain_tracker *chain_req; struct scsiio_tracker *st = scsi_cmd_priv(scmd); u16 smid = st->smid; u8 chain_offset = atomic_read(&ioc->chain_lookup[smid - 1].chain_offset); if (chain_offset == ioc->chains_needed_per_io) return NULL; chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset]; atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset); return chain_req; } /** * _base_build_sg - build generic sg * @ioc: per adapter object * @psge: virtual address for SGE * @data_out_dma: physical address for WRITES * @data_out_sz: data xfer size for WRITES * @data_in_dma: physical address for READS * @data_in_sz: data xfer size for READS */ static void _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge, dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, size_t data_in_sz) { u32 sgl_flags; if (!data_out_sz && !data_in_sz) { _base_build_zero_len_sge(ioc, psge); return; } if (data_out_sz && data_in_sz) { /* WRITE sgel first */ sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC); sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; ioc->base_add_sg_single(psge, sgl_flags | data_out_sz, data_out_dma); /* incr sgel */ psge += ioc->sge_size; /* READ sgel last */ sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST); sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; ioc->base_add_sg_single(psge, sgl_flags | data_in_sz, data_in_dma); } else if (data_out_sz) /* WRITE */ { sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC); sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; ioc->base_add_sg_single(psge, sgl_flags | data_out_sz, data_out_dma); } else if (data_in_sz) /* READ */ { sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST); sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; ioc->base_add_sg_single(psge, sgl_flags | data_in_sz, data_in_dma); } } /* IEEE format sgls */ /** * _base_build_nvme_prp - This function is called for NVMe end devices to build * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP * entry of the NVMe message (PRP1). If the data buffer is small enough to be * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is * used to describe a larger data buffer. If the data buffer is too large to * describe using the two PRP entriess inside the NVMe message, then PRP1 * describes the first data memory segment, and PRP2 contains a pointer to a PRP * list located elsewhere in memory to describe the remaining data memory * segments. The PRP list will be contiguous. * * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP * consists of a list of PRP entries to describe a number of noncontigous * physical memory segments as a single memory buffer, just as a SGL does. Note * however, that this function is only used by the IOCTL call, so the memory * given will be guaranteed to be contiguous. There is no need to translate * non-contiguous SGL into a PRP in this case. All PRPs will describe * contiguous space that is one page size each. * * Each NVMe message contains two PRP entries. The first (PRP1) either contains * a PRP list pointer or a PRP element, depending upon the command. PRP2 * contains the second PRP element if the memory being described fits within 2 * PRP entries, or a PRP list pointer if the PRP spans more than two entries. * * A PRP list pointer contains the address of a PRP list, structured as a linear * array of PRP entries. Each PRP entry in this list describes a segment of * physical memory. * * Each 64-bit PRP entry comprises an address and an offset field. The address * always points at the beginning of a 4KB physical memory page, and the offset * describes where within that 4KB page the memory segment begins. Only the * first element in a PRP list may contain a non-zero offest, implying that all * memory segments following the first begin at the start of a 4KB page. * * Each PRP element normally describes 4KB of physical memory, with exceptions * for the first and last elements in the list. If the memory being described * by the list begins at a non-zero offset within the first 4KB page, then the * first PRP element will contain a non-zero offset indicating where the region * begins within the 4KB page. The last memory segment may end before the end * of the 4KB segment, depending upon the overall size of the memory being * described by the PRP list. * * Since PRP entries lack any indication of size, the overall data buffer length * is used to determine where the end of the data memory buffer is located, and * how many PRP entries are required to describe it. * * @ioc: per adapter object * @smid: system request message index for getting asscociated SGL * @nvme_encap_request: the NVMe request msg frame pointer * @data_out_dma: physical address for WRITES * @data_out_sz: data xfer size for WRITES * @data_in_dma: physical address for READS * @data_in_sz: data xfer size for READS */ static void _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid, Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request, dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, size_t data_in_sz) { int prp_size = NVME_PRP_SIZE; __le64 *prp_entry, *prp1_entry, *prp2_entry; __le64 *prp_page; dma_addr_t prp_entry_dma, prp_page_dma, dma_addr; u32 offset, entry_len; u32 page_mask_result, page_mask; size_t length; struct mpt3sas_nvme_cmd *nvme_cmd = (void *)nvme_encap_request->NVMe_Command; /* * Not all commands require a data transfer. If no data, just return * without constructing any PRP. */ if (!data_in_sz && !data_out_sz) return; prp1_entry = &nvme_cmd->prp1; prp2_entry = &nvme_cmd->prp2; prp_entry = prp1_entry; /* * For the PRP entries, use the specially allocated buffer of * contiguous memory. */ prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid); prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); /* * Check if we are within 1 entry of a page boundary we don't * want our first entry to be a PRP List entry. */ page_mask = ioc->page_size - 1; page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask; if (!page_mask_result) { /* Bump up to next page boundary. */ prp_page = (__le64 *)((u8 *)prp_page + prp_size); prp_page_dma = prp_page_dma + prp_size; } /* * Set PRP physical pointer, which initially points to the current PRP * DMA memory page. */ prp_entry_dma = prp_page_dma; /* Get physical address and length of the data buffer. */ if (data_in_sz) { dma_addr = data_in_dma; length = data_in_sz; } else { dma_addr = data_out_dma; length = data_out_sz; } /* Loop while the length is not zero. */ while (length) { /* * Check if we need to put a list pointer here if we are at * page boundary - prp_size (8 bytes). */ page_mask_result = (prp_entry_dma + prp_size) & page_mask; if (!page_mask_result) { /* * This is the last entry in a PRP List, so we need to * put a PRP list pointer here. What this does is: * - bump the current memory pointer to the next * address, which will be the next full page. * - set the PRP Entry to point to that page. This * is now the PRP List pointer. * - bump the PRP Entry pointer the start of the * next page. Since all of this PRP memory is * contiguous, no need to get a new page - it's * just the next address. */ prp_entry_dma++; *prp_entry = cpu_to_le64(prp_entry_dma); prp_entry++; } /* Need to handle if entry will be part of a page. */ offset = dma_addr & page_mask; entry_len = ioc->page_size - offset; if (prp_entry == prp1_entry) { /* * Must fill in the first PRP pointer (PRP1) before * moving on. */ *prp1_entry = cpu_to_le64(dma_addr); /* * Now point to the second PRP entry within the * command (PRP2). */ prp_entry = prp2_entry; } else if (prp_entry == prp2_entry) { /* * Should the PRP2 entry be a PRP List pointer or just * a regular PRP pointer? If there is more than one * more page of data, must use a PRP List pointer. */ if (length > ioc->page_size) { /* * PRP2 will contain a PRP List pointer because * more PRP's are needed with this command. The * list will start at the beginning of the * contiguous buffer. */ *prp2_entry = cpu_to_le64(prp_entry_dma); /* * The next PRP Entry will be the start of the * first PRP List. */ prp_entry = prp_page; } else { /* * After this, the PRP Entries are complete. * This command uses 2 PRP's and no PRP list. */ *prp2_entry = cpu_to_le64(dma_addr); } } else { /* * Put entry in list and bump the addresses. * * After PRP1 and PRP2 are filled in, this will fill in * all remaining PRP entries in a PRP List, one per * each time through the loop. */ *prp_entry = cpu_to_le64(dma_addr); prp_entry++; prp_entry_dma++; } /* * Bump the phys address of the command's data buffer by the * entry_len. */ dma_addr += entry_len; /* Decrement length accounting for last partial page. */ if (entry_len > length) length = 0; else length -= entry_len; } } /** * base_make_prp_nvme - * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only * * @ioc: per adapter object * @scmd: SCSI command from the mid-layer * @mpi_request: mpi request * @smid: msg Index * @sge_count: scatter gather element count. * * Return: true: PRPs are built * false: IEEE SGLs needs to be built */ static void base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc, struct scsi_cmnd *scmd, Mpi25SCSIIORequest_t *mpi_request, u16 smid, int sge_count) { int sge_len, num_prp_in_chain = 0; Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl; __le64 *curr_buff; dma_addr_t msg_dma, sge_addr, offset; u32 page_mask, page_mask_result; struct scatterlist *sg_scmd; u32 first_prp_len; int data_len = scsi_bufflen(scmd); u32 nvme_pg_size; nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE); /* * Nvme has a very convoluted prp format. One prp is required * for each page or partial page. Driver need to split up OS sg_list * entries if it is longer than one page or cross a page * boundary. Driver also have to insert a PRP list pointer entry as * the last entry in each physical page of the PRP list. * * NOTE: The first PRP "entry" is actually placed in the first * SGL entry in the main message as IEEE 64 format. The 2nd * entry in the main message is the chain element, and the rest * of the PRP entries are built in the contiguous pcie buffer. */ page_mask = nvme_pg_size - 1; /* * Native SGL is needed. * Put a chain element in main message frame that points to the first * chain buffer. * * NOTE: The ChainOffset field must be 0 when using a chain pointer to * a native SGL. */ /* Set main message chain element pointer */ main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; /* * For NVMe the chain element needs to be the 2nd SG entry in the main * message. */ main_chain_element = (Mpi25IeeeSgeChain64_t *) ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64)); /* * For the PRP entries, use the specially allocated buffer of * contiguous memory. Normal chain buffers can't be used * because each chain buffer would need to be the size of an OS * page (4k). */ curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid); msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid); main_chain_element->Address = cpu_to_le64(msg_dma); main_chain_element->NextChainOffset = 0; main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP; /* Build first prp, sge need not to be page aligned*/ ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL; sg_scmd = scsi_sglist(scmd); sge_addr = sg_dma_address(sg_scmd); sge_len = sg_dma_len(sg_scmd); offset = sge_addr & page_mask; first_prp_len = nvme_pg_size - offset; ptr_first_sgl->Address = cpu_to_le64(sge_addr); ptr_first_sgl->Length = cpu_to_le32(first_prp_len); data_len -= first_prp_len; if (sge_len > first_prp_len) { sge_addr += first_prp_len; sge_len -= first_prp_len; } else if (data_len && (sge_len == first_prp_len)) { sg_scmd = sg_next(sg_scmd); sge_addr = sg_dma_address(sg_scmd); sge_len = sg_dma_len(sg_scmd); } for (;;) { offset = sge_addr & page_mask; /* Put PRP pointer due to page boundary*/ page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask; if (unlikely(!page_mask_result)) { scmd_printk(KERN_NOTICE, scmd, "page boundary curr_buff: 0x%p\n", curr_buff); msg_dma += 8; *curr_buff = cpu_to_le64(msg_dma); curr_buff++; num_prp_in_chain++; } *curr_buff = cpu_to_le64(sge_addr); curr_buff++; msg_dma += 8; num_prp_in_chain++; sge_addr += nvme_pg_size; sge_len -= nvme_pg_size; data_len -= nvme_pg_size; if (data_len <= 0) break; if (sge_len > 0) continue; sg_scmd = sg_next(sg_scmd); sge_addr = sg_dma_address(sg_scmd); sge_len = sg_dma_len(sg_scmd); } main_chain_element->Length = cpu_to_le32(num_prp_in_chain * sizeof(u64)); return; } static bool base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc, struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count) { u32 data_length = 0; bool build_prp = true; data_length = scsi_bufflen(scmd); if (pcie_device && (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) { build_prp = false; return build_prp; } /* If Datalenth is <= 16K and number of SGE’s entries are <= 2 * we built IEEE SGL */ if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2)) build_prp = false; return build_prp; } /** * _base_check_pcie_native_sgl - This function is called for PCIe end devices to * determine if the driver needs to build a native SGL. If so, that native * SGL is built in the special contiguous buffers allocated especially for * PCIe SGL creation. If the driver will not build a native SGL, return * TRUE and a normal IEEE SGL will be built. Currently this routine * supports NVMe. * @ioc: per adapter object * @mpi_request: mf request pointer * @smid: system request message index * @scmd: scsi command * @pcie_device: points to the PCIe device's info * * Return: 0 if native SGL was built, 1 if no SGL was built */ static int _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc, Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd, struct _pcie_device *pcie_device) { int sges_left; /* Get the SG list pointer and info. */ sges_left = scsi_dma_map(scmd); if (sges_left < 0) { sdev_printk(KERN_ERR, scmd->device, "scsi_dma_map failed: request for %d bytes!\n", scsi_bufflen(scmd)); return 1; } /* Check if we need to build a native SG list. */ if (base_is_prp_possible(ioc, pcie_device, scmd, sges_left) == 0) { /* We built a native SG list, just return. */ goto out; } /* * Build native NVMe PRP. */ base_make_prp_nvme(ioc, scmd, mpi_request, smid, sges_left); return 0; out: scsi_dma_unmap(scmd); return 1; } /** * _base_add_sg_single_ieee - add sg element for IEEE format * @paddr: virtual address for SGE * @flags: SGE flags * @chain_offset: number of 128 byte elements from start of segment * @length: data transfer length * @dma_addr: Physical address */ static void _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length, dma_addr_t dma_addr) { Mpi25IeeeSgeChain64_t *sgel = paddr; sgel->Flags = flags; sgel->NextChainOffset = chain_offset; sgel->Length = cpu_to_le32(length); sgel->Address = cpu_to_le64(dma_addr); } /** * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format * @ioc: per adapter object * @paddr: virtual address for SGE * * Create a zero length scatter gather entry to insure the IOCs hardware has * something to use if the target device goes brain dead and tries * to send data even when none is asked for. */ static void _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr) { u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | MPI25_IEEE_SGE_FLAGS_END_OF_LIST); _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1); } /** * _base_build_sg_scmd - main sg creation routine * pcie_device is unused here! * @ioc: per adapter object * @scmd: scsi command * @smid: system request message index * @unused: unused pcie_device pointer * Context: none. * * The main routine that builds scatter gather table from a given * scsi request sent via the .queuecommand main handler. * * Return: 0 success, anything else error */ static int _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc, struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused) { Mpi2SCSIIORequest_t *mpi_request; dma_addr_t chain_dma; struct scatterlist *sg_scmd; void *sg_local, *chain; u32 chain_offset; u32 chain_length; u32 chain_flags; int sges_left; u32 sges_in_segment; u32 sgl_flags; u32 sgl_flags_last_element; u32 sgl_flags_end_buffer; struct chain_tracker *chain_req; mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); /* init scatter gather flags */ sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT; if (scmd->sc_data_direction == DMA_TO_DEVICE) sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC; sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT) << MPI2_SGE_FLAGS_SHIFT; sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST) << MPI2_SGE_FLAGS_SHIFT; sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT; sg_scmd = scsi_sglist(scmd); sges_left = scsi_dma_map(scmd); if (sges_left < 0) { sdev_printk(KERN_ERR, scmd->device, "scsi_dma_map failed: request for %d bytes!\n", scsi_bufflen(scmd)); return -ENOMEM; } sg_local = &mpi_request->SGL; sges_in_segment = ioc->max_sges_in_main_message; if (sges_left <= sges_in_segment) goto fill_in_last_segment; mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) + (sges_in_segment * ioc->sge_size))/4; /* fill in main message segment when there is a chain following */ while (sges_in_segment) { if (sges_in_segment == 1) ioc->base_add_sg_single(sg_local, sgl_flags_last_element | sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); else ioc->base_add_sg_single(sg_local, sgl_flags | sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); sg_scmd = sg_next(sg_scmd); sg_local += ioc->sge_size; sges_left--; sges_in_segment--; } /* initializing the chain flags and pointers */ chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT; chain_req = _base_get_chain_buffer_tracker(ioc, scmd); if (!chain_req) return -1; chain = chain_req->chain_buffer; chain_dma = chain_req->chain_buffer_dma; do { sges_in_segment = (sges_left <= ioc->max_sges_in_chain_message) ? sges_left : ioc->max_sges_in_chain_message; chain_offset = (sges_left == sges_in_segment) ? 0 : (sges_in_segment * ioc->sge_size)/4; chain_length = sges_in_segment * ioc->sge_size; if (chain_offset) { chain_offset = chain_offset << MPI2_SGE_CHAIN_OFFSET_SHIFT; chain_length += ioc->sge_size; } ioc->base_add_sg_single(sg_local, chain_flags | chain_offset | chain_length, chain_dma); sg_local = chain; if (!chain_offset) goto fill_in_last_segment; /* fill in chain segments */ while (sges_in_segment) { if (sges_in_segment == 1) ioc->base_add_sg_single(sg_local, sgl_flags_last_element | sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); else ioc->base_add_sg_single(sg_local, sgl_flags | sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); sg_scmd = sg_next(sg_scmd); sg_local += ioc->sge_size; sges_left--; sges_in_segment--; } chain_req = _base_get_chain_buffer_tracker(ioc, scmd); if (!chain_req) return -1; chain = chain_req->chain_buffer; chain_dma = chain_req->chain_buffer_dma; } while (1); fill_in_last_segment: /* fill the last segment */ while (sges_left) { if (sges_left == 1) ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer | sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); else ioc->base_add_sg_single(sg_local, sgl_flags | sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); sg_scmd = sg_next(sg_scmd); sg_local += ioc->sge_size; sges_left--; } return 0; } /** * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format * @ioc: per adapter object * @scmd: scsi command * @smid: system request message index * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be * constructed on need. * Context: none. * * The main routine that builds scatter gather table from a given * scsi request sent via the .queuecommand main handler. * * Return: 0 success, anything else error */ static int _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc, struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device) { Mpi25SCSIIORequest_t *mpi_request; dma_addr_t chain_dma; struct scatterlist *sg_scmd; void *sg_local, *chain; u32 chain_offset; u32 chain_length; int sges_left; u32 sges_in_segment; u8 simple_sgl_flags; u8 simple_sgl_flags_last; u8 chain_sgl_flags; struct chain_tracker *chain_req; mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); /* init scatter gather flags */ simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; simple_sgl_flags_last = simple_sgl_flags | MPI25_IEEE_SGE_FLAGS_END_OF_LIST; chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; /* Check if we need to build a native SG list. */ if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request, smid, scmd, pcie_device) == 0)) { /* We built a native SG list, just return. */ return 0; } sg_scmd = scsi_sglist(scmd); sges_left = scsi_dma_map(scmd); if (sges_left < 0) { sdev_printk(KERN_ERR, scmd->device, "scsi_dma_map failed: request for %d bytes!\n", scsi_bufflen(scmd)); return -ENOMEM; } sg_local = &mpi_request->SGL; sges_in_segment = (ioc->request_sz - offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee; if (sges_left <= sges_in_segment) goto fill_in_last_segment; mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) + (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee); /* fill in main message segment when there is a chain following */ while (sges_in_segment > 1) { _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); sg_scmd = sg_next(sg_scmd); sg_local += ioc->sge_size_ieee; sges_left--; sges_in_segment--; } /* initializing the pointers */ chain_req = _base_get_chain_buffer_tracker(ioc, scmd); if (!chain_req) return -1; chain = chain_req->chain_buffer; chain_dma = chain_req->chain_buffer_dma; do { sges_in_segment = (sges_left <= ioc->max_sges_in_chain_message) ? sges_left : ioc->max_sges_in_chain_message; chain_offset = (sges_left == sges_in_segment) ? 0 : sges_in_segment; chain_length = sges_in_segment * ioc->sge_size_ieee; if (chain_offset) chain_length += ioc->sge_size_ieee; _base_add_sg_single_ieee(sg_local, chain_sgl_flags, chain_offset, chain_length, chain_dma); sg_local = chain; if (!chain_offset) goto fill_in_last_segment; /* fill in chain segments */ while (sges_in_segment) { _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); sg_scmd = sg_next(sg_scmd); sg_local += ioc->sge_size_ieee; sges_left--; sges_in_segment--; } chain_req = _base_get_chain_buffer_tracker(ioc, scmd); if (!chain_req) return -1; chain = chain_req->chain_buffer; chain_dma = chain_req->chain_buffer_dma; } while (1); fill_in_last_segment: /* fill the last segment */ while (sges_left > 0) { if (sges_left == 1) _base_add_sg_single_ieee(sg_local, simple_sgl_flags_last, 0, sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); else _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0, sg_dma_len(sg_scmd), sg_dma_address(sg_scmd)); sg_scmd = sg_next(sg_scmd); sg_local += ioc->sge_size_ieee; sges_left--; } return 0; } /** * _base_build_sg_ieee - build generic sg for IEEE format * @ioc: per adapter object * @psge: virtual address for SGE * @data_out_dma: physical address for WRITES * @data_out_sz: data xfer size for WRITES * @data_in_dma: physical address for READS * @data_in_sz: data xfer size for READS */ static void _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge, dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma, size_t data_in_sz) { u8 sgl_flags; if (!data_out_sz && !data_in_sz) { _base_build_zero_len_sge_ieee(ioc, psge); return; } if (data_out_sz && data_in_sz) { /* WRITE sgel first */ sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, data_out_dma); /* incr sgel */ psge += ioc->sge_size_ieee; /* READ sgel last */ sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST; _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, data_in_dma); } else if (data_out_sz) /* WRITE */ { sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | MPI25_IEEE_SGE_FLAGS_END_OF_LIST | MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz, data_out_dma); } else if (data_in_sz) /* READ */ { sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | MPI25_IEEE_SGE_FLAGS_END_OF_LIST | MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz, data_in_dma); } } #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10)) /** * _base_config_dma_addressing - set dma addressing * @ioc: per adapter object * @pdev: PCI device struct * * Return: 0 for success, non-zero for failure. */ static int _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev) { struct sysinfo s; int dma_mask; if (ioc->is_mcpu_endpoint || sizeof(dma_addr_t) == 4 || ioc->use_32bit_dma || dma_get_required_mask(&pdev->dev) <= 32) dma_mask = 32; /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */ else if (ioc->hba_mpi_version_belonged > MPI2_VERSION) dma_mask = 63; else dma_mask = 64; if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(dma_mask)) || dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(dma_mask))) return -ENODEV; if (dma_mask > 32) { ioc->base_add_sg_single = &_base_add_sg_single_64; ioc->sge_size = sizeof(Mpi2SGESimple64_t); } else { ioc->base_add_sg_single = &_base_add_sg_single_32; ioc->sge_size = sizeof(Mpi2SGESimple32_t); } si_meminfo(&s); ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n", dma_mask, convert_to_kb(s.totalram)); return 0; } /** * _base_check_enable_msix - checks MSIX capabable. * @ioc: per adapter object * * Check to see if card is capable of MSIX, and set number * of available msix vectors */ static int _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc) { int base; u16 message_control; /* Check whether controller SAS2008 B0 controller, * if it is SAS2008 B0 controller use IO-APIC instead of MSIX */ if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 && ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) { return -EINVAL; } base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX); if (!base) { dfailprintk(ioc, ioc_info(ioc, "msix not supported\n")); return -EINVAL; } /* get msix vector count */ /* NUMA_IO not supported for older controllers */ if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 || ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 || ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 || ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 || ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 || ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 || ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2) ioc->msix_vector_count = 1; else { pci_read_config_word(ioc->pdev, base + 2, &message_control); ioc->msix_vector_count = (message_control & 0x3FF) + 1; } dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n", ioc->msix_vector_count)); return 0; } /** * _base_free_irq - free irq * @ioc: per adapter object * * Freeing respective reply_queue from the list. */ static void _base_free_irq(struct MPT3SAS_ADAPTER *ioc) { struct adapter_reply_queue *reply_q, *next; if (list_empty(&ioc->reply_queue_list)) return; list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) { list_del(&reply_q->list); if (ioc->smp_affinity_enable) irq_set_affinity_hint(pci_irq_vector(ioc->pdev, reply_q->msix_index), NULL); free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index), reply_q); kfree(reply_q); } } /** * _base_request_irq - request irq * @ioc: per adapter object * @index: msix index into vector table * * Inserting respective reply_queue into the list. */ static int _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index) { struct pci_dev *pdev = ioc->pdev; struct adapter_reply_queue *reply_q; int r; reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL); if (!reply_q) { ioc_err(ioc, "unable to allocate memory %zu!\n", sizeof(struct adapter_reply_queue)); return -ENOMEM; } reply_q->ioc = ioc; reply_q->msix_index = index; atomic_set(&reply_q->busy, 0); if (ioc->msix_enable) snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d", ioc->driver_name, ioc->id, index); else snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d", ioc->driver_name, ioc->id); r = request_irq(pci_irq_vector(pdev, index), _base_interrupt, IRQF_SHARED, reply_q->name, reply_q); if (r) { pr_err("%s: unable to allocate interrupt %d!\n", reply_q->name, pci_irq_vector(pdev, index)); kfree(reply_q); return -EBUSY; } INIT_LIST_HEAD(&reply_q->list); list_add_tail(&reply_q->list, &ioc->reply_queue_list); return 0; } /** * _base_assign_reply_queues - assigning msix index for each cpu * @ioc: per adapter object * * The enduser would need to set the affinity via /proc/irq/#/smp_affinity * * It would nice if we could call irq_set_affinity, however it is not * an exported symbol */ static void _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc) { unsigned int cpu, nr_cpus, nr_msix, index = 0; struct adapter_reply_queue *reply_q; int local_numa_node; if (!_base_is_controller_msix_enabled(ioc)) return; if (ioc->msix_load_balance) return; memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz); nr_cpus = num_online_cpus(); nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count, ioc->facts.MaxMSIxVectors); if (!nr_msix) return; if (ioc->smp_affinity_enable) { /* * set irq affinity to local numa node for those irqs * corresponding to high iops queues. */ if (ioc->high_iops_queues) { local_numa_node = dev_to_node(&ioc->pdev->dev); for (index = 0; index < ioc->high_iops_queues; index++) { irq_set_affinity_hint(pci_irq_vector(ioc->pdev, index), cpumask_of_node(local_numa_node)); } } list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { const cpumask_t *mask; if (reply_q->msix_index < ioc->high_iops_queues) continue; mask = pci_irq_get_affinity(ioc->pdev, reply_q->msix_index); if (!mask) { ioc_warn(ioc, "no affinity for msi %x\n", reply_q->msix_index); goto fall_back; } for_each_cpu_and(cpu, mask, cpu_online_mask) { if (cpu >= ioc->cpu_msix_table_sz) break; ioc->cpu_msix_table[cpu] = reply_q->msix_index; } } return; } fall_back: cpu = cpumask_first(cpu_online_mask); nr_msix -= ioc->high_iops_queues; index = 0; list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { unsigned int i, group = nr_cpus / nr_msix; if (reply_q->msix_index < ioc->high_iops_queues) continue; if (cpu >= nr_cpus) break; if (index < nr_cpus % nr_msix) group++; for (i = 0 ; i < group ; i++) { ioc->cpu_msix_table[cpu] = reply_q->msix_index; cpu = cpumask_next(cpu, cpu_online_mask); } index++; } } /** * _base_check_and_enable_high_iops_queues - enable high iops mode * @ ioc - per adapter object * @ hba_msix_vector_count - msix vectors supported by HBA * * Enable high iops queues only if * - HBA is a SEA/AERO controller and * - MSI-Xs vector supported by the HBA is 128 and * - total CPU count in the system >=16 and * - loaded driver with default max_msix_vectors module parameter and * - system booted in non kdump mode * * returns nothing. */ static void _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc, int hba_msix_vector_count) { u16 lnksta, speed; if (perf_mode == MPT_PERF_MODE_IOPS || perf_mode == MPT_PERF_MODE_LATENCY) { ioc->high_iops_queues = 0; return; } if (perf_mode == MPT_PERF_MODE_DEFAULT) { pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta); speed = lnksta & PCI_EXP_LNKSTA_CLS; if (speed < 0x4) { ioc->high_iops_queues = 0; return; } } if (!reset_devices && ioc->is_aero_ioc && hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES && num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES && max_msix_vectors == -1) ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES; else ioc->high_iops_queues = 0; } /** * _base_disable_msix - disables msix * @ioc: per adapter object * */ static void _base_disable_msix(struct MPT3SAS_ADAPTER *ioc) { if (!ioc->msix_enable) return; pci_free_irq_vectors(ioc->pdev); ioc->msix_enable = 0; } /** * _base_alloc_irq_vectors - allocate msix vectors * @ioc: per adapter object * */ static int _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc) { int i, irq_flags = PCI_IRQ_MSIX; struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues }; struct irq_affinity *descp = &desc; if (ioc->smp_affinity_enable) irq_flags |= PCI_IRQ_AFFINITY; else descp = NULL; ioc_info(ioc, " %d %d\n", ioc->high_iops_queues, ioc->reply_queue_count); i = pci_alloc_irq_vectors_affinity(ioc->pdev, ioc->high_iops_queues, ioc->reply_queue_count, irq_flags, descp); return i; } /** * _base_enable_msix - enables msix, failback to io_apic * @ioc: per adapter object * */ static int _base_enable_msix(struct MPT3SAS_ADAPTER *ioc) { int r; int i, local_max_msix_vectors; u8 try_msix = 0; ioc->msix_load_balance = false; if (msix_disable == -1 || msix_disable == 0) try_msix = 1; if (!try_msix) goto try_ioapic; if (_base_check_enable_msix(ioc) != 0) goto try_ioapic; ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count); pr_info("\t no of cores: %d, max_msix_vectors: %d\n", ioc->cpu_count, max_msix_vectors); if (ioc->is_aero_ioc) _base_check_and_enable_high_iops_queues(ioc, ioc->msix_vector_count); ioc->reply_queue_count = min_t(int, ioc->cpu_count + ioc->high_iops_queues, ioc->msix_vector_count); if (!ioc->rdpq_array_enable && max_msix_vectors == -1) local_max_msix_vectors = (reset_devices) ? 1 : 8; else local_max_msix_vectors = max_msix_vectors; if (local_max_msix_vectors > 0) ioc->reply_queue_count = min_t(int, local_max_msix_vectors, ioc->reply_queue_count); else if (local_max_msix_vectors == 0) goto try_ioapic; /* * Enable msix_load_balance only if combined reply queue mode is * disabled on SAS3 & above generation HBA devices. */ if (!ioc->combined_reply_queue && ioc->hba_mpi_version_belonged != MPI2_VERSION) { ioc_info(ioc, "combined ReplyQueue is off, Enabling msix load balance\n"); ioc->msix_load_balance = true; } /* * smp affinity setting is not need when msix load balance * is enabled. */ if (ioc->msix_load_balance) ioc->smp_affinity_enable = 0; r = _base_alloc_irq_vectors(ioc); if (r < 0) { ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r); goto try_ioapic; } ioc->msix_enable = 1; ioc->reply_queue_count = r; for (i = 0; i < ioc->reply_queue_count; i++) { r = _base_request_irq(ioc, i); if (r) { _base_free_irq(ioc); _base_disable_msix(ioc); goto try_ioapic; } } ioc_info(ioc, "High IOPs queues : %s\n", ioc->high_iops_queues ? "enabled" : "disabled"); return 0; /* failback to io_apic interrupt routing */ try_ioapic: ioc->high_iops_queues = 0; ioc_info(ioc, "High IOPs queues : disabled\n"); ioc->reply_queue_count = 1; r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY); if (r < 0) { dfailprintk(ioc, ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n", r)); } else r = _base_request_irq(ioc, 0); return r; } /** * mpt3sas_base_unmap_resources - free controller resources * @ioc: per adapter object */ static void mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc) { struct pci_dev *pdev = ioc->pdev; dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); _base_free_irq(ioc); _base_disable_msix(ioc); kfree(ioc->replyPostRegisterIndex); ioc->replyPostRegisterIndex = NULL; if (ioc->chip_phys) { iounmap(ioc->chip); ioc->chip_phys = 0; } if (pci_is_enabled(pdev)) { pci_release_selected_regions(ioc->pdev, ioc->bars); pci_disable_pcie_error_reporting(pdev); pci_disable_device(pdev); } } static int _base_diag_reset(struct MPT3SAS_ADAPTER *ioc); /** * _base_check_for_fault_and_issue_reset - check if IOC is in fault state * and if it is in fault state then issue diag reset. * @ioc: per adapter object * * Returns: 0 for success, non-zero for failure. */ static int _base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc) { u32 ioc_state; int rc = -EFAULT; dinitprintk(ioc, pr_info("%s\n", __func__)); if (ioc->pci_error_recovery) return 0; ioc_state = mpt3sas_base_get_iocstate(ioc, 0); dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state)); if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { mpt3sas_print_fault_code(ioc, ioc_state & MPI2_DOORBELL_DATA_MASK); rc = _base_diag_reset(ioc); } else if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) { mpt3sas_print_coredump_info(ioc, ioc_state & MPI2_DOORBELL_DATA_MASK); mpt3sas_base_wait_for_coredump_completion(ioc, __func__); rc = _base_diag_reset(ioc); } return rc; } /** * mpt3sas_base_map_resources - map in controller resources (io/irq/memap) * @ioc: per adapter object * * Return: 0 for success, non-zero for failure. */ int mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc) { struct pci_dev *pdev = ioc->pdev; u32 memap_sz; u32 pio_sz; int i, r = 0, rc; u64 pio_chip = 0; phys_addr_t chip_phys = 0; struct adapter_reply_queue *reply_q; dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM); if (pci_enable_device_mem(pdev)) { ioc_warn(ioc, "pci_enable_device_mem: failed\n"); ioc->bars = 0; return -ENODEV; } if (pci_request_selected_regions(pdev, ioc->bars, ioc->driver_name)) { ioc_warn(ioc, "pci_request_selected_regions: failed\n"); ioc->bars = 0; r = -ENODEV; goto out_fail; } /* AER (Advanced Error Reporting) hooks */ pci_enable_pcie_error_reporting(pdev); pci_set_master(pdev); if (_base_config_dma_addressing(ioc, pdev) != 0) { ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev)); r = -ENODEV; goto out_fail; } for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) && (!memap_sz || !pio_sz); i++) { if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { if (pio_sz) continue; pio_chip = (u64)pci_resource_start(pdev, i); pio_sz = pci_resource_len(pdev, i); } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { if (memap_sz) continue; ioc->chip_phys = pci_resource_start(pdev, i); chip_phys = ioc->chip_phys; memap_sz = pci_resource_len(pdev, i); ioc->chip = ioremap(ioc->chip_phys, memap_sz); } } if (ioc->chip == NULL) { ioc_err(ioc, "unable to map adapter memory! or resource not found\n"); r = -EINVAL; goto out_fail; } _base_mask_interrupts(ioc); r = _base_get_ioc_facts(ioc); if (r) { rc = _base_check_for_fault_and_issue_reset(ioc); if (rc || (_base_get_ioc_facts(ioc))) goto out_fail; } if (!ioc->rdpq_array_enable_assigned) { ioc->rdpq_array_enable = ioc->rdpq_array_capable; ioc->rdpq_array_enable_assigned = 1; } r = _base_enable_msix(ioc); if (r) goto out_fail; if (!ioc->is_driver_loading) _base_init_irqpolls(ioc); /* Use the Combined reply queue feature only for SAS3 C0 & higher * revision HBAs and also only when reply queue count is greater than 8 */ if (ioc->combined_reply_queue) { /* Determine the Supplemental Reply Post Host Index Registers * Addresse. Supplemental Reply Post Host Index Registers * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and * each register is at offset bytes of * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one. */ ioc->replyPostRegisterIndex = kcalloc( ioc->combined_reply_index_count, sizeof(resource_size_t *), GFP_KERNEL); if (!ioc->replyPostRegisterIndex) { ioc_err(ioc, "allocation for replyPostRegisterIndex failed!\n"); r = -ENOMEM; goto out_fail; } for (i = 0; i < ioc->combined_reply_index_count; i++) { ioc->replyPostRegisterIndex[i] = (resource_size_t *) ((u8 __force *)&ioc->chip->Doorbell + MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET + (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET)); } } if (ioc->is_warpdrive) { ioc->reply_post_host_index[0] = (resource_size_t __iomem *) &ioc->chip->ReplyPostHostIndex; for (i = 1; i < ioc->cpu_msix_table_sz; i++) ioc->reply_post_host_index[i] = (resource_size_t __iomem *) ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1) * 4))); } list_for_each_entry(reply_q, &ioc->reply_queue_list, list) pr_info("%s: %s enabled: IRQ %d\n", reply_q->name, ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC", pci_irq_vector(ioc->pdev, reply_q->msix_index)); ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n", &chip_phys, ioc->chip, memap_sz); ioc_info(ioc, "ioport(0x%016llx), size(%d)\n", (unsigned long long)pio_chip, pio_sz); /* Save PCI configuration state for recovery from PCI AER/EEH errors */ pci_save_state(pdev); return 0; out_fail: mpt3sas_base_unmap_resources(ioc); return r; } /** * mpt3sas_base_get_msg_frame - obtain request mf pointer * @ioc: per adapter object * @smid: system request message index(smid zero is invalid) * * Return: virt pointer to message frame. */ void * mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid) { return (void *)(ioc->request + (smid * ioc->request_sz)); } /** * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr * @ioc: per adapter object * @smid: system request message index * * Return: virt pointer to sense buffer. */ void * mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid) { return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE)); } /** * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr * @ioc: per adapter object * @smid: system request message index * * Return: phys pointer to the low 32bit address of the sense buffer. */ __le32 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) { return cpu_to_le32(ioc->sense_dma + ((smid - 1) * SCSI_SENSE_BUFFERSIZE)); } /** * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr * @ioc: per adapter object * @smid: system request message index * * Return: virt pointer to a PCIe SGL. */ void * mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid) { return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl); } /** * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr * @ioc: per adapter object * @smid: system request message index * * Return: phys pointer to the address of the PCIe buffer. */ dma_addr_t mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid) { return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma; } /** * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address * @ioc: per adapter object * @phys_addr: lower 32 physical addr of the reply * * Converts 32bit lower physical addr into a virt address. */ void * mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr) { if (!phys_addr) return NULL; return ioc->reply + (phys_addr - (u32)ioc->reply_dma); } /** * _base_get_msix_index - get the msix index * @ioc: per adapter object * @scmd: scsi_cmnd object * * returns msix index of general reply queues, * i.e. reply queue on which IO request's reply * should be posted by the HBA firmware. */ static inline u8 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc, struct scsi_cmnd *scmd) { /* Enables reply_queue load balancing */ if (ioc->msix_load_balance) return ioc->reply_queue_count ? base_mod64(atomic64_add_return(1, &ioc->total_io_cnt), ioc->reply_queue_count) : 0; return ioc->cpu_msix_table[raw_smp_processor_id()]; } /** * _base_sdev_nr_inflight_request -get number of inflight requests * of a request queue. * @q: request_queue object * * returns number of inflight request of a request queue. */ inline unsigned long _base_sdev_nr_inflight_request(struct request_queue *q) { struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[0]; return atomic_read(&hctx->nr_active); } /** * _base_get_high_iops_msix_index - get the msix index of * high iops queues * @ioc: per adapter object * @scmd: scsi_cmnd object * * Returns: msix index of high iops reply queues. * i.e. high iops reply queue on which IO request's * reply should be posted by the HBA firmware. */ static inline u8 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc, struct scsi_cmnd *scmd) { /** * Round robin the IO interrupts among the high iops * reply queues in terms of batch count 16 when outstanding * IOs on the target device is >=8. */ if (_base_sdev_nr_inflight_request(scmd->device->request_queue) > MPT3SAS_DEVICE_HIGH_IOPS_DEPTH) return base_mod64(( atomic64_add_return(1, &ioc->high_iops_outstanding) / MPT3SAS_HIGH_IOPS_BATCH_COUNT), MPT3SAS_HIGH_IOPS_REPLY_QUEUES); return _base_get_msix_index(ioc, scmd); } /** * mpt3sas_base_get_smid - obtain a free smid from internal queue * @ioc: per adapter object * @cb_idx: callback index * * Return: smid (zero is invalid) */ u16 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) { unsigned long flags; struct request_tracker *request; u16 smid; spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); if (list_empty(&ioc->internal_free_list)) { spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); ioc_err(ioc, "%s: smid not available\n", __func__); return 0; } request = list_entry(ioc->internal_free_list.next, struct request_tracker, tracker_list); request->cb_idx = cb_idx; smid = request->smid; list_del(&request->tracker_list); spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); return smid; } /** * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue * @ioc: per adapter object * @cb_idx: callback index * @scmd: pointer to scsi command object * * Return: smid (zero is invalid) */ u16 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx, struct scsi_cmnd *scmd) { struct scsiio_tracker *request = scsi_cmd_priv(scmd); unsigned int tag = scmd->request->tag; u16 smid; smid = tag + 1; request->cb_idx = cb_idx; request->smid = smid; request->scmd = scmd; INIT_LIST_HEAD(&request->chain_list); return smid; } /** * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue * @ioc: per adapter object * @cb_idx: callback index * * Return: smid (zero is invalid) */ u16 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx) { unsigned long flags; struct request_tracker *request; u16 smid; spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); if (list_empty(&ioc->hpr_free_list)) { spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); return 0; } request = list_entry(ioc->hpr_free_list.next, struct request_tracker, tracker_list); request->cb_idx = cb_idx; smid = request->smid; list_del(&request->tracker_list); spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); return smid; } static void _base_recovery_check(struct MPT3SAS_ADAPTER *ioc) { /* * See _wait_for_commands_to_complete() call with regards to this code. */ if (ioc->shost_recovery && ioc->pending_io_count) { ioc->pending_io_count = scsi_host_busy(ioc->shost); if (ioc->pending_io_count == 0) wake_up(&ioc->reset_wq); } } void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc, struct scsiio_tracker *st) { if (WARN_ON(st->smid == 0)) return; st->cb_idx = 0xFF; st->direct_io = 0; st->scmd = NULL; atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0); st->smid = 0; } /** * mpt3sas_base_free_smid - put smid back on free_list * @ioc: per adapter object * @smid: system request message index */ void mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid) { unsigned long flags; int i; if (smid < ioc->hi_priority_smid) { struct scsiio_tracker *st; void *request; st = _get_st_from_smid(ioc, smid); if (!st) { _base_recovery_check(ioc); return; } /* Clear MPI request frame */ request = mpt3sas_base_get_msg_frame(ioc, smid); memset(request, 0, ioc->request_sz); mpt3sas_base_clear_st(ioc, st); _base_recovery_check(ioc); return; } spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); if (smid < ioc->internal_smid) { /* hi-priority */ i = smid - ioc->hi_priority_smid; ioc->hpr_lookup[i].cb_idx = 0xFF; list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list); } else if (smid <= ioc->hba_queue_depth) { /* internal queue */ i = smid - ioc->internal_smid; ioc->internal_lookup[i].cb_idx = 0xFF; list_add(&ioc->internal_lookup[i].tracker_list, &ioc->internal_free_list); } spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); } /** * _base_mpi_ep_writeq - 32 bit write to MMIO * @b: data payload * @addr: address in MMIO space * @writeq_lock: spin lock * * This special handling for MPI EP to take care of 32 bit * environment where its not quarenteed to send the entire word * in one transfer. */ static inline void _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) { unsigned long flags; spin_lock_irqsave(writeq_lock, flags); __raw_writel((u32)(b), addr); __raw_writel((u32)(b >> 32), (addr + 4)); spin_unlock_irqrestore(writeq_lock, flags); } /** * _base_writeq - 64 bit write to MMIO * @b: data payload * @addr: address in MMIO space * @writeq_lock: spin lock * * Glue for handling an atomic 64 bit word to MMIO. This special handling takes * care of 32 bit environment where its not quarenteed to send the entire word * in one transfer. */ #if defined(writeq) && defined(CONFIG_64BIT) static inline void _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) { wmb(); __raw_writeq(b, addr); barrier(); } #else static inline void _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) { _base_mpi_ep_writeq(b, addr, writeq_lock); } #endif /** * _base_set_and_get_msix_index - get the msix index and assign to msix_io * variable of scsi tracker * @ioc: per adapter object * @smid: system request message index * * returns msix index. */ static u8 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid) { struct scsiio_tracker *st = NULL; if (smid < ioc->hi_priority_smid) st = _get_st_from_smid(ioc, smid); if (st == NULL) return _base_get_msix_index(ioc, NULL); st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd); return st->msix_io; } /** * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware * @ioc: per adapter object * @smid: system request message index * @handle: device handle */ static void _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle) { Mpi2RequestDescriptorUnion_t descriptor; u64 *request = (u64 *)&descriptor; void *mpi_req_iomem; __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); _clone_sg_entries(ioc, (void *) mfp, smid); mpi_req_iomem = (void __force *)ioc->chip + MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, ioc->request_sz); descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); descriptor.SCSIIO.SMID = cpu_to_le16(smid); descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); descriptor.SCSIIO.LMID = 0; _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow, &ioc->scsi_lookup_lock); } /** * _base_put_smid_scsi_io - send SCSI_IO request to firmware * @ioc: per adapter object * @smid: system request message index * @handle: device handle */ static void _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle) { Mpi2RequestDescriptorUnion_t descriptor; u64 *request = (u64 *)&descriptor; descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); descriptor.SCSIIO.SMID = cpu_to_le16(smid); descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); descriptor.SCSIIO.LMID = 0; _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, &ioc->scsi_lookup_lock); } /** * _base_put_smid_fast_path - send fast path request to firmware * @ioc: per adapter object * @smid: system request message index * @handle: device handle */ static void _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle) { Mpi2RequestDescriptorUnion_t descriptor; u64 *request = (u64 *)&descriptor; descriptor.SCSIIO.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); descriptor.SCSIIO.SMID = cpu_to_le16(smid); descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); descriptor.SCSIIO.LMID = 0; _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, &ioc->scsi_lookup_lock); } /** * _base_put_smid_hi_priority - send Task Management request to firmware * @ioc: per adapter object * @smid: system request message index * @msix_task: msix_task will be same as msix of IO incase of task abort else 0. */ static void _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 msix_task) { Mpi2RequestDescriptorUnion_t descriptor; void *mpi_req_iomem; u64 *request; if (ioc->is_mcpu_endpoint) { __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); /* TBD 256 is offset within sys register. */ mpi_req_iomem = (void __force *)ioc->chip + MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, ioc->request_sz); } request = (u64 *)&descriptor; descriptor.HighPriority.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; descriptor.HighPriority.MSIxIndex = msix_task; descriptor.HighPriority.SMID = cpu_to_le16(smid); descriptor.HighPriority.LMID = 0; descriptor.HighPriority.Reserved1 = 0; if (ioc->is_mcpu_endpoint) _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow, &ioc->scsi_lookup_lock); else _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, &ioc->scsi_lookup_lock); } /** * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to * firmware * @ioc: per adapter object * @smid: system request message index */ void mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid) { Mpi2RequestDescriptorUnion_t descriptor; u64 *request = (u64 *)&descriptor; descriptor.Default.RequestFlags = MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED; descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); descriptor.Default.SMID = cpu_to_le16(smid); descriptor.Default.LMID = 0; descriptor.Default.DescriptorTypeDependent = 0; _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, &ioc->scsi_lookup_lock); } /** * _base_put_smid_default - Default, primarily used for config pages * @ioc: per adapter object * @smid: system request message index */ static void _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid) { Mpi2RequestDescriptorUnion_t descriptor; void *mpi_req_iomem; u64 *request; if (ioc->is_mcpu_endpoint) { __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid); _clone_sg_entries(ioc, (void *) mfp, smid); /* TBD 256 is offset within sys register */ mpi_req_iomem = (void __force *)ioc->chip + MPI_FRAME_START_OFFSET + (smid * ioc->request_sz); _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp, ioc->request_sz); } request = (u64 *)&descriptor; descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); descriptor.Default.SMID = cpu_to_le16(smid); descriptor.Default.LMID = 0; descriptor.Default.DescriptorTypeDependent = 0; if (ioc->is_mcpu_endpoint) _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow, &ioc->scsi_lookup_lock); else _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, &ioc->scsi_lookup_lock); } /** * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using * Atomic Request Descriptor * @ioc: per adapter object * @smid: system request message index * @handle: device handle, unused in this function, for function type match * * Return nothing. */ static void _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle) { Mpi26AtomicRequestDescriptor_t descriptor; u32 *request = (u32 *)&descriptor; descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); descriptor.SMID = cpu_to_le16(smid); writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); } /** * _base_put_smid_fast_path_atomic - send fast path request to firmware * using Atomic Request Descriptor * @ioc: per adapter object * @smid: system request message index * @handle: device handle, unused in this function, for function type match * Return nothing */ static void _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle) { Mpi26AtomicRequestDescriptor_t descriptor; u32 *request = (u32 *)&descriptor; descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); descriptor.SMID = cpu_to_le16(smid); writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); } /** * _base_put_smid_hi_priority_atomic - send Task Management request to * firmware using Atomic Request Descriptor * @ioc: per adapter object * @smid: system request message index * @msix_task: msix_task will be same as msix of IO incase of task abort else 0 * * Return nothing. */ static void _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 msix_task) { Mpi26AtomicRequestDescriptor_t descriptor; u32 *request = (u32 *)&descriptor; descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; descriptor.MSIxIndex = msix_task; descriptor.SMID = cpu_to_le16(smid); writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); } /** * _base_put_smid_default - Default, primarily used for config pages * use Atomic Request Descriptor * @ioc: per adapter object * @smid: system request message index * * Return nothing. */ static void _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid) { Mpi26AtomicRequestDescriptor_t descriptor; u32 *request = (u32 *)&descriptor; descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid); descriptor.SMID = cpu_to_le16(smid); writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost); } /** * _base_display_OEMs_branding - Display branding string * @ioc: per adapter object */ static void _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc) { if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL) return; switch (ioc->pdev->subsystem_vendor) { case PCI_VENDOR_ID_INTEL: switch (ioc->pdev->device) { case MPI2_MFGPAGE_DEVID_SAS2008: switch (ioc->pdev->subsystem_device) { case MPT2SAS_INTEL_RMS2LL080_SSDID: ioc_info(ioc, "%s\n", MPT2SAS_INTEL_RMS2LL080_BRANDING); break; case MPT2SAS_INTEL_RMS2LL040_SSDID: ioc_info(ioc, "%s\n", MPT2SAS_INTEL_RMS2LL040_BRANDING); break; case MPT2SAS_INTEL_SSD910_SSDID: ioc_info(ioc, "%s\n", MPT2SAS_INTEL_SSD910_BRANDING); break; default: ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", ioc->pdev->subsystem_device); break; } break; case MPI2_MFGPAGE_DEVID_SAS2308_2: switch (ioc->pdev->subsystem_device) { case MPT2SAS_INTEL_RS25GB008_SSDID: ioc_info(ioc, "%s\n", MPT2SAS_INTEL_RS25GB008_BRANDING); break; case MPT2SAS_INTEL_RMS25JB080_SSDID: ioc_info(ioc, "%s\n", MPT2SAS_INTEL_RMS25JB080_BRANDING); break; case MPT2SAS_INTEL_RMS25JB040_SSDID: ioc_info(ioc, "%s\n", MPT2SAS_INTEL_RMS25JB040_BRANDING); break; case MPT2SAS_INTEL_RMS25KB080_SSDID: ioc_info(ioc, "%s\n", MPT2SAS_INTEL_RMS25KB080_BRANDING); break; case MPT2SAS_INTEL_RMS25KB040_SSDID: ioc_info(ioc, "%s\n", MPT2SAS_INTEL_RMS25KB040_BRANDING); break; case MPT2SAS_INTEL_RMS25LB040_SSDID: ioc_info(ioc, "%s\n", MPT2SAS_INTEL_RMS25LB040_BRANDING); break; case MPT2SAS_INTEL_RMS25LB080_SSDID: ioc_info(ioc, "%s\n", MPT2SAS_INTEL_RMS25LB080_BRANDING); break; default: ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", ioc->pdev->subsystem_device); break; } break; case MPI25_MFGPAGE_DEVID_SAS3008: switch (ioc->pdev->subsystem_device) { case MPT3SAS_INTEL_RMS3JC080_SSDID: ioc_info(ioc, "%s\n", MPT3SAS_INTEL_RMS3JC080_BRANDING); break; case MPT3SAS_INTEL_RS3GC008_SSDID: ioc_info(ioc, "%s\n", MPT3SAS_INTEL_RS3GC008_BRANDING); break; case MPT3SAS_INTEL_RS3FC044_SSDID: ioc_info(ioc, "%s\n", MPT3SAS_INTEL_RS3FC044_BRANDING); break; case MPT3SAS_INTEL_RS3UC080_SSDID: ioc_info(ioc, "%s\n", MPT3SAS_INTEL_RS3UC080_BRANDING); break; default: ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", ioc->pdev->subsystem_device); break; } break; default: ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n", ioc->pdev->subsystem_device); break; } break; case PCI_VENDOR_ID_DELL: switch (ioc->pdev->device) { case MPI2_MFGPAGE_DEVID_SAS2008: switch (ioc->pdev->subsystem_device) { case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID: ioc_info(ioc, "%s\n", MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING); break; case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID: ioc_info(ioc, "%s\n", MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING); break; case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID: ioc_info(ioc, "%s\n", MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING); break; case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID: ioc_info(ioc, "%s\n", MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING); break; case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID: ioc_info(ioc, "%s\n", MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING); break; case MPT2SAS_DELL_PERC_H200_SSDID: ioc_info(ioc, "%s\n", MPT2SAS_DELL_PERC_H200_BRANDING); break; case MPT2SAS_DELL_6GBPS_SAS_SSDID: ioc_info(ioc, "%s\n", MPT2SAS_DELL_6GBPS_SAS_BRANDING); break; default: ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n", ioc->pdev->subsystem_device); break; } break; case MPI25_MFGPAGE_DEVID_SAS3008: switch (ioc->pdev->subsystem_device) { case MPT3SAS_DELL_12G_HBA_SSDID: ioc_info(ioc, "%s\n", MPT3SAS_DELL_12G_HBA_BRANDING); break; default: ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n", ioc->pdev->subsystem_device); break; } break; default: ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n", ioc->pdev->subsystem_device); break; } break; case PCI_VENDOR_ID_CISCO: switch (ioc->pdev->device) { case MPI25_MFGPAGE_DEVID_SAS3008: switch (ioc->pdev->subsystem_device) { case MPT3SAS_CISCO_12G_8E_HBA_SSDID: ioc_info(ioc, "%s\n", MPT3SAS_CISCO_12G_8E_HBA_BRANDING); break; case MPT3SAS_CISCO_12G_8I_HBA_SSDID: ioc_info(ioc, "%s\n", MPT3SAS_CISCO_12G_8I_HBA_BRANDING); break; case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: ioc_info(ioc, "%s\n", MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); break; default: ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", ioc->pdev->subsystem_device); break; } break; case MPI25_MFGPAGE_DEVID_SAS3108_1: switch (ioc->pdev->subsystem_device) { case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID: ioc_info(ioc, "%s\n", MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING); break; case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID: ioc_info(ioc, "%s\n", MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING); break; default: ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n", ioc->pdev->subsystem_device); break; } break; default: ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n", ioc->pdev->subsystem_device); break; } break; case MPT2SAS_HP_3PAR_SSVID: switch (ioc->pdev->device) { case MPI2_MFGPAGE_DEVID_SAS2004: switch (ioc->pdev->subsystem_device) { case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID: ioc_info(ioc, "%s\n", MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING); break; default: ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", ioc->pdev->subsystem_device); break; } break; case MPI2_MFGPAGE_DEVID_SAS2308_2: switch (ioc->pdev->subsystem_device) { case MPT2SAS_HP_2_4_INTERNAL_SSDID: ioc_info(ioc, "%s\n", MPT2SAS_HP_2_4_INTERNAL_BRANDING); break; case MPT2SAS_HP_2_4_EXTERNAL_SSDID: ioc_info(ioc, "%s\n", MPT2SAS_HP_2_4_EXTERNAL_BRANDING); break; case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID: ioc_info(ioc, "%s\n", MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING); break; case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID: ioc_info(ioc, "%s\n", MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING); break; default: ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n", ioc->pdev->subsystem_device); break; } break; default: ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n", ioc->pdev->subsystem_device); break; } default: break; } } /** * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg * version from FW Image Header. * @ioc: per adapter object * * Return: 0 for success, non-zero for failure. */ static int _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc) { Mpi2FWImageHeader_t *fw_img_hdr; Mpi26ComponentImageHeader_t *cmp_img_hdr; Mpi25FWUploadRequest_t *mpi_request; Mpi2FWUploadReply_t mpi_reply; int r = 0; u32 package_version = 0; void *fwpkg_data = NULL; dma_addr_t fwpkg_data_dma; u16 smid, ioc_status; size_t data_length; dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); if (ioc->base_cmds.status & MPT3_CMD_PENDING) { ioc_err(ioc, "%s: internal command already in use\n", __func__); return -EAGAIN; } data_length = sizeof(Mpi2FWImageHeader_t); fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length, &fwpkg_data_dma, GFP_KERNEL); if (!fwpkg_data) { ioc_err(ioc, "Memory allocation for fwpkg data failed at %s:%d/%s()!\n", __FILE__, __LINE__, __func__); return -ENOMEM; } smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); if (!smid) { ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); r = -EAGAIN; goto out; } ioc->base_cmds.status = MPT3_CMD_PENDING; mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); ioc->base_cmds.smid = smid; memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t)); mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD; mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH; mpi_request->ImageSize = cpu_to_le32(data_length); ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma, data_length); init_completion(&ioc->base_cmds.done); ioc->put_smid_default(ioc, smid); /* Wait for 15 seconds */ wait_for_completion_timeout(&ioc->base_cmds.done, FW_IMG_HDR_READ_TIMEOUT*HZ); ioc_info(ioc, "%s: complete\n", __func__); if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { ioc_err(ioc, "%s: timeout\n", __func__); _debug_dump_mf(mpi_request, sizeof(Mpi25FWUploadRequest_t)/4); r = -ETIME; } else { memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t)); if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) { memcpy(&mpi_reply, ioc->base_cmds.reply, sizeof(Mpi2FWUploadReply_t)); ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK; if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data; if (le32_to_cpu(fw_img_hdr->Signature) == MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) { cmp_img_hdr = (Mpi26ComponentImageHeader_t *) (fwpkg_data); package_version = le32_to_cpu( cmp_img_hdr->ApplicationSpecific); } else package_version = le32_to_cpu( fw_img_hdr->PackageVersion.Word); if (package_version) ioc_info(ioc, "FW Package Ver(%02d.%02d.%02d.%02d)\n", ((package_version) & 0xFF000000) >> 24, ((package_version) & 0x00FF0000) >> 16, ((package_version) & 0x0000FF00) >> 8, (package_version) & 0x000000FF); } else { _debug_dump_mf(&mpi_reply, sizeof(Mpi2FWUploadReply_t)/4); } } } ioc->base_cmds.status = MPT3_CMD_NOT_USED; out: if (fwpkg_data) dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data, fwpkg_data_dma); return r; } /** * _base_display_ioc_capabilities - Disply IOC's capabilities. * @ioc: per adapter object */ static void _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc) { int i = 0; char desc[16]; u32 iounit_pg1_flags; u32 bios_version; bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion); strncpy(desc, ioc->manu_pg0.ChipName, 16); ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n", desc, (ioc->facts.FWVersion.Word & 0xFF000000) >> 24, (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16, (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8, ioc->facts.FWVersion.Word & 0x000000FF, ioc->pdev->revision, (bios_version & 0xFF000000) >> 24, (bios_version & 0x00FF0000) >> 16, (bios_version & 0x0000FF00) >> 8, bios_version & 0x000000FF); _base_display_OEMs_branding(ioc); if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { pr_info("%sNVMe", i ? "," : ""); i++; } ioc_info(ioc, "Protocol=("); if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) { pr_cont("Initiator"); i++; } if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) { pr_cont("%sTarget", i ? "," : ""); i++; } i = 0; pr_cont("), Capabilities=("); if (!ioc->hide_ir_msg) { if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) { pr_cont("Raid"); i++; } } if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) { pr_cont("%sTLR", i ? "," : ""); i++; } if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) { pr_cont("%sMulticast", i ? "," : ""); i++; } if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) { pr_cont("%sBIDI Target", i ? "," : ""); i++; } if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) { pr_cont("%sEEDP", i ? "," : ""); i++; } if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) { pr_cont("%sSnapshot Buffer", i ? "," : ""); i++; } if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) { pr_cont("%sDiag Trace Buffer", i ? "," : ""); i++; } if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) { pr_cont("%sDiag Extended Buffer", i ? "," : ""); i++; } if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) { pr_cont("%sTask Set Full", i ? "," : ""); i++; } iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) { pr_cont("%sNCQ", i ? "," : ""); i++; } pr_cont(")\n"); } /** * mpt3sas_base_update_missing_delay - change the missing delay timers * @ioc: per adapter object * @device_missing_delay: amount of time till device is reported missing * @io_missing_delay: interval IO is returned when there is a missing device * * Passed on the command line, this function will modify the device missing * delay, as well as the io missing delay. This should be called at driver * load time. */ void mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc, u16 device_missing_delay, u8 io_missing_delay) { u16 dmd, dmd_new, dmd_orignal; u8 io_missing_delay_original; u16 sz; Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL; Mpi2ConfigReply_t mpi_reply; u8 num_phys = 0; u16 ioc_status; mpt3sas_config_get_number_hba_phys(ioc, &num_phys); if (!num_phys) return; sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys * sizeof(Mpi2SasIOUnit1PhyData_t)); sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL); if (!sas_iounit_pg1) { ioc_err(ioc, "failure at %s:%d/%s()!\n", __FILE__, __LINE__, __func__); goto out; } if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1, sz))) { ioc_err(ioc, "failure at %s:%d/%s()!\n", __FILE__, __LINE__, __func__); goto out; } ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK; if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { ioc_err(ioc, "failure at %s:%d/%s()!\n", __FILE__, __LINE__, __func__); goto out; } /* device missing delay */ dmd = sas_iounit_pg1->ReportDeviceMissingDelay; if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; else dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; dmd_orignal = dmd; if (device_missing_delay > 0x7F) { dmd = (device_missing_delay > 0x7F0) ? 0x7F0 : device_missing_delay; dmd = dmd / 16; dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16; } else dmd = device_missing_delay; sas_iounit_pg1->ReportDeviceMissingDelay = dmd; /* io missing delay */ io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay; sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay; if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1, sz)) { if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16) dmd_new = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16; else dmd_new = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK; ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n", dmd_orignal, dmd_new); ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n", io_missing_delay_original, io_missing_delay); ioc->device_missing_delay = dmd_new; ioc->io_missing_delay = io_missing_delay; } out: kfree(sas_iounit_pg1); } /** * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields * according to performance mode. * @ioc : per adapter object * * Return nothing. */ static void _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc) { Mpi2IOCPage1_t ioc_pg1; Mpi2ConfigReply_t mpi_reply; mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy); memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t)); switch (perf_mode) { case MPT_PERF_MODE_DEFAULT: case MPT_PERF_MODE_BALANCED: if (ioc->high_iops_queues) { ioc_info(ioc, "Enable interrupt coalescing only for first\t" "%d reply queues\n", MPT3SAS_HIGH_IOPS_REPLY_QUEUES); /* * If 31st bit is zero then interrupt coalescing is * enabled for all reply descriptor post queues. * If 31st bit is set to one then user can * enable/disable interrupt coalescing on per reply * descriptor post queue group(8) basis. So to enable * interrupt coalescing only on first reply descriptor * post queue group 31st bit and zero th bit is enabled. */ ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 | ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1)); mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); ioc_info(ioc, "performance mode: balanced\n"); return; } /* Fall through */ case MPT_PERF_MODE_LATENCY: /* * Enable interrupt coalescing on all reply queues * with timeout value 0xA */ ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa); ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING); ioc_pg1.ProductSpecific = 0; mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); ioc_info(ioc, "performance mode: latency\n"); break; case MPT_PERF_MODE_IOPS: /* * Enable interrupt coalescing on all reply queues. */ ioc_info(ioc, "performance mode: iops with coalescing timeout: 0x%x\n", le32_to_cpu(ioc_pg1.CoalescingTimeout)); ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING); ioc_pg1.ProductSpecific = 0; mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1); break; } } /** * _base_static_config_pages - static start of day config pages * @ioc: per adapter object */ static void _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc) { Mpi2ConfigReply_t mpi_reply; u32 iounit_pg1_flags; ioc->nvme_abort_timeout = 30; mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0); if (ioc->ir_firmware) mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply, &ioc->manu_pg10); /* * Ensure correct T10 PI operation if vendor left EEDPTagMode * flag unset in NVDATA. */ mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11); if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) { pr_err("%s: overriding NVDATA EEDPTagMode setting\n", ioc->name); ioc->manu_pg11.EEDPTagMode &= ~0x3; ioc->manu_pg11.EEDPTagMode |= 0x1; mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11); } if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK) ioc->tm_custom_handling = 1; else { ioc->tm_custom_handling = 0; if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT) ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT; else if (ioc->manu_pg11.NVMeAbortTO > NVME_TASK_ABORT_MAX_TIMEOUT) ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT; else ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO; } mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2); mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3); mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8); mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0); mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8); _base_display_ioc_capabilities(ioc); /* * Enable task_set_full handling in iounit_pg1 when the * facts capabilities indicate that its supported. */ iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); if ((ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING)) iounit_pg1_flags &= ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; else iounit_pg1_flags |= MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags); mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); if (ioc->iounit_pg8.NumSensors) ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors; if (ioc->is_aero_ioc) _base_update_ioc_page1_inlinewith_perf_mode(ioc); } /** * mpt3sas_free_enclosure_list - release memory * @ioc: per adapter object * * Free memory allocated during encloure add. */ void mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc) { struct _enclosure_node *enclosure_dev, *enclosure_dev_next; /* Free enclosure list */ list_for_each_entry_safe(enclosure_dev, enclosure_dev_next, &ioc->enclosure_list, list) { list_del(&enclosure_dev->list); kfree(enclosure_dev); } } /** * _base_release_memory_pools - release memory * @ioc: per adapter object * * Free memory allocated from _base_allocate_memory_pools. */ static void _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc) { int i = 0; int j = 0; int dma_alloc_count = 0; struct chain_tracker *ct; int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1; dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); if (ioc->request) { dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz, ioc->request, ioc->request_dma); dexitprintk(ioc, ioc_info(ioc, "request_pool(0x%p): free\n", ioc->request)); ioc->request = NULL; } if (ioc->sense) { dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma); dma_pool_destroy(ioc->sense_dma_pool); dexitprintk(ioc, ioc_info(ioc, "sense_pool(0x%p): free\n", ioc->sense)); ioc->sense = NULL; } if (ioc->reply) { dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma); dma_pool_destroy(ioc->reply_dma_pool); dexitprintk(ioc, ioc_info(ioc, "reply_pool(0x%p): free\n", ioc->reply)); ioc->reply = NULL; } if (ioc->reply_free) { dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free, ioc->reply_free_dma); dma_pool_destroy(ioc->reply_free_dma_pool); dexitprintk(ioc, ioc_info(ioc, "reply_free_pool(0x%p): free\n", ioc->reply_free)); ioc->reply_free = NULL; } if (ioc->reply_post) { dma_alloc_count = DIV_ROUND_UP(count, RDPQ_MAX_INDEX_IN_ONE_CHUNK); for (i = 0; i < count; i++) { if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0 && dma_alloc_count) { if (ioc->reply_post[i].reply_post_free) { dma_pool_free( ioc->reply_post_free_dma_pool, ioc->reply_post[i].reply_post_free, ioc->reply_post[i].reply_post_free_dma); dexitprintk(ioc, ioc_info(ioc, "reply_post_free_pool(0x%p): free\n", ioc->reply_post[i].reply_post_free)); ioc->reply_post[i].reply_post_free = NULL; } --dma_alloc_count; } } dma_pool_destroy(ioc->reply_post_free_dma_pool); if (ioc->reply_post_free_array && ioc->rdpq_array_enable) { dma_pool_free(ioc->reply_post_free_array_dma_pool, ioc->reply_post_free_array, ioc->reply_post_free_array_dma); ioc->reply_post_free_array = NULL; } dma_pool_destroy(ioc->reply_post_free_array_dma_pool); kfree(ioc->reply_post); } if (ioc->pcie_sgl_dma_pool) { for (i = 0; i < ioc->scsiio_depth; i++) { dma_pool_free(ioc->pcie_sgl_dma_pool, ioc->pcie_sg_lookup[i].pcie_sgl, ioc->pcie_sg_lookup[i].pcie_sgl_dma); } dma_pool_destroy(ioc->pcie_sgl_dma_pool); } if (ioc->config_page) { dexitprintk(ioc, ioc_info(ioc, "config_page(0x%p): free\n", ioc->config_page)); dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz, ioc->config_page, ioc->config_page_dma); } kfree(ioc->hpr_lookup); ioc->hpr_lookup = NULL; kfree(ioc->internal_lookup); ioc->internal_lookup = NULL; if (ioc->chain_lookup) { for (i = 0; i < ioc->scsiio_depth; i++) { for (j = ioc->chains_per_prp_buffer; j < ioc->chains_needed_per_io; j++) { ct = &ioc->chain_lookup[i].chains_per_smid[j]; if (ct && ct->chain_buffer) dma_pool_free(ioc->chain_dma_pool, ct->chain_buffer, ct->chain_buffer_dma); } kfree(ioc->chain_lookup[i].chains_per_smid); } dma_pool_destroy(ioc->chain_dma_pool); kfree(ioc->chain_lookup); ioc->chain_lookup = NULL; } } /** * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are * having same upper 32bits in their base memory address. * @reply_pool_start_address: Base address of a reply queue set * @pool_sz: Size of single Reply Descriptor Post Queues pool size * * Return: 1 if reply queues in a set have a same upper 32bits in their base * memory address, else 0. */ static int mpt3sas_check_same_4gb_region(long reply_pool_start_address, u32 pool_sz) { long reply_pool_end_address; reply_pool_end_address = reply_pool_start_address + pool_sz; if (upper_32_bits(reply_pool_start_address) == upper_32_bits(reply_pool_end_address)) return 1; else return 0; } /** * base_alloc_rdpq_dma_pool - Allocating DMA'able memory * for reply queues. * @ioc: per adapter object * @sz: DMA Pool size * Return: 0 for success, non-zero for failure. */ static int base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz) { int i = 0; u32 dma_alloc_count = 0; int reply_post_free_sz = ioc->reply_post_queue_depth * sizeof(Mpi2DefaultReplyDescriptor_t); int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1; ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct), GFP_KERNEL); if (!ioc->reply_post) return -ENOMEM; /* * For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and * VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should * be within 4GB boundary i.e reply queues in a set must have same * upper 32-bits in their memory address. so here driver is allocating * the DMA'able memory for reply queues according. * Driver uses limitation of * VENTURA_SERIES to manage INVADER_SERIES as well. */ dma_alloc_count = DIV_ROUND_UP(count, RDPQ_MAX_INDEX_IN_ONE_CHUNK); ioc->reply_post_free_dma_pool = dma_pool_create("reply_post_free pool", &ioc->pdev->dev, sz, 16, 0); if (!ioc->reply_post_free_dma_pool) return -ENOMEM; for (i = 0; i < count; i++) { if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) { ioc->reply_post[i].reply_post_free = dma_pool_zalloc(ioc->reply_post_free_dma_pool, GFP_KERNEL, &ioc->reply_post[i].reply_post_free_dma); if (!ioc->reply_post[i].reply_post_free) return -ENOMEM; /* * Each set of RDPQ pool must satisfy 4gb boundary * restriction. * 1) Check if allocated resources for RDPQ pool are in * the same 4GB range. * 2) If #1 is true, continue with 64 bit DMA. * 3) If #1 is false, return 1. which means free all the * resources and set DMA mask to 32 and allocate. */ if (!mpt3sas_check_same_4gb_region( (long)ioc->reply_post[i].reply_post_free, sz)) { dinitprintk(ioc, ioc_err(ioc, "bad Replypost free pool(0x%p)" "reply_post_free_dma = (0x%llx)\n", ioc->reply_post[i].reply_post_free, (unsigned long long) ioc->reply_post[i].reply_post_free_dma)); return -EAGAIN; } dma_alloc_count--; } else { ioc->reply_post[i].reply_post_free = (Mpi2ReplyDescriptorsUnion_t *) ((long)ioc->reply_post[i-1].reply_post_free + reply_post_free_sz); ioc->reply_post[i].reply_post_free_dma = (dma_addr_t) (ioc->reply_post[i-1].reply_post_free_dma + reply_post_free_sz); } } return 0; } /** * _base_allocate_memory_pools - allocate start of day memory pools * @ioc: per adapter object * * Return: 0 success, anything else error. */ static int _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc) { struct mpt3sas_facts *facts; u16 max_sge_elements; u16 chains_needed_per_io; u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz; u32 retry_sz; u32 rdpq_sz = 0; u16 max_request_credit, nvme_blocks_needed; unsigned short sg_tablesize; u16 sge_size; int i, j; int ret = 0; struct chain_tracker *ct; dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); retry_sz = 0; facts = &ioc->facts; /* command line tunables for max sgl entries */ if (max_sgl_entries != -1) sg_tablesize = max_sgl_entries; else { if (ioc->hba_mpi_version_belonged == MPI2_VERSION) sg_tablesize = MPT2SAS_SG_DEPTH; else sg_tablesize = MPT3SAS_SG_DEPTH; } /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */ if (reset_devices) sg_tablesize = min_t(unsigned short, sg_tablesize, MPT_KDUMP_MIN_PHYS_SEGMENTS); if (ioc->is_mcpu_endpoint) ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS; else { if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS) sg_tablesize = MPT_MIN_PHYS_SEGMENTS; else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) { sg_tablesize = min_t(unsigned short, sg_tablesize, SG_MAX_SEGMENTS); ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n", sg_tablesize, MPT_MAX_PHYS_SEGMENTS); } ioc->shost->sg_tablesize = sg_tablesize; } ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)), (facts->RequestCredit / 4)); if (ioc->internal_depth < INTERNAL_CMDS_COUNT) { if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT + INTERNAL_SCSIIO_CMDS_COUNT)) { ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n", facts->RequestCredit); return -ENOMEM; } ioc->internal_depth = 10; } ioc->hi_priority_depth = ioc->internal_depth - (5); /* command line tunables for max controller queue depth */ if (max_queue_depth != -1 && max_queue_depth != 0) { max_request_credit = min_t(u16, max_queue_depth + ioc->internal_depth, facts->RequestCredit); if (max_request_credit > MAX_HBA_QUEUE_DEPTH) max_request_credit = MAX_HBA_QUEUE_DEPTH; } else if (reset_devices) max_request_credit = min_t(u16, facts->RequestCredit, (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth)); else max_request_credit = min_t(u16, facts->RequestCredit, MAX_HBA_QUEUE_DEPTH); /* Firmware maintains additional facts->HighPriorityCredit number of * credits for HiPriprity Request messages, so hba queue depth will be * sum of max_request_credit and high priority queue depth. */ ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth; /* request frame size */ ioc->request_sz = facts->IOCRequestFrameSize * 4; /* reply frame size */ ioc->reply_sz = facts->ReplyFrameSize * 4; /* chain segment size */ if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { if (facts->IOCMaxChainSegmentSize) ioc->chain_segment_sz = facts->IOCMaxChainSegmentSize * MAX_CHAIN_ELEMT_SZ; else /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */ ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS * MAX_CHAIN_ELEMT_SZ; } else ioc->chain_segment_sz = ioc->request_sz; /* calculate the max scatter element size */ sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee); retry_allocation: total_sz = 0; /* calculate number of sg elements left over in the 1st frame */ max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) - sizeof(Mpi2SGEIOUnion_t)) + sge_size); ioc->max_sges_in_main_message = max_sge_elements/sge_size; /* now do the same for a chain buffer */ max_sge_elements = ioc->chain_segment_sz - sge_size; ioc->max_sges_in_chain_message = max_sge_elements/sge_size; /* * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE */ chains_needed_per_io = ((ioc->shost->sg_tablesize - ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message) + 1; if (chains_needed_per_io > facts->MaxChainDepth) { chains_needed_per_io = facts->MaxChainDepth; ioc->shost->sg_tablesize = min_t(u16, ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message * chains_needed_per_io), ioc->shost->sg_tablesize); } ioc->chains_needed_per_io = chains_needed_per_io; /* reply free queue sizing - taking into account for 64 FW events */ ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; /* mCPU manage single counters for simplicity */ if (ioc->is_mcpu_endpoint) ioc->reply_post_queue_depth = ioc->reply_free_queue_depth; else { /* calculate reply descriptor post queue depth */ ioc->reply_post_queue_depth = ioc->hba_queue_depth + ioc->reply_free_queue_depth + 1; /* align the reply post queue on the next 16 count boundary */ if (ioc->reply_post_queue_depth % 16) ioc->reply_post_queue_depth += 16 - (ioc->reply_post_queue_depth % 16); } if (ioc->reply_post_queue_depth > facts->MaxReplyDescriptorPostQueueDepth) { ioc->reply_post_queue_depth = facts->MaxReplyDescriptorPostQueueDepth - (facts->MaxReplyDescriptorPostQueueDepth % 16); ioc->hba_queue_depth = ((ioc->reply_post_queue_depth - 64) / 2) - 1; ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64; } ioc_info(ioc, "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), " "sge_per_io(%d), chains_per_io(%d)\n", ioc->max_sges_in_main_message, ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize, ioc->chains_needed_per_io); /* reply post queue, 16 byte align */ reply_post_free_sz = ioc->reply_post_queue_depth * sizeof(Mpi2DefaultReplyDescriptor_t); rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK; if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable) rdpq_sz = reply_post_free_sz * ioc->reply_queue_count; ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz); if (ret == -EAGAIN) { /* * Free allocated bad RDPQ memory pools. * Change dma coherent mask to 32 bit and reallocate RDPQ */ _base_release_memory_pools(ioc); ioc->use_32bit_dma = true; if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) { ioc_err(ioc, "32 DMA mask failed %s\n", pci_name(ioc->pdev)); return -ENODEV; } if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz)) return -ENOMEM; } else if (ret == -ENOMEM) return -ENOMEM; total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 : DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK)); ioc->scsiio_depth = ioc->hba_queue_depth - ioc->hi_priority_depth - ioc->internal_depth; /* set the scsi host can_queue depth * with some internal commands that could be outstanding */ ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT; dinitprintk(ioc, ioc_info(ioc, "scsi host: can_queue depth (%d)\n", ioc->shost->can_queue)); /* contiguous pool for request and chains, 16 byte align, one extra " * "frame for smid=0 */ ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth; sz = ((ioc->scsiio_depth + 1) * ioc->request_sz); /* hi-priority queue */ sz += (ioc->hi_priority_depth * ioc->request_sz); /* internal queue */ sz += (ioc->internal_depth * ioc->request_sz); ioc->request_dma_sz = sz; ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz, &ioc->request_dma, GFP_KERNEL); if (!ioc->request) { ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n", ioc->hba_queue_depth, ioc->chains_needed_per_io, ioc->request_sz, sz / 1024); if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH) goto out; retry_sz = 64; ioc->hba_queue_depth -= retry_sz; _base_release_memory_pools(ioc); goto retry_allocation; } memset(ioc->request, 0, sz); if (retry_sz) ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n", ioc->hba_queue_depth, ioc->chains_needed_per_io, ioc->request_sz, sz / 1024); /* hi-priority queue */ ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) * ioc->request_sz); ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) * ioc->request_sz); /* internal queue */ ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth * ioc->request_sz); ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth * ioc->request_sz); ioc_info(ioc, "request pool(0x%p) - dma(0x%llx): " "depth(%d), frame_size(%d), pool_size(%d kB)\n", ioc->request, (unsigned long long) ioc->request_dma, ioc->hba_queue_depth, ioc->request_sz, (ioc->hba_queue_depth * ioc->request_sz) / 1024); total_sz += sz; dinitprintk(ioc, ioc_info(ioc, "scsiio(0x%p): depth(%d)\n", ioc->request, ioc->scsiio_depth)); ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH); sz = ioc->scsiio_depth * sizeof(struct chain_lookup); ioc->chain_lookup = kzalloc(sz, GFP_KERNEL); if (!ioc->chain_lookup) { ioc_err(ioc, "chain_lookup: __get_free_pages failed\n"); goto out; } sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker); for (i = 0; i < ioc->scsiio_depth; i++) { ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL); if (!ioc->chain_lookup[i].chains_per_smid) { ioc_err(ioc, "chain_lookup: kzalloc failed\n"); goto out; } } /* initialize hi-priority queue smid's */ ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth, sizeof(struct request_tracker), GFP_KERNEL); if (!ioc->hpr_lookup) { ioc_err(ioc, "hpr_lookup: kcalloc failed\n"); goto out; } ioc->hi_priority_smid = ioc->scsiio_depth + 1; dinitprintk(ioc, ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n", ioc->hi_priority, ioc->hi_priority_depth, ioc->hi_priority_smid)); /* initialize internal queue smid's */ ioc->internal_lookup = kcalloc(ioc->internal_depth, sizeof(struct request_tracker), GFP_KERNEL); if (!ioc->internal_lookup) { ioc_err(ioc, "internal_lookup: kcalloc failed\n"); goto out; } ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth; dinitprintk(ioc, ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n", ioc->internal, ioc->internal_depth, ioc->internal_smid)); /* * The number of NVMe page sized blocks needed is: * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry * that is placed in the main message frame. 8 is the size of each PRP * entry or PRP list pointer entry. 8 is subtracted from page_size * because of the PRP list pointer entry at the end of a page, so this * is not counted as a PRP entry. The 1 added page is a round up. * * To avoid allocation failures due to the amount of memory that could * be required for NVMe PRP's, only each set of NVMe blocks will be * contiguous, so a new set is allocated for each possible I/O. */ ioc->chains_per_prp_buffer = 0; if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) { nvme_blocks_needed = (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1; nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE); nvme_blocks_needed++; sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth; ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL); if (!ioc->pcie_sg_lookup) { ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n"); goto out; } sz = nvme_blocks_needed * ioc->page_size; ioc->pcie_sgl_dma_pool = dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 16, 0); if (!ioc->pcie_sgl_dma_pool) { ioc_info(ioc, "PCIe SGL pool: dma_pool_create failed\n"); goto out; } ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz; ioc->chains_per_prp_buffer = min(ioc->chains_per_prp_buffer, ioc->chains_needed_per_io); for (i = 0; i < ioc->scsiio_depth; i++) { ioc->pcie_sg_lookup[i].pcie_sgl = dma_pool_alloc( ioc->pcie_sgl_dma_pool, GFP_KERNEL, &ioc->pcie_sg_lookup[i].pcie_sgl_dma); if (!ioc->pcie_sg_lookup[i].pcie_sgl) { ioc_info(ioc, "PCIe SGL pool: dma_pool_alloc failed\n"); goto out; } for (j = 0; j < ioc->chains_per_prp_buffer; j++) { ct = &ioc->chain_lookup[i].chains_per_smid[j]; ct->chain_buffer = ioc->pcie_sg_lookup[i].pcie_sgl + (j * ioc->chain_segment_sz); ct->chain_buffer_dma = ioc->pcie_sg_lookup[i].pcie_sgl_dma + (j * ioc->chain_segment_sz); } } dinitprintk(ioc, ioc_info(ioc, "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth) / 1024)); dinitprintk(ioc, ioc_info(ioc, "Number of chains can fit in a PRP page(%d)\n", ioc->chains_per_prp_buffer)); total_sz += sz * ioc->scsiio_depth; } ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev, ioc->chain_segment_sz, 16, 0); if (!ioc->chain_dma_pool) { ioc_err(ioc, "chain_dma_pool: dma_pool_create failed\n"); goto out; } for (i = 0; i < ioc->scsiio_depth; i++) { for (j = ioc->chains_per_prp_buffer; j < ioc->chains_needed_per_io; j++) { ct = &ioc->chain_lookup[i].chains_per_smid[j]; ct->chain_buffer = dma_pool_alloc( ioc->chain_dma_pool, GFP_KERNEL, &ct->chain_buffer_dma); if (!ct->chain_buffer) { ioc_err(ioc, "chain_lookup: pci_pool_alloc failed\n"); goto out; } } total_sz += ioc->chain_segment_sz; } dinitprintk(ioc, ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n", ioc->chain_depth, ioc->chain_segment_sz, (ioc->chain_depth * ioc->chain_segment_sz) / 1024)); /* sense buffers, 4 byte align */ sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE; ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz, 4, 0); if (!ioc->sense_dma_pool) { ioc_err(ioc, "sense pool: dma_pool_create failed\n"); goto out; } ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL, &ioc->sense_dma); if (!ioc->sense) { ioc_err(ioc, "sense pool: dma_pool_alloc failed\n"); goto out; } /* sense buffer requires to be in same 4 gb region. * Below function will check the same. * In case of failure, new pci pool will be created with updated * alignment. Older allocation and pool will be destroyed. * Alignment will be used such a way that next allocation if * success, will always meet same 4gb region requirement. * Actual requirement is not alignment, but we need start and end of * DMA address must have same upper 32 bit address. */ if (!mpt3sas_check_same_4gb_region((long)ioc->sense, sz)) { //Release Sense pool & Reallocate dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma); dma_pool_destroy(ioc->sense_dma_pool); ioc->sense = NULL; ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz, roundup_pow_of_two(sz), 0); if (!ioc->sense_dma_pool) { ioc_err(ioc, "sense pool: pci_pool_create failed\n"); goto out; } ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL, &ioc->sense_dma); if (!ioc->sense) { ioc_err(ioc, "sense pool: pci_pool_alloc failed\n"); goto out; } } ioc_info(ioc, "sense pool(0x%p)- dma(0x%llx): depth(%d)," "element_size(%d), pool_size(%d kB)\n", ioc->sense, (unsigned long long)ioc->sense_dma, ioc->scsiio_depth, SCSI_SENSE_BUFFERSIZE, sz / 1024); total_sz += sz; /* reply pool, 4 byte align */ sz = ioc->reply_free_queue_depth * ioc->reply_sz; ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz, 4, 0); if (!ioc->reply_dma_pool) { ioc_err(ioc, "reply pool: dma_pool_create failed\n"); goto out; } ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL, &ioc->reply_dma); if (!ioc->reply) { ioc_err(ioc, "reply pool: dma_pool_alloc failed\n"); goto out; } ioc->reply_dma_min_address = (u32)(ioc->reply_dma); ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz; dinitprintk(ioc, ioc_info(ioc, "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n", ioc->reply, ioc->reply_free_queue_depth, ioc->reply_sz, sz / 1024)); dinitprintk(ioc, ioc_info(ioc, "reply_dma(0x%llx)\n", (unsigned long long)ioc->reply_dma)); total_sz += sz; /* reply free queue, 16 byte align */ sz = ioc->reply_free_queue_depth * 4; ioc->reply_free_dma_pool = dma_pool_create("reply_free pool", &ioc->pdev->dev, sz, 16, 0); if (!ioc->reply_free_dma_pool) { ioc_err(ioc, "reply_free pool: dma_pool_create failed\n"); goto out; } ioc->reply_free = dma_pool_zalloc(ioc->reply_free_dma_pool, GFP_KERNEL, &ioc->reply_free_dma); if (!ioc->reply_free) { ioc_err(ioc, "reply_free pool: dma_pool_alloc failed\n"); goto out; } dinitprintk(ioc, ioc_info(ioc, "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->reply_free, ioc->reply_free_queue_depth, 4, sz / 1024)); dinitprintk(ioc, ioc_info(ioc, "reply_free_dma (0x%llx)\n", (unsigned long long)ioc->reply_free_dma)); total_sz += sz; if (ioc->rdpq_array_enable) { reply_post_free_array_sz = ioc->reply_queue_count * sizeof(Mpi2IOCInitRDPQArrayEntry); ioc->reply_post_free_array_dma_pool = dma_pool_create("reply_post_free_array pool", &ioc->pdev->dev, reply_post_free_array_sz, 16, 0); if (!ioc->reply_post_free_array_dma_pool) { dinitprintk(ioc, ioc_info(ioc, "reply_post_free_array pool: dma_pool_create failed\n")); goto out; } ioc->reply_post_free_array = dma_pool_alloc(ioc->reply_post_free_array_dma_pool, GFP_KERNEL, &ioc->reply_post_free_array_dma); if (!ioc->reply_post_free_array) { dinitprintk(ioc, ioc_info(ioc, "reply_post_free_array pool: dma_pool_alloc failed\n")); goto out; } } ioc->config_page_sz = 512; ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev, ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL); if (!ioc->config_page) { ioc_err(ioc, "config page: dma_pool_alloc failed\n"); goto out; } ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n", ioc->config_page, (unsigned long long)ioc->config_page_dma, ioc->config_page_sz); total_sz += ioc->config_page_sz; ioc_info(ioc, "Allocated physical memory: size(%d kB)\n", total_sz / 1024); ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n", ioc->shost->can_queue, facts->RequestCredit); ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n", ioc->shost->sg_tablesize); return 0; out: return -ENOMEM; } /** * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter. * @ioc: Pointer to MPT_ADAPTER structure * @cooked: Request raw or cooked IOC state * * Return: all IOC Doorbell register bits if cooked==0, else just the * Doorbell bits in MPI_IOC_STATE_MASK. */ u32 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked) { u32 s, sc; s = ioc->base_readl(&ioc->chip->Doorbell); sc = s & MPI2_IOC_STATE_MASK; return cooked ? sc : s; } /** * _base_wait_on_iocstate - waiting on a particular ioc state * @ioc: ? * @ioc_state: controller state { READY, OPERATIONAL, or RESET } * @timeout: timeout in second * * Return: 0 for success, non-zero for failure. */ static int _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout) { u32 count, cntdn; u32 current_state; count = 0; cntdn = 1000 * timeout; do { current_state = mpt3sas_base_get_iocstate(ioc, 1); if (current_state == ioc_state) return 0; if (count && current_state == MPI2_IOC_STATE_FAULT) break; if (count && current_state == MPI2_IOC_STATE_COREDUMP) break; usleep_range(1000, 1500); count++; } while (--cntdn); return current_state; } /** * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by * a write to the doorbell) * @ioc: per adapter object * * Return: 0 for success, non-zero for failure. * * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell. */ static int _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) { u32 cntdn, count; u32 int_status; count = 0; cntdn = 1000 * timeout; do { int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { dhsprintk(ioc, ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", __func__, count, timeout)); return 0; } usleep_range(1000, 1500); count++; } while (--cntdn); ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", __func__, count, int_status); return -EFAULT; } static int _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout) { u32 cntdn, count; u32 int_status; count = 0; cntdn = 2000 * timeout; do { int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { dhsprintk(ioc, ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", __func__, count, timeout)); return 0; } udelay(500); count++; } while (--cntdn); ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", __func__, count, int_status); return -EFAULT; } /** * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell. * @ioc: per adapter object * @timeout: timeout in second * * Return: 0 for success, non-zero for failure. * * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to * doorbell. */ static int _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout) { u32 cntdn, count; u32 int_status; u32 doorbell; count = 0; cntdn = 1000 * timeout; do { int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus); if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) { dhsprintk(ioc, ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", __func__, count, timeout)); return 0; } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { doorbell = ioc->base_readl(&ioc->chip->Doorbell); if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { mpt3sas_print_fault_code(ioc, doorbell); return -EFAULT; } if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) { mpt3sas_print_coredump_info(ioc, doorbell); return -EFAULT; } } else if (int_status == 0xFFFFFFFF) goto out; usleep_range(1000, 1500); count++; } while (--cntdn); out: ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n", __func__, count, int_status); return -EFAULT; } /** * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use * @ioc: per adapter object * @timeout: timeout in second * * Return: 0 for success, non-zero for failure. */ static int _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout) { u32 cntdn, count; u32 doorbell_reg; count = 0; cntdn = 1000 * timeout; do { doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell); if (!(doorbell_reg & MPI2_DOORBELL_USED)) { dhsprintk(ioc, ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n", __func__, count, timeout)); return 0; } usleep_range(1000, 1500); count++; } while (--cntdn); ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n", __func__, count, doorbell_reg); return -EFAULT; } /** * _base_send_ioc_reset - send doorbell reset * @ioc: per adapter object * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET * @timeout: timeout in second * * Return: 0 for success, non-zero for failure. */ static int _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout) { u32 ioc_state; int r = 0; unsigned long flags; if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) { ioc_err(ioc, "%s: unknown reset_type\n", __func__); return -EFAULT; } if (!(ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY)) return -EFAULT; ioc_info(ioc, "sending message unit reset !!\n"); writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT, &ioc->chip->Doorbell); if ((_base_wait_for_doorbell_ack(ioc, 15))) { r = -EFAULT; goto out; } ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); if (ioc_state) { ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", __func__, ioc_state); r = -EFAULT; goto out; } out: if (r != 0) { ioc_state = mpt3sas_base_get_iocstate(ioc, 0); spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); /* * Wait for IOC state CoreDump to clear only during * HBA initialization & release time. */ if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 || ioc->fault_reset_work_q == NULL)) { spin_unlock_irqrestore( &ioc->ioc_reset_in_progress_lock, flags); mpt3sas_print_coredump_info(ioc, ioc_state); mpt3sas_base_wait_for_coredump_completion(ioc, __func__); spin_lock_irqsave( &ioc->ioc_reset_in_progress_lock, flags); } spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); } ioc_info(ioc, "message unit reset: %s\n", r == 0 ? "SUCCESS" : "FAILED"); return r; } /** * mpt3sas_wait_for_ioc - IOC's operational state is checked here. * @ioc: per adapter object * @wait_count: timeout in seconds * * Return: Waits up to timeout seconds for the IOC to * become operational. Returns 0 if IOC is present * and operational; otherwise returns -EFAULT. */ int mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout) { int wait_state_count = 0; u32 ioc_state; do { ioc_state = mpt3sas_base_get_iocstate(ioc, 1); if (ioc_state == MPI2_IOC_STATE_OPERATIONAL) break; ssleep(1); ioc_info(ioc, "%s: waiting for operational state(count=%d)\n", __func__, ++wait_state_count); } while (--timeout); if (!timeout) { ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__); return -EFAULT; } if (wait_state_count) ioc_info(ioc, "ioc is operational\n"); return 0; } /** * _base_handshake_req_reply_wait - send request thru doorbell interface * @ioc: per adapter object * @request_bytes: request length * @request: pointer having request payload * @reply_bytes: reply length * @reply: pointer to reply payload * @timeout: timeout in second * * Return: 0 for success, non-zero for failure. */ static int _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes, u32 *request, int reply_bytes, u16 *reply, int timeout) { MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply; int i; u8 failed; __le32 *mfp; /* make sure doorbell is not in use */ if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) { ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__); return -EFAULT; } /* clear pending doorbell interrupts from previous state changes */ if (ioc->base_readl(&ioc->chip->HostInterruptStatus) & MPI2_HIS_IOC2SYS_DB_STATUS) writel(0, &ioc->chip->HostInterruptStatus); /* send message to ioc */ writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) | ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)), &ioc->chip->Doorbell); if ((_base_spin_on_doorbell_int(ioc, 5))) { ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", __LINE__); return -EFAULT; } writel(0, &ioc->chip->HostInterruptStatus); if ((_base_wait_for_doorbell_ack(ioc, 5))) { ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n", __LINE__); return -EFAULT; } /* send message 32-bits at a time */ for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) { writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell); if ((_base_wait_for_doorbell_ack(ioc, 5))) failed = 1; } if (failed) { ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n", __LINE__); return -EFAULT; } /* now wait for the reply */ if ((_base_wait_for_doorbell_int(ioc, timeout))) { ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", __LINE__); return -EFAULT; } /* read the first two 16-bits, it gives the total length of the reply */ reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_DATA_MASK); writel(0, &ioc->chip->HostInterruptStatus); if ((_base_wait_for_doorbell_int(ioc, 5))) { ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", __LINE__); return -EFAULT; } reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_DATA_MASK); writel(0, &ioc->chip->HostInterruptStatus); for (i = 2; i < default_reply->MsgLength * 2; i++) { if ((_base_wait_for_doorbell_int(ioc, 5))) { ioc_err(ioc, "doorbell handshake int failed (line=%d)\n", __LINE__); return -EFAULT; } if (i >= reply_bytes/2) /* overflow case */ ioc->base_readl(&ioc->chip->Doorbell); else reply[i] = le16_to_cpu( ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_DATA_MASK); writel(0, &ioc->chip->HostInterruptStatus); } _base_wait_for_doorbell_int(ioc, 5); if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) { dhsprintk(ioc, ioc_info(ioc, "doorbell is in use (line=%d)\n", __LINE__)); } writel(0, &ioc->chip->HostInterruptStatus); if (ioc->logging_level & MPT_DEBUG_INIT) { mfp = (__le32 *)reply; pr_info("\toffset:data\n"); for (i = 0; i < reply_bytes/4; i++) ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4, le32_to_cpu(mfp[i])); } return 0; } /** * mpt3sas_base_sas_iounit_control - send sas iounit control to FW * @ioc: per adapter object * @mpi_reply: the reply payload from FW * @mpi_request: the request payload sent to FW * * The SAS IO Unit Control Request message allows the host to perform low-level * operations, such as resets on the PHYs of the IO Unit, also allows the host * to obtain the IOC assigned device handles for a device if it has other * identifying information about the device, in addition allows the host to * remove IOC resources associated with the device. * * Return: 0 for success, non-zero for failure. */ int mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc, Mpi2SasIoUnitControlReply_t *mpi_reply, Mpi2SasIoUnitControlRequest_t *mpi_request) { u16 smid; u8 issue_reset = 0; int rc; void *request; dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); mutex_lock(&ioc->base_cmds.mutex); if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { ioc_err(ioc, "%s: base_cmd in use\n", __func__); rc = -EAGAIN; goto out; } rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); if (rc) goto out; smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); if (!smid) { ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); rc = -EAGAIN; goto out; } rc = 0; ioc->base_cmds.status = MPT3_CMD_PENDING; request = mpt3sas_base_get_msg_frame(ioc, smid); ioc->base_cmds.smid = smid; memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)); if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) ioc->ioc_link_reset_in_progress = 1; init_completion(&ioc->base_cmds.done); ioc->put_smid_default(ioc, smid); wait_for_completion_timeout(&ioc->base_cmds.done, msecs_to_jiffies(10000)); if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) && ioc->ioc_link_reset_in_progress) ioc->ioc_link_reset_in_progress = 0; if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4, issue_reset); goto issue_host_reset; } if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) memcpy(mpi_reply, ioc->base_cmds.reply, sizeof(Mpi2SasIoUnitControlReply_t)); else memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t)); ioc->base_cmds.status = MPT3_CMD_NOT_USED; goto out; issue_host_reset: if (issue_reset) mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); ioc->base_cmds.status = MPT3_CMD_NOT_USED; rc = -EFAULT; out: mutex_unlock(&ioc->base_cmds.mutex); return rc; } /** * mpt3sas_base_scsi_enclosure_processor - sending request to sep device * @ioc: per adapter object * @mpi_reply: the reply payload from FW * @mpi_request: the request payload sent to FW * * The SCSI Enclosure Processor request message causes the IOC to * communicate with SES devices to control LED status signals. * * Return: 0 for success, non-zero for failure. */ int mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc, Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request) { u16 smid; u8 issue_reset = 0; int rc; void *request; dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); mutex_lock(&ioc->base_cmds.mutex); if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) { ioc_err(ioc, "%s: base_cmd in use\n", __func__); rc = -EAGAIN; goto out; } rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); if (rc) goto out; smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); if (!smid) { ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); rc = -EAGAIN; goto out; } rc = 0; ioc->base_cmds.status = MPT3_CMD_PENDING; request = mpt3sas_base_get_msg_frame(ioc, smid); ioc->base_cmds.smid = smid; memset(request, 0, ioc->request_sz); memcpy(request, mpi_request, sizeof(Mpi2SepReply_t)); init_completion(&ioc->base_cmds.done); ioc->put_smid_default(ioc, smid); wait_for_completion_timeout(&ioc->base_cmds.done, msecs_to_jiffies(10000)); if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status, mpi_request, sizeof(Mpi2SepRequest_t)/4, issue_reset); goto issue_host_reset; } if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) memcpy(mpi_reply, ioc->base_cmds.reply, sizeof(Mpi2SepReply_t)); else memset(mpi_reply, 0, sizeof(Mpi2SepReply_t)); ioc->base_cmds.status = MPT3_CMD_NOT_USED; goto out; issue_host_reset: if (issue_reset) mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); ioc->base_cmds.status = MPT3_CMD_NOT_USED; rc = -EFAULT; out: mutex_unlock(&ioc->base_cmds.mutex); return rc; } /** * _base_get_port_facts - obtain port facts reply and save in ioc * @ioc: per adapter object * @port: ? * * Return: 0 for success, non-zero for failure. */ static int _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port) { Mpi2PortFactsRequest_t mpi_request; Mpi2PortFactsReply_t mpi_reply; struct mpt3sas_port_facts *pfacts; int mpi_reply_sz, mpi_request_sz, r; dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); mpi_reply_sz = sizeof(Mpi2PortFactsReply_t); mpi_request_sz = sizeof(Mpi2PortFactsRequest_t); memset(&mpi_request, 0, mpi_request_sz); mpi_request.Function = MPI2_FUNCTION_PORT_FACTS; mpi_request.PortNumber = port; r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); if (r != 0) { ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); return r; } pfacts = &ioc->pfacts[port]; memset(pfacts, 0, sizeof(struct mpt3sas_port_facts)); pfacts->PortNumber = mpi_reply.PortNumber; pfacts->VP_ID = mpi_reply.VP_ID; pfacts->VF_ID = mpi_reply.VF_ID; pfacts->MaxPostedCmdBuffers = le16_to_cpu(mpi_reply.MaxPostedCmdBuffers); return 0; } /** * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL * @ioc: per adapter object * @timeout: * * Return: 0 for success, non-zero for failure. */ static int _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout) { u32 ioc_state; int rc; dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); if (ioc->pci_error_recovery) { dfailprintk(ioc, ioc_info(ioc, "%s: host in pci error recovery\n", __func__)); return -EFAULT; } ioc_state = mpt3sas_base_get_iocstate(ioc, 0); dhsprintk(ioc, ioc_info(ioc, "%s: ioc_state(0x%08x)\n", __func__, ioc_state)); if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) || (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) return 0; if (ioc_state & MPI2_DOORBELL_USED) { dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n")); goto issue_diag_reset; } if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { mpt3sas_print_fault_code(ioc, ioc_state & MPI2_DOORBELL_DATA_MASK); goto issue_diag_reset; } else if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) { ioc_info(ioc, "%s: Skipping the diag reset here. (ioc_state=0x%x)\n", __func__, ioc_state); return -EFAULT; } ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout); if (ioc_state) { dfailprintk(ioc, ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", __func__, ioc_state)); return -EFAULT; } issue_diag_reset: rc = _base_diag_reset(ioc); return rc; } /** * _base_get_ioc_facts - obtain ioc facts reply and save in ioc * @ioc: per adapter object * * Return: 0 for success, non-zero for failure. */ static int _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc) { Mpi2IOCFactsRequest_t mpi_request; Mpi2IOCFactsReply_t mpi_reply; struct mpt3sas_facts *facts; int mpi_reply_sz, mpi_request_sz, r; dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); r = _base_wait_for_iocstate(ioc, 10); if (r) { dfailprintk(ioc, ioc_info(ioc, "%s: failed getting to correct state\n", __func__)); return r; } mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t); mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t); memset(&mpi_request, 0, mpi_request_sz); mpi_request.Function = MPI2_FUNCTION_IOC_FACTS; r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5); if (r != 0) { ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); return r; } facts = &ioc->facts; memset(facts, 0, sizeof(struct mpt3sas_facts)); facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion); facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion); facts->VP_ID = mpi_reply.VP_ID; facts->VF_ID = mpi_reply.VF_ID; facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions); facts->MaxChainDepth = mpi_reply.MaxChainDepth; facts->WhoInit = mpi_reply.WhoInit; facts->NumberOfPorts = mpi_reply.NumberOfPorts; facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors; if (ioc->msix_enable && (facts->MaxMSIxVectors <= MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc))) ioc->combined_reply_queue = 0; facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit); facts->MaxReplyDescriptorPostQueueDepth = le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth); facts->ProductID = le16_to_cpu(mpi_reply.ProductID); facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities); if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)) ioc->ir_firmware = 1; if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices)) ioc->rdpq_array_capable = 1; if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ) && ioc->is_aero_ioc) ioc->atomic_desc_capable = 1; facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word); facts->IOCRequestFrameSize = le16_to_cpu(mpi_reply.IOCRequestFrameSize); if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { facts->IOCMaxChainSegmentSize = le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize); } facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators); facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets); ioc->shost->max_id = -1; facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders); facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures); facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags); facts->HighPriorityCredit = le16_to_cpu(mpi_reply.HighPriorityCredit); facts->ReplyFrameSize = mpi_reply.ReplyFrameSize; facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle); facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize; /* * Get the Page Size from IOC Facts. If it's 0, default to 4k. */ ioc->page_size = 1 << facts->CurrentHostPageSize; if (ioc->page_size == 1) { ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n"); ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K; } dinitprintk(ioc, ioc_info(ioc, "CurrentHostPageSize(%d)\n", facts->CurrentHostPageSize)); dinitprintk(ioc, ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n", facts->RequestCredit, facts->MaxChainDepth)); dinitprintk(ioc, ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n", facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4)); return 0; } /** * _base_send_ioc_init - send ioc_init to firmware * @ioc: per adapter object * * Return: 0 for success, non-zero for failure. */ static int _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc) { Mpi2IOCInitRequest_t mpi_request; Mpi2IOCInitReply_t mpi_reply; int i, r = 0; ktime_t current_time; u16 ioc_status; u32 reply_post_free_array_sz = 0; dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t)); mpi_request.Function = MPI2_FUNCTION_IOC_INIT; mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER; mpi_request.VF_ID = 0; /* TODO */ mpi_request.VP_ID = 0; mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged); mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION); mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K; if (_base_is_controller_msix_enabled(ioc)) mpi_request.HostMSIxVectors = ioc->reply_queue_count; mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4); mpi_request.ReplyDescriptorPostQueueDepth = cpu_to_le16(ioc->reply_post_queue_depth); mpi_request.ReplyFreeQueueDepth = cpu_to_le16(ioc->reply_free_queue_depth); mpi_request.SenseBufferAddressHigh = cpu_to_le32((u64)ioc->sense_dma >> 32); mpi_request.SystemReplyAddressHigh = cpu_to_le32((u64)ioc->reply_dma >> 32); mpi_request.SystemRequestFrameBaseAddress = cpu_to_le64((u64)ioc->request_dma); mpi_request.ReplyFreeQueueAddress = cpu_to_le64((u64)ioc->reply_free_dma); if (ioc->rdpq_array_enable) { reply_post_free_array_sz = ioc->reply_queue_count * sizeof(Mpi2IOCInitRDPQArrayEntry); memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz); for (i = 0; i < ioc->reply_queue_count; i++) ioc->reply_post_free_array[i].RDPQBaseAddress = cpu_to_le64( (u64)ioc->reply_post[i].reply_post_free_dma); mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE; mpi_request.ReplyDescriptorPostQueueAddress = cpu_to_le64((u64)ioc->reply_post_free_array_dma); } else { mpi_request.ReplyDescriptorPostQueueAddress = cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma); } /* * Set the flag to enable CoreDump state feature in IOC firmware. */ mpi_request.ConfigurationFlags |= cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE); /* This time stamp specifies number of milliseconds * since epoch ~ midnight January 1, 1970. */ current_time = ktime_get_real(); mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time)); if (ioc->logging_level & MPT_DEBUG_INIT) { __le32 *mfp; int i; mfp = (__le32 *)&mpi_request; ioc_info(ioc, "\toffset:data\n"); for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++) ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4, le32_to_cpu(mfp[i])); } r = _base_handshake_req_reply_wait(ioc, sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request, sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10); if (r != 0) { ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r); return r; } ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK; if (ioc_status != MPI2_IOCSTATUS_SUCCESS || mpi_reply.IOCLogInfo) { ioc_err(ioc, "%s: failed\n", __func__); r = -EIO; } return r; } /** * mpt3sas_port_enable_done - command completion routine for port enable * @ioc: per adapter object * @smid: system request message index * @msix_index: MSIX table index supplied by the OS * @reply: reply message frame(lower 32bit addr) * * Return: 1 meaning mf should be freed from _base_interrupt * 0 means the mf is freed from this function. */ u8 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, u32 reply) { MPI2DefaultReply_t *mpi_reply; u16 ioc_status; if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED) return 1; mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); if (!mpi_reply) return 1; if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE) return 1; ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING; ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE; ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID; memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; if (ioc_status != MPI2_IOCSTATUS_SUCCESS) ioc->port_enable_failed = 1; if (ioc->is_driver_loading) { if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { mpt3sas_port_enable_complete(ioc); return 1; } else { ioc->start_scan_failed = ioc_status; ioc->start_scan = 0; return 1; } } complete(&ioc->port_enable_cmds.done); return 1; } /** * _base_send_port_enable - send port_enable(discovery stuff) to firmware * @ioc: per adapter object * * Return: 0 for success, non-zero for failure. */ static int _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc) { Mpi2PortEnableRequest_t *mpi_request; Mpi2PortEnableReply_t *mpi_reply; int r = 0; u16 smid; u16 ioc_status; ioc_info(ioc, "sending port enable !!\n"); if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { ioc_err(ioc, "%s: internal command already in use\n", __func__); return -EAGAIN; } smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); if (!smid) { ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); return -EAGAIN; } ioc->port_enable_cmds.status = MPT3_CMD_PENDING; mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); ioc->port_enable_cmds.smid = smid; memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; init_completion(&ioc->port_enable_cmds.done); ioc->put_smid_default(ioc, smid); wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ); if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) { ioc_err(ioc, "%s: timeout\n", __func__); _debug_dump_mf(mpi_request, sizeof(Mpi2PortEnableRequest_t)/4); if (ioc->port_enable_cmds.status & MPT3_CMD_RESET) r = -EFAULT; else r = -ETIME; goto out; } mpi_reply = ioc->port_enable_cmds.reply; ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n", __func__, ioc_status); r = -EFAULT; goto out; } out: ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED"); return r; } /** * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply) * @ioc: per adapter object * * Return: 0 for success, non-zero for failure. */ int mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc) { Mpi2PortEnableRequest_t *mpi_request; u16 smid; ioc_info(ioc, "sending port enable !!\n"); if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { ioc_err(ioc, "%s: internal command already in use\n", __func__); return -EAGAIN; } smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx); if (!smid) { ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); return -EAGAIN; } ioc->port_enable_cmds.status = MPT3_CMD_PENDING; mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); ioc->port_enable_cmds.smid = smid; memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; ioc->put_smid_default(ioc, smid); return 0; } /** * _base_determine_wait_on_discovery - desposition * @ioc: per adapter object * * Decide whether to wait on discovery to complete. Used to either * locate boot device, or report volumes ahead of physical devices. * * Return: 1 for wait, 0 for don't wait. */ static int _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc) { /* We wait for discovery to complete if IR firmware is loaded. * The sas topology events arrive before PD events, so we need time to * turn on the bit in ioc->pd_handles to indicate PD * Also, it maybe required to report Volumes ahead of physical * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set. */ if (ioc->ir_firmware) return 1; /* if no Bios, then we don't need to wait */ if (!ioc->bios_pg3.BiosVersion) return 0; /* Bios is present, then we drop down here. * * If there any entries in the Bios Page 2, then we wait * for discovery to complete. */ /* Current Boot Device */ if ((ioc->bios_pg2.CurrentBootDeviceForm & MPI2_BIOSPAGE2_FORM_MASK) == MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && /* Request Boot Device */ (ioc->bios_pg2.ReqBootDeviceForm & MPI2_BIOSPAGE2_FORM_MASK) == MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED && /* Alternate Request Boot Device */ (ioc->bios_pg2.ReqAltBootDeviceForm & MPI2_BIOSPAGE2_FORM_MASK) == MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED) return 0; return 1; } /** * _base_unmask_events - turn on notification for this event * @ioc: per adapter object * @event: firmware event * * The mask is stored in ioc->event_masks. */ static void _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event) { u32 desired_event; if (event >= 128) return; desired_event = (1 << (event % 32)); if (event < 32) ioc->event_masks[0] &= ~desired_event; else if (event < 64) ioc->event_masks[1] &= ~desired_event; else if (event < 96) ioc->event_masks[2] &= ~desired_event; else if (event < 128) ioc->event_masks[3] &= ~desired_event; } /** * _base_event_notification - send event notification * @ioc: per adapter object * * Return: 0 for success, non-zero for failure. */ static int _base_event_notification(struct MPT3SAS_ADAPTER *ioc) { Mpi2EventNotificationRequest_t *mpi_request; u16 smid; int r = 0; int i; dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); if (ioc->base_cmds.status & MPT3_CMD_PENDING) { ioc_err(ioc, "%s: internal command already in use\n", __func__); return -EAGAIN; } smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx); if (!smid) { ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); return -EAGAIN; } ioc->base_cmds.status = MPT3_CMD_PENDING; mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); ioc->base_cmds.smid = smid; memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t)); mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; mpi_request->VF_ID = 0; /* TODO */ mpi_request->VP_ID = 0; for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) mpi_request->EventMasks[i] = cpu_to_le32(ioc->event_masks[i]); init_completion(&ioc->base_cmds.done); ioc->put_smid_default(ioc, smid); wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ); if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) { ioc_err(ioc, "%s: timeout\n", __func__); _debug_dump_mf(mpi_request, sizeof(Mpi2EventNotificationRequest_t)/4); if (ioc->base_cmds.status & MPT3_CMD_RESET) r = -EFAULT; else r = -ETIME; } else dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__)); ioc->base_cmds.status = MPT3_CMD_NOT_USED; return r; } /** * mpt3sas_base_validate_event_type - validating event types * @ioc: per adapter object * @event_type: firmware event * * This will turn on firmware event notification when application * ask for that event. We don't mask events that are already enabled. */ void mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type) { int i, j; u32 event_mask, desired_event; u8 send_update_to_fw; for (i = 0, send_update_to_fw = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) { event_mask = ~event_type[i]; desired_event = 1; for (j = 0; j < 32; j++) { if (!(event_mask & desired_event) && (ioc->event_masks[i] & desired_event)) { ioc->event_masks[i] &= ~desired_event; send_update_to_fw = 1; } desired_event = (desired_event << 1); } } if (!send_update_to_fw) return; mutex_lock(&ioc->base_cmds.mutex); _base_event_notification(ioc); mutex_unlock(&ioc->base_cmds.mutex); } /** * _base_diag_reset - the "big hammer" start of day reset * @ioc: per adapter object * * Return: 0 for success, non-zero for failure. */ static int _base_diag_reset(struct MPT3SAS_ADAPTER *ioc) { u32 host_diagnostic; u32 ioc_state; u32 count; u32 hcb_size; ioc_info(ioc, "sending diag reset !!\n"); drsprintk(ioc, ioc_info(ioc, "clear interrupts\n")); count = 0; do { /* Write magic sequence to WriteSequence register * Loop until in diagnostic mode */ drsprintk(ioc, ioc_info(ioc, "write magic sequence\n")); writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence); writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence); writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence); writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence); writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence); writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence); /* wait 100 msec */ msleep(100); if (count++ > 20) { ioc_info(ioc, "Stop writing magic sequence after 20 retries\n"); goto out; } host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic); drsprintk(ioc, ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n", count, host_diagnostic)); } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0); hcb_size = ioc->base_readl(&ioc->chip->HCBSize); drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n")); writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER, &ioc->chip->HostDiagnostic); /*This delay allows the chip PCIe hardware time to finish reset tasks*/ msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000); /* Approximately 300 second max wait */ for (count = 0; count < (300000000 / MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) { host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic); if (host_diagnostic == 0xFFFFFFFF) { ioc_info(ioc, "Invalid host diagnostic register value\n"); goto out; } if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER)) break; msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000); } if (host_diagnostic & MPI2_DIAG_HCB_MODE) { drsprintk(ioc, ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n")); host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK; host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW; writel(host_diagnostic, &ioc->chip->HostDiagnostic); drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n")); writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE, &ioc->chip->HCBSize); } drsprintk(ioc, ioc_info(ioc, "restart the adapter\n")); writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET, &ioc->chip->HostDiagnostic); drsprintk(ioc, ioc_info(ioc, "disable writes to the diagnostic register\n")); writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n")); ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20); if (ioc_state) { ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", __func__, ioc_state); goto out; } ioc_info(ioc, "diag reset: SUCCESS\n"); return 0; out: ioc_err(ioc, "diag reset: FAILED\n"); return -EFAULT; } /** * _base_make_ioc_ready - put controller in READY state * @ioc: per adapter object * @type: FORCE_BIG_HAMMER or SOFT_RESET * * Return: 0 for success, non-zero for failure. */ static int _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type) { u32 ioc_state; int rc; int count; dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); if (ioc->pci_error_recovery) return 0; ioc_state = mpt3sas_base_get_iocstate(ioc, 0); dhsprintk(ioc, ioc_info(ioc, "%s: ioc_state(0x%08x)\n", __func__, ioc_state)); /* if in RESET state, it should move to READY state shortly */ count = 0; if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) { while ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_READY) { if (count++ == 10) { ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n", __func__, ioc_state); return -EFAULT; } ssleep(1); ioc_state = mpt3sas_base_get_iocstate(ioc, 0); } } if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) return 0; if (ioc_state & MPI2_DOORBELL_USED) { ioc_info(ioc, "unexpected doorbell active!\n"); goto issue_diag_reset; } if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { mpt3sas_print_fault_code(ioc, ioc_state & MPI2_DOORBELL_DATA_MASK); goto issue_diag_reset; } if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) { /* * if host reset is invoked while watch dog thread is waiting * for IOC state to be changed to Fault state then driver has * to wait here for CoreDump state to clear otherwise reset * will be issued to the FW and FW move the IOC state to * reset state without copying the FW logs to coredump region. */ if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) { mpt3sas_print_coredump_info(ioc, ioc_state & MPI2_DOORBELL_DATA_MASK); mpt3sas_base_wait_for_coredump_completion(ioc, __func__); } goto issue_diag_reset; } if (type == FORCE_BIG_HAMMER) goto issue_diag_reset; if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) if (!(_base_send_ioc_reset(ioc, MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) { return 0; } issue_diag_reset: rc = _base_diag_reset(ioc); return rc; } /** * _base_make_ioc_operational - put controller in OPERATIONAL state * @ioc: per adapter object * * Return: 0 for success, non-zero for failure. */ static int _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc) { int r, i, index, rc; unsigned long flags; u32 reply_address; u16 smid; struct _tr_list *delayed_tr, *delayed_tr_next; struct _sc_list *delayed_sc, *delayed_sc_next; struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next; u8 hide_flag; struct adapter_reply_queue *reply_q; Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig; dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); /* clean the delayed target reset list */ list_for_each_entry_safe(delayed_tr, delayed_tr_next, &ioc->delayed_tr_list, list) { list_del(&delayed_tr->list); kfree(delayed_tr); } list_for_each_entry_safe(delayed_tr, delayed_tr_next, &ioc->delayed_tr_volume_list, list) { list_del(&delayed_tr->list); kfree(delayed_tr); } list_for_each_entry_safe(delayed_sc, delayed_sc_next, &ioc->delayed_sc_list, list) { list_del(&delayed_sc->list); kfree(delayed_sc); } list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next, &ioc->delayed_event_ack_list, list) { list_del(&delayed_event_ack->list); kfree(delayed_event_ack); } spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); /* hi-priority queue */ INIT_LIST_HEAD(&ioc->hpr_free_list); smid = ioc->hi_priority_smid; for (i = 0; i < ioc->hi_priority_depth; i++, smid++) { ioc->hpr_lookup[i].cb_idx = 0xFF; ioc->hpr_lookup[i].smid = smid; list_add_tail(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list); } /* internal queue */ INIT_LIST_HEAD(&ioc->internal_free_list); smid = ioc->internal_smid; for (i = 0; i < ioc->internal_depth; i++, smid++) { ioc->internal_lookup[i].cb_idx = 0xFF; ioc->internal_lookup[i].smid = smid; list_add_tail(&ioc->internal_lookup[i].tracker_list, &ioc->internal_free_list); } spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); /* initialize Reply Free Queue */ for (i = 0, reply_address = (u32)ioc->reply_dma ; i < ioc->reply_free_queue_depth ; i++, reply_address += ioc->reply_sz) { ioc->reply_free[i] = cpu_to_le32(reply_address); if (ioc->is_mcpu_endpoint) _base_clone_reply_to_sys_mem(ioc, reply_address, i); } /* initialize reply queues */ if (ioc->is_driver_loading) _base_assign_reply_queues(ioc); /* initialize Reply Post Free Queue */ index = 0; reply_post_free_contig = ioc->reply_post[0].reply_post_free; list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { /* * If RDPQ is enabled, switch to the next allocation. * Otherwise advance within the contiguous region. */ if (ioc->rdpq_array_enable) { reply_q->reply_post_free = ioc->reply_post[index++].reply_post_free; } else { reply_q->reply_post_free = reply_post_free_contig; reply_post_free_contig += ioc->reply_post_queue_depth; } reply_q->reply_post_host_index = 0; for (i = 0; i < ioc->reply_post_queue_depth; i++) reply_q->reply_post_free[i].Words = cpu_to_le64(ULLONG_MAX); if (!_base_is_controller_msix_enabled(ioc)) goto skip_init_reply_post_free_queue; } skip_init_reply_post_free_queue: r = _base_send_ioc_init(ioc); if (r) { /* * No need to check IOC state for fault state & issue * diag reset during host reset. This check is need * only during driver load time. */ if (!ioc->is_driver_loading) return r; rc = _base_check_for_fault_and_issue_reset(ioc); if (rc || (_base_send_ioc_init(ioc))) return r; } /* initialize reply free host index */ ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1; writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex); /* initialize reply post host index */ list_for_each_entry(reply_q, &ioc->reply_queue_list, list) { if (ioc->combined_reply_queue) writel((reply_q->msix_index & 7)<< MPI2_RPHI_MSIX_INDEX_SHIFT, ioc->replyPostRegisterIndex[reply_q->msix_index/8]); else writel(reply_q->msix_index << MPI2_RPHI_MSIX_INDEX_SHIFT, &ioc->chip->ReplyPostHostIndex); if (!_base_is_controller_msix_enabled(ioc)) goto skip_init_reply_post_host_index; } skip_init_reply_post_host_index: _base_unmask_interrupts(ioc); if (ioc->hba_mpi_version_belonged != MPI2_VERSION) { r = _base_display_fwpkg_version(ioc); if (r) return r; } _base_static_config_pages(ioc); r = _base_event_notification(ioc); if (r) return r; if (ioc->is_driver_loading) { if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier == 0x80) { hide_flag = (u8) ( le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) & MFG_PAGE10_HIDE_SSDS_MASK); if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK) ioc->mfg_pg10_hide_flag = hide_flag; } ioc->wait_for_discovery_to_complete = _base_determine_wait_on_discovery(ioc); return r; /* scan_start and scan_finished support */ } r = _base_send_port_enable(ioc); if (r) return r; return r; } /** * mpt3sas_base_free_resources - free resources controller resources * @ioc: per adapter object */ void mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc) { dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); /* synchronizing freeing resource with pci_access_mutex lock */ mutex_lock(&ioc->pci_access_mutex); if (ioc->chip_phys && ioc->chip) { _base_mask_interrupts(ioc); ioc->shost_recovery = 1; _base_make_ioc_ready(ioc, SOFT_RESET); ioc->shost_recovery = 0; } mpt3sas_base_unmap_resources(ioc); mutex_unlock(&ioc->pci_access_mutex); return; } /** * mpt3sas_base_attach - attach controller instance * @ioc: per adapter object * * Return: 0 for success, non-zero for failure. */ int mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc) { int r, i, rc; int cpu_id, last_cpu_id = 0; dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); /* setup cpu_msix_table */ ioc->cpu_count = num_online_cpus(); for_each_online_cpu(cpu_id) last_cpu_id = cpu_id; ioc->cpu_msix_table_sz = last_cpu_id + 1; ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL); ioc->reply_queue_count = 1; if (!ioc->cpu_msix_table) { ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n"); r = -ENOMEM; goto out_free_resources; } if (ioc->is_warpdrive) { ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz, sizeof(resource_size_t *), GFP_KERNEL); if (!ioc->reply_post_host_index) { ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n"); r = -ENOMEM; goto out_free_resources; } } ioc->smp_affinity_enable = smp_affinity_enable; ioc->rdpq_array_enable_assigned = 0; ioc->use_32bit_dma = false; if (ioc->is_aero_ioc) ioc->base_readl = &_base_readl_aero; else ioc->base_readl = &_base_readl; r = mpt3sas_base_map_resources(ioc); if (r) goto out_free_resources; pci_set_drvdata(ioc->pdev, ioc->shost); r = _base_get_ioc_facts(ioc); if (r) { rc = _base_check_for_fault_and_issue_reset(ioc); if (rc || (_base_get_ioc_facts(ioc))) goto out_free_resources; } switch (ioc->hba_mpi_version_belonged) { case MPI2_VERSION: ioc->build_sg_scmd = &_base_build_sg_scmd; ioc->build_sg = &_base_build_sg; ioc->build_zero_len_sge = &_base_build_zero_len_sge; ioc->get_msix_index_for_smlio = &_base_get_msix_index; break; case MPI25_VERSION: case MPI26_VERSION: /* * In SAS3.0, * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and * Target Status - all require the IEEE formated scatter gather * elements. */ ioc->build_sg_scmd = &_base_build_sg_scmd_ieee; ioc->build_sg = &_base_build_sg_ieee; ioc->build_nvme_prp = &_base_build_nvme_prp; ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee; ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t); if (ioc->high_iops_queues) ioc->get_msix_index_for_smlio = &_base_get_high_iops_msix_index; else ioc->get_msix_index_for_smlio = &_base_get_msix_index; break; } if (ioc->atomic_desc_capable) { ioc->put_smid_default = &_base_put_smid_default_atomic; ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic; ioc->put_smid_fast_path = &_base_put_smid_fast_path_atomic; ioc->put_smid_hi_priority = &_base_put_smid_hi_priority_atomic; } else { ioc->put_smid_default = &_base_put_smid_default; ioc->put_smid_fast_path = &_base_put_smid_fast_path; ioc->put_smid_hi_priority = &_base_put_smid_hi_priority; if (ioc->is_mcpu_endpoint) ioc->put_smid_scsi_io = &_base_put_smid_mpi_ep_scsi_io; else ioc->put_smid_scsi_io = &_base_put_smid_scsi_io; } /* * These function pointers for other requests that don't * the require IEEE scatter gather elements. * * For example Configuration Pages and SAS IOUNIT Control don't. */ ioc->build_sg_mpi = &_base_build_sg; ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge; r = _base_make_ioc_ready(ioc, SOFT_RESET); if (r) goto out_free_resources; ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts, sizeof(struct mpt3sas_port_facts), GFP_KERNEL); if (!ioc->pfacts) { r = -ENOMEM; goto out_free_resources; } for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) { r = _base_get_port_facts(ioc, i); if (r) { rc = _base_check_for_fault_and_issue_reset(ioc); if (rc || (_base_get_port_facts(ioc, i))) goto out_free_resources; } } r = _base_allocate_memory_pools(ioc); if (r) goto out_free_resources; if (irqpoll_weight > 0) ioc->thresh_hold = irqpoll_weight; else ioc->thresh_hold = ioc->hba_queue_depth/4; _base_init_irqpolls(ioc); init_waitqueue_head(&ioc->reset_wq); /* allocate memory pd handle bitmask list */ ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8); if (ioc->facts.MaxDevHandle % 8) ioc->pd_handles_sz++; ioc->pd_handles = kzalloc(ioc->pd_handles_sz, GFP_KERNEL); if (!ioc->pd_handles) { r = -ENOMEM; goto out_free_resources; } ioc->blocking_handles = kzalloc(ioc->pd_handles_sz, GFP_KERNEL); if (!ioc->blocking_handles) { r = -ENOMEM; goto out_free_resources; } /* allocate memory for pending OS device add list */ ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8); if (ioc->facts.MaxDevHandle % 8) ioc->pend_os_device_add_sz++; ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz, GFP_KERNEL); if (!ioc->pend_os_device_add) goto out_free_resources; ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz; ioc->device_remove_in_progress = kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL); if (!ioc->device_remove_in_progress) goto out_free_resources; ioc->fwfault_debug = mpt3sas_fwfault_debug; /* base internal command bits */ mutex_init(&ioc->base_cmds.mutex); ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); ioc->base_cmds.status = MPT3_CMD_NOT_USED; /* port_enable command bits */ ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; /* transport internal command bits */ ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); ioc->transport_cmds.status = MPT3_CMD_NOT_USED; mutex_init(&ioc->transport_cmds.mutex); /* scsih internal command bits */ ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); ioc->scsih_cmds.status = MPT3_CMD_NOT_USED; mutex_init(&ioc->scsih_cmds.mutex); /* task management internal command bits */ ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); ioc->tm_cmds.status = MPT3_CMD_NOT_USED; mutex_init(&ioc->tm_cmds.mutex); /* config page internal command bits */ ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); ioc->config_cmds.status = MPT3_CMD_NOT_USED; mutex_init(&ioc->config_cmds.mutex); /* ctl module internal command bits */ ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL); ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; mutex_init(&ioc->ctl_cmds.mutex); if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply || !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply || !ioc->tm_cmds.reply || !ioc->config_cmds.reply || !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) { r = -ENOMEM; goto out_free_resources; } for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) ioc->event_masks[i] = -1; /* here we enable the events we care about */ _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY); _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE); _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST); _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE); _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE); _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST); _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME); _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK); _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS); _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED); _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD); _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION); _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR); if (ioc->hba_mpi_version_belonged == MPI26_VERSION) { if (ioc->is_gen35_ioc) { _base_unmask_events(ioc, MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE); _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION); _base_unmask_events(ioc, MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST); } } r = _base_make_ioc_operational(ioc); if (r) goto out_free_resources; /* * Copy current copy of IOCFacts in prev_fw_facts * and it will be used during online firmware upgrade. */ memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts)); ioc->non_operational_loop = 0; ioc->ioc_coredump_loop = 0; ioc->got_task_abort_from_ioctl = 0; return 0; out_free_resources: ioc->remove_host = 1; mpt3sas_base_free_resources(ioc); _base_release_memory_pools(ioc); pci_set_drvdata(ioc->pdev, NULL); kfree(ioc->cpu_msix_table); if (ioc->is_warpdrive) kfree(ioc->reply_post_host_index); kfree(ioc->pd_handles); kfree(ioc->blocking_handles); kfree(ioc->device_remove_in_progress); kfree(ioc->pend_os_device_add); kfree(ioc->tm_cmds.reply); kfree(ioc->transport_cmds.reply); kfree(ioc->scsih_cmds.reply); kfree(ioc->config_cmds.reply); kfree(ioc->base_cmds.reply); kfree(ioc->port_enable_cmds.reply); kfree(ioc->ctl_cmds.reply); kfree(ioc->ctl_cmds.sense); kfree(ioc->pfacts); ioc->ctl_cmds.reply = NULL; ioc->base_cmds.reply = NULL; ioc->tm_cmds.reply = NULL; ioc->scsih_cmds.reply = NULL; ioc->transport_cmds.reply = NULL; ioc->config_cmds.reply = NULL; ioc->pfacts = NULL; return r; } /** * mpt3sas_base_detach - remove controller instance * @ioc: per adapter object */ void mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc) { dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__)); mpt3sas_base_stop_watchdog(ioc); mpt3sas_base_free_resources(ioc); _base_release_memory_pools(ioc); mpt3sas_free_enclosure_list(ioc); pci_set_drvdata(ioc->pdev, NULL); kfree(ioc->cpu_msix_table); if (ioc->is_warpdrive) kfree(ioc->reply_post_host_index); kfree(ioc->pd_handles); kfree(ioc->blocking_handles); kfree(ioc->device_remove_in_progress); kfree(ioc->pend_os_device_add); kfree(ioc->pfacts); kfree(ioc->ctl_cmds.reply); kfree(ioc->ctl_cmds.sense); kfree(ioc->base_cmds.reply); kfree(ioc->port_enable_cmds.reply); kfree(ioc->tm_cmds.reply); kfree(ioc->transport_cmds.reply); kfree(ioc->scsih_cmds.reply); kfree(ioc->config_cmds.reply); } /** * _base_pre_reset_handler - pre reset handler * @ioc: per adapter object */ static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc) { mpt3sas_scsih_pre_reset_handler(ioc); mpt3sas_ctl_pre_reset_handler(ioc); dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__)); } /** * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands * @ioc: per adapter object */ static void _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc) { dtmprintk(ioc, ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__)); if (ioc->transport_cmds.status & MPT3_CMD_PENDING) { ioc->transport_cmds.status |= MPT3_CMD_RESET; mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid); complete(&ioc->transport_cmds.done); } if (ioc->base_cmds.status & MPT3_CMD_PENDING) { ioc->base_cmds.status |= MPT3_CMD_RESET; mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid); complete(&ioc->base_cmds.done); } if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) { ioc->port_enable_failed = 1; ioc->port_enable_cmds.status |= MPT3_CMD_RESET; mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid); if (ioc->is_driver_loading) { ioc->start_scan_failed = MPI2_IOCSTATUS_INTERNAL_ERROR; ioc->start_scan = 0; ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED; } else { complete(&ioc->port_enable_cmds.done); } } if (ioc->config_cmds.status & MPT3_CMD_PENDING) { ioc->config_cmds.status |= MPT3_CMD_RESET; mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid); ioc->config_cmds.smid = USHRT_MAX; complete(&ioc->config_cmds.done); } } /** * _base_clear_outstanding_commands - clear all outstanding commands * @ioc: per adapter object */ static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc) { mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc); mpt3sas_ctl_clear_outstanding_ioctls(ioc); _base_clear_outstanding_mpt_commands(ioc); } /** * _base_reset_done_handler - reset done handler * @ioc: per adapter object */ static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc) { mpt3sas_scsih_reset_done_handler(ioc); mpt3sas_ctl_reset_done_handler(ioc); dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__)); } /** * mpt3sas_wait_for_commands_to_complete - reset controller * @ioc: Pointer to MPT_ADAPTER structure * * This function is waiting 10s for all pending commands to complete * prior to putting controller in reset. */ void mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc) { u32 ioc_state; ioc->pending_io_count = 0; ioc_state = mpt3sas_base_get_iocstate(ioc, 0); if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) return; /* pending command count */ ioc->pending_io_count = scsi_host_busy(ioc->shost); if (!ioc->pending_io_count) return; /* wait for pending commands to complete */ wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ); } /** * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts * attributes during online firmware upgrade and update the corresponding * IOC variables accordingly. * * @ioc: Pointer to MPT_ADAPTER structure */ static int _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc) { u16 pd_handles_sz; void *pd_handles = NULL, *blocking_handles = NULL; void *pend_os_device_add = NULL, *device_remove_in_progress = NULL; struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts; if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) { pd_handles_sz = (ioc->facts.MaxDevHandle / 8); if (ioc->facts.MaxDevHandle % 8) pd_handles_sz++; pd_handles = krealloc(ioc->pd_handles, pd_handles_sz, GFP_KERNEL); if (!pd_handles) { ioc_info(ioc, "Unable to allocate the memory for pd_handles of sz: %d\n", pd_handles_sz); return -ENOMEM; } memset(pd_handles + ioc->pd_handles_sz, 0, (pd_handles_sz - ioc->pd_handles_sz)); ioc->pd_handles = pd_handles; blocking_handles = krealloc(ioc->blocking_handles, pd_handles_sz, GFP_KERNEL); if (!blocking_handles) { ioc_info(ioc, "Unable to allocate the memory for " "blocking_handles of sz: %d\n", pd_handles_sz); return -ENOMEM; } memset(blocking_handles + ioc->pd_handles_sz, 0, (pd_handles_sz - ioc->pd_handles_sz)); ioc->blocking_handles = blocking_handles; ioc->pd_handles_sz = pd_handles_sz; pend_os_device_add = krealloc(ioc->pend_os_device_add, pd_handles_sz, GFP_KERNEL); if (!pend_os_device_add) { ioc_info(ioc, "Unable to allocate the memory for pend_os_device_add of sz: %d\n", pd_handles_sz); return -ENOMEM; } memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0, (pd_handles_sz - ioc->pend_os_device_add_sz)); ioc->pend_os_device_add = pend_os_device_add; ioc->pend_os_device_add_sz = pd_handles_sz; device_remove_in_progress = krealloc( ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL); if (!device_remove_in_progress) { ioc_info(ioc, "Unable to allocate the memory for " "device_remove_in_progress of sz: %d\n " , pd_handles_sz); return -ENOMEM; } memset(device_remove_in_progress + ioc->device_remove_in_progress_sz, 0, (pd_handles_sz - ioc->device_remove_in_progress_sz)); ioc->device_remove_in_progress = device_remove_in_progress; ioc->device_remove_in_progress_sz = pd_handles_sz; } memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts)); return 0; } /** * mpt3sas_base_hard_reset_handler - reset controller * @ioc: Pointer to MPT_ADAPTER structure * @type: FORCE_BIG_HAMMER or SOFT_RESET * * Return: 0 for success, non-zero for failure. */ int mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, enum reset_type type) { int r; unsigned long flags; u32 ioc_state; u8 is_fault = 0, is_trigger = 0; dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__)); if (ioc->pci_error_recovery) { ioc_err(ioc, "%s: pci error recovery reset\n", __func__); r = 0; goto out_unlocked; } if (mpt3sas_fwfault_debug) mpt3sas_halt_firmware(ioc); /* wait for an active reset in progress to complete */ mutex_lock(&ioc->reset_in_progress_mutex); spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); ioc->shost_recovery = 1; spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & MPT3_DIAG_BUFFER_IS_REGISTERED) && (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & MPT3_DIAG_BUFFER_IS_RELEASED))) { is_trigger = 1; ioc_state = mpt3sas_base_get_iocstate(ioc, 0); if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT || (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) is_fault = 1; } _base_pre_reset_handler(ioc); mpt3sas_wait_for_commands_to_complete(ioc); _base_mask_interrupts(ioc); r = _base_make_ioc_ready(ioc, type); if (r) goto out; _base_clear_outstanding_commands(ioc); /* If this hard reset is called while port enable is active, then * there is no reason to call make_ioc_operational */ if (ioc->is_driver_loading && ioc->port_enable_failed) { ioc->remove_host = 1; r = -EFAULT; goto out; } r = _base_get_ioc_facts(ioc); if (r) goto out; r = _base_check_ioc_facts_changes(ioc); if (r) { ioc_info(ioc, "Some of the parameters got changed in this new firmware" " image and it requires system reboot\n"); goto out; } if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable) panic("%s: Issue occurred with flashing controller firmware." "Please reboot the system and ensure that the correct" " firmware version is running\n", ioc->name); r = _base_make_ioc_operational(ioc); if (!r) _base_reset_done_handler(ioc); out: ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED"); spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); ioc->shost_recovery = 0; spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); ioc->ioc_reset_count++; mutex_unlock(&ioc->reset_in_progress_mutex); out_unlocked: if ((r == 0) && is_trigger) { if (is_fault) mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT); else mpt3sas_trigger_master(ioc, MASTER_TRIGGER_ADAPTER_RESET); } dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__)); return r; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1