Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Hannes Reinecke | 17149 | 99.73% | 1 | 14.29% |
Arnd Bergmann | 27 | 0.16% | 1 | 14.29% |
James Bottomley | 9 | 0.05% | 1 | 14.29% |
Dan Carpenter | 5 | 0.03% | 2 | 28.57% |
Yue haibing | 4 | 0.02% | 1 | 14.29% |
Christoph Hellwig | 1 | 0.01% | 1 | 14.29% |
Total | 17195 | 7 |
// SPDX-License-Identifier: GPL-2.0 /* * Linux Driver for Mylex DAC960/AcceleRAID/eXtremeRAID PCI RAID Controllers * * This driver supports the newer, SCSI-based firmware interface only. * * Copyright 2017 Hannes Reinecke, SUSE Linux GmbH <hare@suse.com> * * Based on the original DAC960 driver, which has * Copyright 1998-2001 by Leonard N. Zubkoff <lnz@dandelion.com> * Portions Copyright 2002 by Mylex (An IBM Business Unit) */ #include <linux/module.h> #include <linux/types.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/pci.h> #include <linux/raid_class.h> #include <asm/unaligned.h> #include <scsi/scsi.h> #include <scsi/scsi_host.h> #include <scsi/scsi_device.h> #include <scsi/scsi_cmnd.h> #include <scsi/scsi_tcq.h> #include "myrs.h" static struct raid_template *myrs_raid_template; static struct myrs_devstate_name_entry { enum myrs_devstate state; char *name; } myrs_devstate_name_list[] = { { MYRS_DEVICE_UNCONFIGURED, "Unconfigured" }, { MYRS_DEVICE_ONLINE, "Online" }, { MYRS_DEVICE_REBUILD, "Rebuild" }, { MYRS_DEVICE_MISSING, "Missing" }, { MYRS_DEVICE_SUSPECTED_CRITICAL, "SuspectedCritical" }, { MYRS_DEVICE_OFFLINE, "Offline" }, { MYRS_DEVICE_CRITICAL, "Critical" }, { MYRS_DEVICE_SUSPECTED_DEAD, "SuspectedDead" }, { MYRS_DEVICE_COMMANDED_OFFLINE, "CommandedOffline" }, { MYRS_DEVICE_STANDBY, "Standby" }, { MYRS_DEVICE_INVALID_STATE, "Invalid" }, }; static char *myrs_devstate_name(enum myrs_devstate state) { struct myrs_devstate_name_entry *entry = myrs_devstate_name_list; int i; for (i = 0; i < ARRAY_SIZE(myrs_devstate_name_list); i++) { if (entry[i].state == state) return entry[i].name; } return NULL; } static struct myrs_raid_level_name_entry { enum myrs_raid_level level; char *name; } myrs_raid_level_name_list[] = { { MYRS_RAID_LEVEL0, "RAID0" }, { MYRS_RAID_LEVEL1, "RAID1" }, { MYRS_RAID_LEVEL3, "RAID3 right asymmetric parity" }, { MYRS_RAID_LEVEL5, "RAID5 right asymmetric parity" }, { MYRS_RAID_LEVEL6, "RAID6" }, { MYRS_RAID_JBOD, "JBOD" }, { MYRS_RAID_NEWSPAN, "New Mylex SPAN" }, { MYRS_RAID_LEVEL3F, "RAID3 fixed parity" }, { MYRS_RAID_LEVEL3L, "RAID3 left symmetric parity" }, { MYRS_RAID_SPAN, "Mylex SPAN" }, { MYRS_RAID_LEVEL5L, "RAID5 left symmetric parity" }, { MYRS_RAID_LEVELE, "RAIDE (concatenation)" }, { MYRS_RAID_PHYSICAL, "Physical device" }, }; static char *myrs_raid_level_name(enum myrs_raid_level level) { struct myrs_raid_level_name_entry *entry = myrs_raid_level_name_list; int i; for (i = 0; i < ARRAY_SIZE(myrs_raid_level_name_list); i++) { if (entry[i].level == level) return entry[i].name; } return NULL; } /** * myrs_reset_cmd - clears critical fields in struct myrs_cmdblk */ static inline void myrs_reset_cmd(struct myrs_cmdblk *cmd_blk) { union myrs_cmd_mbox *mbox = &cmd_blk->mbox; memset(mbox, 0, sizeof(union myrs_cmd_mbox)); cmd_blk->status = 0; } /** * myrs_qcmd - queues Command for DAC960 V2 Series Controllers. */ static void myrs_qcmd(struct myrs_hba *cs, struct myrs_cmdblk *cmd_blk) { void __iomem *base = cs->io_base; union myrs_cmd_mbox *mbox = &cmd_blk->mbox; union myrs_cmd_mbox *next_mbox = cs->next_cmd_mbox; cs->write_cmd_mbox(next_mbox, mbox); if (cs->prev_cmd_mbox1->words[0] == 0 || cs->prev_cmd_mbox2->words[0] == 0) cs->get_cmd_mbox(base); cs->prev_cmd_mbox2 = cs->prev_cmd_mbox1; cs->prev_cmd_mbox1 = next_mbox; if (++next_mbox > cs->last_cmd_mbox) next_mbox = cs->first_cmd_mbox; cs->next_cmd_mbox = next_mbox; } /** * myrs_exec_cmd - executes V2 Command and waits for completion. */ static void myrs_exec_cmd(struct myrs_hba *cs, struct myrs_cmdblk *cmd_blk) { DECLARE_COMPLETION_ONSTACK(complete); unsigned long flags; cmd_blk->complete = &complete; spin_lock_irqsave(&cs->queue_lock, flags); myrs_qcmd(cs, cmd_blk); spin_unlock_irqrestore(&cs->queue_lock, flags); WARN_ON(in_interrupt()); wait_for_completion(&complete); } /** * myrs_report_progress - prints progress message */ static void myrs_report_progress(struct myrs_hba *cs, unsigned short ldev_num, unsigned char *msg, unsigned long blocks, unsigned long size) { shost_printk(KERN_INFO, cs->host, "Logical Drive %d: %s in Progress: %d%% completed\n", ldev_num, msg, (100 * (int)(blocks >> 7)) / (int)(size >> 7)); } /** * myrs_get_ctlr_info - executes a Controller Information IOCTL Command */ static unsigned char myrs_get_ctlr_info(struct myrs_hba *cs) { struct myrs_cmdblk *cmd_blk = &cs->dcmd_blk; union myrs_cmd_mbox *mbox = &cmd_blk->mbox; dma_addr_t ctlr_info_addr; union myrs_sgl *sgl; unsigned char status; unsigned short ldev_present, ldev_critical, ldev_offline; ldev_present = cs->ctlr_info->ldev_present; ldev_critical = cs->ctlr_info->ldev_critical; ldev_offline = cs->ctlr_info->ldev_offline; ctlr_info_addr = dma_map_single(&cs->pdev->dev, cs->ctlr_info, sizeof(struct myrs_ctlr_info), DMA_FROM_DEVICE); if (dma_mapping_error(&cs->pdev->dev, ctlr_info_addr)) return MYRS_STATUS_FAILED; mutex_lock(&cs->dcmd_mutex); myrs_reset_cmd(cmd_blk); mbox->ctlr_info.id = MYRS_DCMD_TAG; mbox->ctlr_info.opcode = MYRS_CMD_OP_IOCTL; mbox->ctlr_info.control.dma_ctrl_to_host = true; mbox->ctlr_info.control.no_autosense = true; mbox->ctlr_info.dma_size = sizeof(struct myrs_ctlr_info); mbox->ctlr_info.ctlr_num = 0; mbox->ctlr_info.ioctl_opcode = MYRS_IOCTL_GET_CTLR_INFO; sgl = &mbox->ctlr_info.dma_addr; sgl->sge[0].sge_addr = ctlr_info_addr; sgl->sge[0].sge_count = mbox->ctlr_info.dma_size; dev_dbg(&cs->host->shost_gendev, "Sending GetControllerInfo\n"); myrs_exec_cmd(cs, cmd_blk); status = cmd_blk->status; mutex_unlock(&cs->dcmd_mutex); dma_unmap_single(&cs->pdev->dev, ctlr_info_addr, sizeof(struct myrs_ctlr_info), DMA_FROM_DEVICE); if (status == MYRS_STATUS_SUCCESS) { if (cs->ctlr_info->bg_init_active + cs->ctlr_info->ldev_init_active + cs->ctlr_info->pdev_init_active + cs->ctlr_info->cc_active + cs->ctlr_info->rbld_active + cs->ctlr_info->exp_active != 0) cs->needs_update = true; if (cs->ctlr_info->ldev_present != ldev_present || cs->ctlr_info->ldev_critical != ldev_critical || cs->ctlr_info->ldev_offline != ldev_offline) shost_printk(KERN_INFO, cs->host, "Logical drive count changes (%d/%d/%d)\n", cs->ctlr_info->ldev_critical, cs->ctlr_info->ldev_offline, cs->ctlr_info->ldev_present); } return status; } /** * myrs_get_ldev_info - executes a Logical Device Information IOCTL Command */ static unsigned char myrs_get_ldev_info(struct myrs_hba *cs, unsigned short ldev_num, struct myrs_ldev_info *ldev_info) { struct myrs_cmdblk *cmd_blk = &cs->dcmd_blk; union myrs_cmd_mbox *mbox = &cmd_blk->mbox; dma_addr_t ldev_info_addr; struct myrs_ldev_info ldev_info_orig; union myrs_sgl *sgl; unsigned char status; memcpy(&ldev_info_orig, ldev_info, sizeof(struct myrs_ldev_info)); ldev_info_addr = dma_map_single(&cs->pdev->dev, ldev_info, sizeof(struct myrs_ldev_info), DMA_FROM_DEVICE); if (dma_mapping_error(&cs->pdev->dev, ldev_info_addr)) return MYRS_STATUS_FAILED; mutex_lock(&cs->dcmd_mutex); myrs_reset_cmd(cmd_blk); mbox->ldev_info.id = MYRS_DCMD_TAG; mbox->ldev_info.opcode = MYRS_CMD_OP_IOCTL; mbox->ldev_info.control.dma_ctrl_to_host = true; mbox->ldev_info.control.no_autosense = true; mbox->ldev_info.dma_size = sizeof(struct myrs_ldev_info); mbox->ldev_info.ldev.ldev_num = ldev_num; mbox->ldev_info.ioctl_opcode = MYRS_IOCTL_GET_LDEV_INFO_VALID; sgl = &mbox->ldev_info.dma_addr; sgl->sge[0].sge_addr = ldev_info_addr; sgl->sge[0].sge_count = mbox->ldev_info.dma_size; dev_dbg(&cs->host->shost_gendev, "Sending GetLogicalDeviceInfoValid for ldev %d\n", ldev_num); myrs_exec_cmd(cs, cmd_blk); status = cmd_blk->status; mutex_unlock(&cs->dcmd_mutex); dma_unmap_single(&cs->pdev->dev, ldev_info_addr, sizeof(struct myrs_ldev_info), DMA_FROM_DEVICE); if (status == MYRS_STATUS_SUCCESS) { unsigned short ldev_num = ldev_info->ldev_num; struct myrs_ldev_info *new = ldev_info; struct myrs_ldev_info *old = &ldev_info_orig; unsigned long ldev_size = new->cfg_devsize; if (new->dev_state != old->dev_state) { const char *name; name = myrs_devstate_name(new->dev_state); shost_printk(KERN_INFO, cs->host, "Logical Drive %d is now %s\n", ldev_num, name ? name : "Invalid"); } if ((new->soft_errs != old->soft_errs) || (new->cmds_failed != old->cmds_failed) || (new->deferred_write_errs != old->deferred_write_errs)) shost_printk(KERN_INFO, cs->host, "Logical Drive %d Errors: Soft = %d, Failed = %d, Deferred Write = %d\n", ldev_num, new->soft_errs, new->cmds_failed, new->deferred_write_errs); if (new->bg_init_active) myrs_report_progress(cs, ldev_num, "Background Initialization", new->bg_init_lba, ldev_size); else if (new->fg_init_active) myrs_report_progress(cs, ldev_num, "Foreground Initialization", new->fg_init_lba, ldev_size); else if (new->migration_active) myrs_report_progress(cs, ldev_num, "Data Migration", new->migration_lba, ldev_size); else if (new->patrol_active) myrs_report_progress(cs, ldev_num, "Patrol Operation", new->patrol_lba, ldev_size); if (old->bg_init_active && !new->bg_init_active) shost_printk(KERN_INFO, cs->host, "Logical Drive %d: Background Initialization %s\n", ldev_num, (new->ldev_control.ldev_init_done ? "Completed" : "Failed")); } return status; } /** * myrs_get_pdev_info - executes a "Read Physical Device Information" Command */ static unsigned char myrs_get_pdev_info(struct myrs_hba *cs, unsigned char channel, unsigned char target, unsigned char lun, struct myrs_pdev_info *pdev_info) { struct myrs_cmdblk *cmd_blk = &cs->dcmd_blk; union myrs_cmd_mbox *mbox = &cmd_blk->mbox; dma_addr_t pdev_info_addr; union myrs_sgl *sgl; unsigned char status; pdev_info_addr = dma_map_single(&cs->pdev->dev, pdev_info, sizeof(struct myrs_pdev_info), DMA_FROM_DEVICE); if (dma_mapping_error(&cs->pdev->dev, pdev_info_addr)) return MYRS_STATUS_FAILED; mutex_lock(&cs->dcmd_mutex); myrs_reset_cmd(cmd_blk); mbox->pdev_info.opcode = MYRS_CMD_OP_IOCTL; mbox->pdev_info.id = MYRS_DCMD_TAG; mbox->pdev_info.control.dma_ctrl_to_host = true; mbox->pdev_info.control.no_autosense = true; mbox->pdev_info.dma_size = sizeof(struct myrs_pdev_info); mbox->pdev_info.pdev.lun = lun; mbox->pdev_info.pdev.target = target; mbox->pdev_info.pdev.channel = channel; mbox->pdev_info.ioctl_opcode = MYRS_IOCTL_GET_PDEV_INFO_VALID; sgl = &mbox->pdev_info.dma_addr; sgl->sge[0].sge_addr = pdev_info_addr; sgl->sge[0].sge_count = mbox->pdev_info.dma_size; dev_dbg(&cs->host->shost_gendev, "Sending GetPhysicalDeviceInfoValid for pdev %d:%d:%d\n", channel, target, lun); myrs_exec_cmd(cs, cmd_blk); status = cmd_blk->status; mutex_unlock(&cs->dcmd_mutex); dma_unmap_single(&cs->pdev->dev, pdev_info_addr, sizeof(struct myrs_pdev_info), DMA_FROM_DEVICE); return status; } /** * myrs_dev_op - executes a "Device Operation" Command */ static unsigned char myrs_dev_op(struct myrs_hba *cs, enum myrs_ioctl_opcode opcode, enum myrs_opdev opdev) { struct myrs_cmdblk *cmd_blk = &cs->dcmd_blk; union myrs_cmd_mbox *mbox = &cmd_blk->mbox; unsigned char status; mutex_lock(&cs->dcmd_mutex); myrs_reset_cmd(cmd_blk); mbox->dev_op.opcode = MYRS_CMD_OP_IOCTL; mbox->dev_op.id = MYRS_DCMD_TAG; mbox->dev_op.control.dma_ctrl_to_host = true; mbox->dev_op.control.no_autosense = true; mbox->dev_op.ioctl_opcode = opcode; mbox->dev_op.opdev = opdev; myrs_exec_cmd(cs, cmd_blk); status = cmd_blk->status; mutex_unlock(&cs->dcmd_mutex); return status; } /** * myrs_translate_pdev - translates a Physical Device Channel and * TargetID into a Logical Device. */ static unsigned char myrs_translate_pdev(struct myrs_hba *cs, unsigned char channel, unsigned char target, unsigned char lun, struct myrs_devmap *devmap) { struct pci_dev *pdev = cs->pdev; dma_addr_t devmap_addr; struct myrs_cmdblk *cmd_blk; union myrs_cmd_mbox *mbox; union myrs_sgl *sgl; unsigned char status; memset(devmap, 0x0, sizeof(struct myrs_devmap)); devmap_addr = dma_map_single(&pdev->dev, devmap, sizeof(struct myrs_devmap), DMA_FROM_DEVICE); if (dma_mapping_error(&pdev->dev, devmap_addr)) return MYRS_STATUS_FAILED; mutex_lock(&cs->dcmd_mutex); cmd_blk = &cs->dcmd_blk; mbox = &cmd_blk->mbox; mbox->pdev_info.opcode = MYRS_CMD_OP_IOCTL; mbox->pdev_info.control.dma_ctrl_to_host = true; mbox->pdev_info.control.no_autosense = true; mbox->pdev_info.dma_size = sizeof(struct myrs_devmap); mbox->pdev_info.pdev.target = target; mbox->pdev_info.pdev.channel = channel; mbox->pdev_info.pdev.lun = lun; mbox->pdev_info.ioctl_opcode = MYRS_IOCTL_XLATE_PDEV_TO_LDEV; sgl = &mbox->pdev_info.dma_addr; sgl->sge[0].sge_addr = devmap_addr; sgl->sge[0].sge_count = mbox->pdev_info.dma_size; myrs_exec_cmd(cs, cmd_blk); status = cmd_blk->status; mutex_unlock(&cs->dcmd_mutex); dma_unmap_single(&pdev->dev, devmap_addr, sizeof(struct myrs_devmap), DMA_FROM_DEVICE); return status; } /** * myrs_get_event - executes a Get Event Command */ static unsigned char myrs_get_event(struct myrs_hba *cs, unsigned int event_num, struct myrs_event *event_buf) { struct pci_dev *pdev = cs->pdev; dma_addr_t event_addr; struct myrs_cmdblk *cmd_blk = &cs->mcmd_blk; union myrs_cmd_mbox *mbox = &cmd_blk->mbox; union myrs_sgl *sgl; unsigned char status; event_addr = dma_map_single(&pdev->dev, event_buf, sizeof(struct myrs_event), DMA_FROM_DEVICE); if (dma_mapping_error(&pdev->dev, event_addr)) return MYRS_STATUS_FAILED; mbox->get_event.opcode = MYRS_CMD_OP_IOCTL; mbox->get_event.dma_size = sizeof(struct myrs_event); mbox->get_event.evnum_upper = event_num >> 16; mbox->get_event.ctlr_num = 0; mbox->get_event.ioctl_opcode = MYRS_IOCTL_GET_EVENT; mbox->get_event.evnum_lower = event_num & 0xFFFF; sgl = &mbox->get_event.dma_addr; sgl->sge[0].sge_addr = event_addr; sgl->sge[0].sge_count = mbox->get_event.dma_size; myrs_exec_cmd(cs, cmd_blk); status = cmd_blk->status; dma_unmap_single(&pdev->dev, event_addr, sizeof(struct myrs_event), DMA_FROM_DEVICE); return status; } /* * myrs_get_fwstatus - executes a Get Health Status Command */ static unsigned char myrs_get_fwstatus(struct myrs_hba *cs) { struct myrs_cmdblk *cmd_blk = &cs->mcmd_blk; union myrs_cmd_mbox *mbox = &cmd_blk->mbox; union myrs_sgl *sgl; unsigned char status = cmd_blk->status; myrs_reset_cmd(cmd_blk); mbox->common.opcode = MYRS_CMD_OP_IOCTL; mbox->common.id = MYRS_MCMD_TAG; mbox->common.control.dma_ctrl_to_host = true; mbox->common.control.no_autosense = true; mbox->common.dma_size = sizeof(struct myrs_fwstat); mbox->common.ioctl_opcode = MYRS_IOCTL_GET_HEALTH_STATUS; sgl = &mbox->common.dma_addr; sgl->sge[0].sge_addr = cs->fwstat_addr; sgl->sge[0].sge_count = mbox->ctlr_info.dma_size; dev_dbg(&cs->host->shost_gendev, "Sending GetHealthStatus\n"); myrs_exec_cmd(cs, cmd_blk); status = cmd_blk->status; return status; } /** * myrs_enable_mmio_mbox - enables the Memory Mailbox Interface */ static bool myrs_enable_mmio_mbox(struct myrs_hba *cs, enable_mbox_t enable_mbox_fn) { void __iomem *base = cs->io_base; struct pci_dev *pdev = cs->pdev; union myrs_cmd_mbox *cmd_mbox; struct myrs_stat_mbox *stat_mbox; union myrs_cmd_mbox *mbox; dma_addr_t mbox_addr; unsigned char status = MYRS_STATUS_FAILED; if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) { dev_err(&pdev->dev, "DMA mask out of range\n"); return false; } /* Temporary dma mapping, used only in the scope of this function */ mbox = dma_alloc_coherent(&pdev->dev, sizeof(union myrs_cmd_mbox), &mbox_addr, GFP_KERNEL); if (dma_mapping_error(&pdev->dev, mbox_addr)) return false; /* These are the base addresses for the command memory mailbox array */ cs->cmd_mbox_size = MYRS_MAX_CMD_MBOX * sizeof(union myrs_cmd_mbox); cmd_mbox = dma_alloc_coherent(&pdev->dev, cs->cmd_mbox_size, &cs->cmd_mbox_addr, GFP_KERNEL); if (dma_mapping_error(&pdev->dev, cs->cmd_mbox_addr)) { dev_err(&pdev->dev, "Failed to map command mailbox\n"); goto out_free; } cs->first_cmd_mbox = cmd_mbox; cmd_mbox += MYRS_MAX_CMD_MBOX - 1; cs->last_cmd_mbox = cmd_mbox; cs->next_cmd_mbox = cs->first_cmd_mbox; cs->prev_cmd_mbox1 = cs->last_cmd_mbox; cs->prev_cmd_mbox2 = cs->last_cmd_mbox - 1; /* These are the base addresses for the status memory mailbox array */ cs->stat_mbox_size = MYRS_MAX_STAT_MBOX * sizeof(struct myrs_stat_mbox); stat_mbox = dma_alloc_coherent(&pdev->dev, cs->stat_mbox_size, &cs->stat_mbox_addr, GFP_KERNEL); if (dma_mapping_error(&pdev->dev, cs->stat_mbox_addr)) { dev_err(&pdev->dev, "Failed to map status mailbox\n"); goto out_free; } cs->first_stat_mbox = stat_mbox; stat_mbox += MYRS_MAX_STAT_MBOX - 1; cs->last_stat_mbox = stat_mbox; cs->next_stat_mbox = cs->first_stat_mbox; cs->fwstat_buf = dma_alloc_coherent(&pdev->dev, sizeof(struct myrs_fwstat), &cs->fwstat_addr, GFP_KERNEL); if (dma_mapping_error(&pdev->dev, cs->fwstat_addr)) { dev_err(&pdev->dev, "Failed to map firmware health buffer\n"); cs->fwstat_buf = NULL; goto out_free; } cs->ctlr_info = kzalloc(sizeof(struct myrs_ctlr_info), GFP_KERNEL | GFP_DMA); if (!cs->ctlr_info) goto out_free; cs->event_buf = kzalloc(sizeof(struct myrs_event), GFP_KERNEL | GFP_DMA); if (!cs->event_buf) goto out_free; /* Enable the Memory Mailbox Interface. */ memset(mbox, 0, sizeof(union myrs_cmd_mbox)); mbox->set_mbox.id = 1; mbox->set_mbox.opcode = MYRS_CMD_OP_IOCTL; mbox->set_mbox.control.no_autosense = true; mbox->set_mbox.first_cmd_mbox_size_kb = (MYRS_MAX_CMD_MBOX * sizeof(union myrs_cmd_mbox)) >> 10; mbox->set_mbox.first_stat_mbox_size_kb = (MYRS_MAX_STAT_MBOX * sizeof(struct myrs_stat_mbox)) >> 10; mbox->set_mbox.second_cmd_mbox_size_kb = 0; mbox->set_mbox.second_stat_mbox_size_kb = 0; mbox->set_mbox.sense_len = 0; mbox->set_mbox.ioctl_opcode = MYRS_IOCTL_SET_MEM_MBOX; mbox->set_mbox.fwstat_buf_size_kb = 1; mbox->set_mbox.fwstat_buf_addr = cs->fwstat_addr; mbox->set_mbox.first_cmd_mbox_addr = cs->cmd_mbox_addr; mbox->set_mbox.first_stat_mbox_addr = cs->stat_mbox_addr; status = enable_mbox_fn(base, mbox_addr); out_free: dma_free_coherent(&pdev->dev, sizeof(union myrs_cmd_mbox), mbox, mbox_addr); if (status != MYRS_STATUS_SUCCESS) dev_err(&pdev->dev, "Failed to enable mailbox, status %X\n", status); return (status == MYRS_STATUS_SUCCESS); } /** * myrs_get_config - reads the Configuration Information */ static int myrs_get_config(struct myrs_hba *cs) { struct myrs_ctlr_info *info = cs->ctlr_info; struct Scsi_Host *shost = cs->host; unsigned char status; unsigned char model[20]; unsigned char fw_version[12]; int i, model_len; /* Get data into dma-able area, then copy into permanent location */ mutex_lock(&cs->cinfo_mutex); status = myrs_get_ctlr_info(cs); mutex_unlock(&cs->cinfo_mutex); if (status != MYRS_STATUS_SUCCESS) { shost_printk(KERN_ERR, shost, "Failed to get controller information\n"); return -ENODEV; } /* Initialize the Controller Model Name and Full Model Name fields. */ model_len = sizeof(info->ctlr_name); if (model_len > sizeof(model)-1) model_len = sizeof(model)-1; memcpy(model, info->ctlr_name, model_len); model_len--; while (model[model_len] == ' ' || model[model_len] == '\0') model_len--; model[++model_len] = '\0'; strcpy(cs->model_name, "DAC960 "); strcat(cs->model_name, model); /* Initialize the Controller Firmware Version field. */ sprintf(fw_version, "%d.%02d-%02d", info->fw_major_version, info->fw_minor_version, info->fw_turn_number); if (info->fw_major_version == 6 && info->fw_minor_version == 0 && info->fw_turn_number < 1) { shost_printk(KERN_WARNING, shost, "FIRMWARE VERSION %s DOES NOT PROVIDE THE CONTROLLER\n" "STATUS MONITORING FUNCTIONALITY NEEDED BY THIS DRIVER.\n" "PLEASE UPGRADE TO VERSION 6.00-01 OR ABOVE.\n", fw_version); return -ENODEV; } /* Initialize the Controller Channels and Targets. */ shost->max_channel = info->physchan_present + info->virtchan_present; shost->max_id = info->max_targets[0]; for (i = 1; i < 16; i++) { if (!info->max_targets[i]) continue; if (shost->max_id < info->max_targets[i]) shost->max_id = info->max_targets[i]; } /* * Initialize the Controller Queue Depth, Driver Queue Depth, * Logical Drive Count, Maximum Blocks per Command, Controller * Scatter/Gather Limit, and Driver Scatter/Gather Limit. * The Driver Queue Depth must be at most three less than * the Controller Queue Depth; tag '1' is reserved for * direct commands, and tag '2' for monitoring commands. */ shost->can_queue = info->max_tcq - 3; if (shost->can_queue > MYRS_MAX_CMD_MBOX - 3) shost->can_queue = MYRS_MAX_CMD_MBOX - 3; shost->max_sectors = info->max_transfer_size; shost->sg_tablesize = info->max_sge; if (shost->sg_tablesize > MYRS_SG_LIMIT) shost->sg_tablesize = MYRS_SG_LIMIT; shost_printk(KERN_INFO, shost, "Configuring %s PCI RAID Controller\n", model); shost_printk(KERN_INFO, shost, " Firmware Version: %s, Channels: %d, Memory Size: %dMB\n", fw_version, info->physchan_present, info->mem_size_mb); shost_printk(KERN_INFO, shost, " Controller Queue Depth: %d, Maximum Blocks per Command: %d\n", shost->can_queue, shost->max_sectors); shost_printk(KERN_INFO, shost, " Driver Queue Depth: %d, Scatter/Gather Limit: %d of %d Segments\n", shost->can_queue, shost->sg_tablesize, MYRS_SG_LIMIT); for (i = 0; i < info->physchan_max; i++) { if (!info->max_targets[i]) continue; shost_printk(KERN_INFO, shost, " Device Channel %d: max %d devices\n", i, info->max_targets[i]); } shost_printk(KERN_INFO, shost, " Physical: %d/%d channels, %d disks, %d devices\n", info->physchan_present, info->physchan_max, info->pdisk_present, info->pdev_present); shost_printk(KERN_INFO, shost, " Logical: %d/%d channels, %d disks\n", info->virtchan_present, info->virtchan_max, info->ldev_present); return 0; } /** * myrs_log_event - prints a Controller Event message */ static struct { int ev_code; unsigned char *ev_msg; } myrs_ev_list[] = { /* Physical Device Events (0x0000 - 0x007F) */ { 0x0001, "P Online" }, { 0x0002, "P Standby" }, { 0x0005, "P Automatic Rebuild Started" }, { 0x0006, "P Manual Rebuild Started" }, { 0x0007, "P Rebuild Completed" }, { 0x0008, "P Rebuild Cancelled" }, { 0x0009, "P Rebuild Failed for Unknown Reasons" }, { 0x000A, "P Rebuild Failed due to New Physical Device" }, { 0x000B, "P Rebuild Failed due to Logical Drive Failure" }, { 0x000C, "S Offline" }, { 0x000D, "P Found" }, { 0x000E, "P Removed" }, { 0x000F, "P Unconfigured" }, { 0x0010, "P Expand Capacity Started" }, { 0x0011, "P Expand Capacity Completed" }, { 0x0012, "P Expand Capacity Failed" }, { 0x0013, "P Command Timed Out" }, { 0x0014, "P Command Aborted" }, { 0x0015, "P Command Retried" }, { 0x0016, "P Parity Error" }, { 0x0017, "P Soft Error" }, { 0x0018, "P Miscellaneous Error" }, { 0x0019, "P Reset" }, { 0x001A, "P Active Spare Found" }, { 0x001B, "P Warm Spare Found" }, { 0x001C, "S Sense Data Received" }, { 0x001D, "P Initialization Started" }, { 0x001E, "P Initialization Completed" }, { 0x001F, "P Initialization Failed" }, { 0x0020, "P Initialization Cancelled" }, { 0x0021, "P Failed because Write Recovery Failed" }, { 0x0022, "P Failed because SCSI Bus Reset Failed" }, { 0x0023, "P Failed because of Double Check Condition" }, { 0x0024, "P Failed because Device Cannot Be Accessed" }, { 0x0025, "P Failed because of Gross Error on SCSI Processor" }, { 0x0026, "P Failed because of Bad Tag from Device" }, { 0x0027, "P Failed because of Command Timeout" }, { 0x0028, "P Failed because of System Reset" }, { 0x0029, "P Failed because of Busy Status or Parity Error" }, { 0x002A, "P Failed because Host Set Device to Failed State" }, { 0x002B, "P Failed because of Selection Timeout" }, { 0x002C, "P Failed because of SCSI Bus Phase Error" }, { 0x002D, "P Failed because Device Returned Unknown Status" }, { 0x002E, "P Failed because Device Not Ready" }, { 0x002F, "P Failed because Device Not Found at Startup" }, { 0x0030, "P Failed because COD Write Operation Failed" }, { 0x0031, "P Failed because BDT Write Operation Failed" }, { 0x0039, "P Missing at Startup" }, { 0x003A, "P Start Rebuild Failed due to Physical Drive Too Small" }, { 0x003C, "P Temporarily Offline Device Automatically Made Online" }, { 0x003D, "P Standby Rebuild Started" }, /* Logical Device Events (0x0080 - 0x00FF) */ { 0x0080, "M Consistency Check Started" }, { 0x0081, "M Consistency Check Completed" }, { 0x0082, "M Consistency Check Cancelled" }, { 0x0083, "M Consistency Check Completed With Errors" }, { 0x0084, "M Consistency Check Failed due to Logical Drive Failure" }, { 0x0085, "M Consistency Check Failed due to Physical Device Failure" }, { 0x0086, "L Offline" }, { 0x0087, "L Critical" }, { 0x0088, "L Online" }, { 0x0089, "M Automatic Rebuild Started" }, { 0x008A, "M Manual Rebuild Started" }, { 0x008B, "M Rebuild Completed" }, { 0x008C, "M Rebuild Cancelled" }, { 0x008D, "M Rebuild Failed for Unknown Reasons" }, { 0x008E, "M Rebuild Failed due to New Physical Device" }, { 0x008F, "M Rebuild Failed due to Logical Drive Failure" }, { 0x0090, "M Initialization Started" }, { 0x0091, "M Initialization Completed" }, { 0x0092, "M Initialization Cancelled" }, { 0x0093, "M Initialization Failed" }, { 0x0094, "L Found" }, { 0x0095, "L Deleted" }, { 0x0096, "M Expand Capacity Started" }, { 0x0097, "M Expand Capacity Completed" }, { 0x0098, "M Expand Capacity Failed" }, { 0x0099, "L Bad Block Found" }, { 0x009A, "L Size Changed" }, { 0x009B, "L Type Changed" }, { 0x009C, "L Bad Data Block Found" }, { 0x009E, "L Read of Data Block in BDT" }, { 0x009F, "L Write Back Data for Disk Block Lost" }, { 0x00A0, "L Temporarily Offline RAID-5/3 Drive Made Online" }, { 0x00A1, "L Temporarily Offline RAID-6/1/0/7 Drive Made Online" }, { 0x00A2, "L Standby Rebuild Started" }, /* Fault Management Events (0x0100 - 0x017F) */ { 0x0140, "E Fan %d Failed" }, { 0x0141, "E Fan %d OK" }, { 0x0142, "E Fan %d Not Present" }, { 0x0143, "E Power Supply %d Failed" }, { 0x0144, "E Power Supply %d OK" }, { 0x0145, "E Power Supply %d Not Present" }, { 0x0146, "E Temperature Sensor %d Temperature Exceeds Safe Limit" }, { 0x0147, "E Temperature Sensor %d Temperature Exceeds Working Limit" }, { 0x0148, "E Temperature Sensor %d Temperature Normal" }, { 0x0149, "E Temperature Sensor %d Not Present" }, { 0x014A, "E Enclosure Management Unit %d Access Critical" }, { 0x014B, "E Enclosure Management Unit %d Access OK" }, { 0x014C, "E Enclosure Management Unit %d Access Offline" }, /* Controller Events (0x0180 - 0x01FF) */ { 0x0181, "C Cache Write Back Error" }, { 0x0188, "C Battery Backup Unit Found" }, { 0x0189, "C Battery Backup Unit Charge Level Low" }, { 0x018A, "C Battery Backup Unit Charge Level OK" }, { 0x0193, "C Installation Aborted" }, { 0x0195, "C Battery Backup Unit Physically Removed" }, { 0x0196, "C Memory Error During Warm Boot" }, { 0x019E, "C Memory Soft ECC Error Corrected" }, { 0x019F, "C Memory Hard ECC Error Corrected" }, { 0x01A2, "C Battery Backup Unit Failed" }, { 0x01AB, "C Mirror Race Recovery Failed" }, { 0x01AC, "C Mirror Race on Critical Drive" }, /* Controller Internal Processor Events */ { 0x0380, "C Internal Controller Hung" }, { 0x0381, "C Internal Controller Firmware Breakpoint" }, { 0x0390, "C Internal Controller i960 Processor Specific Error" }, { 0x03A0, "C Internal Controller StrongARM Processor Specific Error" }, { 0, "" } }; static void myrs_log_event(struct myrs_hba *cs, struct myrs_event *ev) { unsigned char msg_buf[MYRS_LINE_BUFFER_SIZE]; int ev_idx = 0, ev_code; unsigned char ev_type, *ev_msg; struct Scsi_Host *shost = cs->host; struct scsi_device *sdev; struct scsi_sense_hdr sshdr = {0}; unsigned char sense_info[4]; unsigned char cmd_specific[4]; if (ev->ev_code == 0x1C) { if (!scsi_normalize_sense(ev->sense_data, 40, &sshdr)) { memset(&sshdr, 0x0, sizeof(sshdr)); memset(sense_info, 0x0, sizeof(sense_info)); memset(cmd_specific, 0x0, sizeof(cmd_specific)); } else { memcpy(sense_info, &ev->sense_data[3], 4); memcpy(cmd_specific, &ev->sense_data[7], 4); } } if (sshdr.sense_key == VENDOR_SPECIFIC && (sshdr.asc == 0x80 || sshdr.asc == 0x81)) ev->ev_code = ((sshdr.asc - 0x80) << 8 | sshdr.ascq); while (true) { ev_code = myrs_ev_list[ev_idx].ev_code; if (ev_code == ev->ev_code || ev_code == 0) break; ev_idx++; } ev_type = myrs_ev_list[ev_idx].ev_msg[0]; ev_msg = &myrs_ev_list[ev_idx].ev_msg[2]; if (ev_code == 0) { shost_printk(KERN_WARNING, shost, "Unknown Controller Event Code %04X\n", ev->ev_code); return; } switch (ev_type) { case 'P': sdev = scsi_device_lookup(shost, ev->channel, ev->target, 0); sdev_printk(KERN_INFO, sdev, "event %d: Physical Device %s\n", ev->ev_seq, ev_msg); if (sdev && sdev->hostdata && sdev->channel < cs->ctlr_info->physchan_present) { struct myrs_pdev_info *pdev_info = sdev->hostdata; switch (ev->ev_code) { case 0x0001: case 0x0007: pdev_info->dev_state = MYRS_DEVICE_ONLINE; break; case 0x0002: pdev_info->dev_state = MYRS_DEVICE_STANDBY; break; case 0x000C: pdev_info->dev_state = MYRS_DEVICE_OFFLINE; break; case 0x000E: pdev_info->dev_state = MYRS_DEVICE_MISSING; break; case 0x000F: pdev_info->dev_state = MYRS_DEVICE_UNCONFIGURED; break; } } break; case 'L': shost_printk(KERN_INFO, shost, "event %d: Logical Drive %d %s\n", ev->ev_seq, ev->lun, ev_msg); cs->needs_update = true; break; case 'M': shost_printk(KERN_INFO, shost, "event %d: Logical Drive %d %s\n", ev->ev_seq, ev->lun, ev_msg); cs->needs_update = true; break; case 'S': if (sshdr.sense_key == NO_SENSE || (sshdr.sense_key == NOT_READY && sshdr.asc == 0x04 && (sshdr.ascq == 0x01 || sshdr.ascq == 0x02))) break; shost_printk(KERN_INFO, shost, "event %d: Physical Device %d:%d %s\n", ev->ev_seq, ev->channel, ev->target, ev_msg); shost_printk(KERN_INFO, shost, "Physical Device %d:%d Sense Key = %X, ASC = %02X, ASCQ = %02X\n", ev->channel, ev->target, sshdr.sense_key, sshdr.asc, sshdr.ascq); shost_printk(KERN_INFO, shost, "Physical Device %d:%d Sense Information = %02X%02X%02X%02X %02X%02X%02X%02X\n", ev->channel, ev->target, sense_info[0], sense_info[1], sense_info[2], sense_info[3], cmd_specific[0], cmd_specific[1], cmd_specific[2], cmd_specific[3]); break; case 'E': if (cs->disable_enc_msg) break; sprintf(msg_buf, ev_msg, ev->lun); shost_printk(KERN_INFO, shost, "event %d: Enclosure %d %s\n", ev->ev_seq, ev->target, msg_buf); break; case 'C': shost_printk(KERN_INFO, shost, "event %d: Controller %s\n", ev->ev_seq, ev_msg); break; default: shost_printk(KERN_INFO, shost, "event %d: Unknown Event Code %04X\n", ev->ev_seq, ev->ev_code); break; } } /* * SCSI sysfs interface functions */ static ssize_t raid_state_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_device *sdev = to_scsi_device(dev); struct myrs_hba *cs = shost_priv(sdev->host); int ret; if (!sdev->hostdata) return snprintf(buf, 16, "Unknown\n"); if (sdev->channel >= cs->ctlr_info->physchan_present) { struct myrs_ldev_info *ldev_info = sdev->hostdata; const char *name; name = myrs_devstate_name(ldev_info->dev_state); if (name) ret = snprintf(buf, 32, "%s\n", name); else ret = snprintf(buf, 32, "Invalid (%02X)\n", ldev_info->dev_state); } else { struct myrs_pdev_info *pdev_info; const char *name; pdev_info = sdev->hostdata; name = myrs_devstate_name(pdev_info->dev_state); if (name) ret = snprintf(buf, 32, "%s\n", name); else ret = snprintf(buf, 32, "Invalid (%02X)\n", pdev_info->dev_state); } return ret; } static ssize_t raid_state_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct scsi_device *sdev = to_scsi_device(dev); struct myrs_hba *cs = shost_priv(sdev->host); struct myrs_cmdblk *cmd_blk; union myrs_cmd_mbox *mbox; enum myrs_devstate new_state; unsigned short ldev_num; unsigned char status; if (!strncmp(buf, "offline", 7) || !strncmp(buf, "kill", 4)) new_state = MYRS_DEVICE_OFFLINE; else if (!strncmp(buf, "online", 6)) new_state = MYRS_DEVICE_ONLINE; else if (!strncmp(buf, "standby", 7)) new_state = MYRS_DEVICE_STANDBY; else return -EINVAL; if (sdev->channel < cs->ctlr_info->physchan_present) { struct myrs_pdev_info *pdev_info = sdev->hostdata; struct myrs_devmap *pdev_devmap = (struct myrs_devmap *)&pdev_info->rsvd13; if (pdev_info->dev_state == new_state) { sdev_printk(KERN_INFO, sdev, "Device already in %s\n", myrs_devstate_name(new_state)); return count; } status = myrs_translate_pdev(cs, sdev->channel, sdev->id, sdev->lun, pdev_devmap); if (status != MYRS_STATUS_SUCCESS) return -ENXIO; ldev_num = pdev_devmap->ldev_num; } else { struct myrs_ldev_info *ldev_info = sdev->hostdata; if (ldev_info->dev_state == new_state) { sdev_printk(KERN_INFO, sdev, "Device already in %s\n", myrs_devstate_name(new_state)); return count; } ldev_num = ldev_info->ldev_num; } mutex_lock(&cs->dcmd_mutex); cmd_blk = &cs->dcmd_blk; myrs_reset_cmd(cmd_blk); mbox = &cmd_blk->mbox; mbox->common.opcode = MYRS_CMD_OP_IOCTL; mbox->common.id = MYRS_DCMD_TAG; mbox->common.control.dma_ctrl_to_host = true; mbox->common.control.no_autosense = true; mbox->set_devstate.ioctl_opcode = MYRS_IOCTL_SET_DEVICE_STATE; mbox->set_devstate.state = new_state; mbox->set_devstate.ldev.ldev_num = ldev_num; myrs_exec_cmd(cs, cmd_blk); status = cmd_blk->status; mutex_unlock(&cs->dcmd_mutex); if (status == MYRS_STATUS_SUCCESS) { if (sdev->channel < cs->ctlr_info->physchan_present) { struct myrs_pdev_info *pdev_info = sdev->hostdata; pdev_info->dev_state = new_state; } else { struct myrs_ldev_info *ldev_info = sdev->hostdata; ldev_info->dev_state = new_state; } sdev_printk(KERN_INFO, sdev, "Set device state to %s\n", myrs_devstate_name(new_state)); return count; } sdev_printk(KERN_INFO, sdev, "Failed to set device state to %s, status 0x%02x\n", myrs_devstate_name(new_state), status); return -EINVAL; } static DEVICE_ATTR_RW(raid_state); static ssize_t raid_level_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_device *sdev = to_scsi_device(dev); struct myrs_hba *cs = shost_priv(sdev->host); const char *name = NULL; if (!sdev->hostdata) return snprintf(buf, 16, "Unknown\n"); if (sdev->channel >= cs->ctlr_info->physchan_present) { struct myrs_ldev_info *ldev_info; ldev_info = sdev->hostdata; name = myrs_raid_level_name(ldev_info->raid_level); if (!name) return snprintf(buf, 32, "Invalid (%02X)\n", ldev_info->dev_state); } else name = myrs_raid_level_name(MYRS_RAID_PHYSICAL); return snprintf(buf, 32, "%s\n", name); } static DEVICE_ATTR_RO(raid_level); static ssize_t rebuild_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_device *sdev = to_scsi_device(dev); struct myrs_hba *cs = shost_priv(sdev->host); struct myrs_ldev_info *ldev_info; unsigned short ldev_num; unsigned char status; if (sdev->channel < cs->ctlr_info->physchan_present) return snprintf(buf, 32, "physical device - not rebuilding\n"); ldev_info = sdev->hostdata; ldev_num = ldev_info->ldev_num; status = myrs_get_ldev_info(cs, ldev_num, ldev_info); if (status != MYRS_STATUS_SUCCESS) { sdev_printk(KERN_INFO, sdev, "Failed to get device information, status 0x%02x\n", status); return -EIO; } if (ldev_info->rbld_active) { return snprintf(buf, 32, "rebuilding block %zu of %zu\n", (size_t)ldev_info->rbld_lba, (size_t)ldev_info->cfg_devsize); } else return snprintf(buf, 32, "not rebuilding\n"); } static ssize_t rebuild_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct scsi_device *sdev = to_scsi_device(dev); struct myrs_hba *cs = shost_priv(sdev->host); struct myrs_ldev_info *ldev_info; struct myrs_cmdblk *cmd_blk; union myrs_cmd_mbox *mbox; unsigned short ldev_num; unsigned char status; int rebuild, ret; if (sdev->channel < cs->ctlr_info->physchan_present) return -EINVAL; ldev_info = sdev->hostdata; if (!ldev_info) return -ENXIO; ldev_num = ldev_info->ldev_num; ret = kstrtoint(buf, 0, &rebuild); if (ret) return ret; status = myrs_get_ldev_info(cs, ldev_num, ldev_info); if (status != MYRS_STATUS_SUCCESS) { sdev_printk(KERN_INFO, sdev, "Failed to get device information, status 0x%02x\n", status); return -EIO; } if (rebuild && ldev_info->rbld_active) { sdev_printk(KERN_INFO, sdev, "Rebuild Not Initiated; already in progress\n"); return -EALREADY; } if (!rebuild && !ldev_info->rbld_active) { sdev_printk(KERN_INFO, sdev, "Rebuild Not Cancelled; no rebuild in progress\n"); return count; } mutex_lock(&cs->dcmd_mutex); cmd_blk = &cs->dcmd_blk; myrs_reset_cmd(cmd_blk); mbox = &cmd_blk->mbox; mbox->common.opcode = MYRS_CMD_OP_IOCTL; mbox->common.id = MYRS_DCMD_TAG; mbox->common.control.dma_ctrl_to_host = true; mbox->common.control.no_autosense = true; if (rebuild) { mbox->ldev_info.ldev.ldev_num = ldev_num; mbox->ldev_info.ioctl_opcode = MYRS_IOCTL_RBLD_DEVICE_START; } else { mbox->ldev_info.ldev.ldev_num = ldev_num; mbox->ldev_info.ioctl_opcode = MYRS_IOCTL_RBLD_DEVICE_STOP; } myrs_exec_cmd(cs, cmd_blk); status = cmd_blk->status; mutex_unlock(&cs->dcmd_mutex); if (status) { sdev_printk(KERN_INFO, sdev, "Rebuild Not %s, status 0x%02x\n", rebuild ? "Initiated" : "Cancelled", status); ret = -EIO; } else { sdev_printk(KERN_INFO, sdev, "Rebuild %s\n", rebuild ? "Initiated" : "Cancelled"); ret = count; } return ret; } static DEVICE_ATTR_RW(rebuild); static ssize_t consistency_check_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_device *sdev = to_scsi_device(dev); struct myrs_hba *cs = shost_priv(sdev->host); struct myrs_ldev_info *ldev_info; unsigned short ldev_num; unsigned char status; if (sdev->channel < cs->ctlr_info->physchan_present) return snprintf(buf, 32, "physical device - not checking\n"); ldev_info = sdev->hostdata; if (!ldev_info) return -ENXIO; ldev_num = ldev_info->ldev_num; status = myrs_get_ldev_info(cs, ldev_num, ldev_info); if (ldev_info->cc_active) return snprintf(buf, 32, "checking block %zu of %zu\n", (size_t)ldev_info->cc_lba, (size_t)ldev_info->cfg_devsize); else return snprintf(buf, 32, "not checking\n"); } static ssize_t consistency_check_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct scsi_device *sdev = to_scsi_device(dev); struct myrs_hba *cs = shost_priv(sdev->host); struct myrs_ldev_info *ldev_info; struct myrs_cmdblk *cmd_blk; union myrs_cmd_mbox *mbox; unsigned short ldev_num; unsigned char status; int check, ret; if (sdev->channel < cs->ctlr_info->physchan_present) return -EINVAL; ldev_info = sdev->hostdata; if (!ldev_info) return -ENXIO; ldev_num = ldev_info->ldev_num; ret = kstrtoint(buf, 0, &check); if (ret) return ret; status = myrs_get_ldev_info(cs, ldev_num, ldev_info); if (status != MYRS_STATUS_SUCCESS) { sdev_printk(KERN_INFO, sdev, "Failed to get device information, status 0x%02x\n", status); return -EIO; } if (check && ldev_info->cc_active) { sdev_printk(KERN_INFO, sdev, "Consistency Check Not Initiated; " "already in progress\n"); return -EALREADY; } if (!check && !ldev_info->cc_active) { sdev_printk(KERN_INFO, sdev, "Consistency Check Not Cancelled; " "check not in progress\n"); return count; } mutex_lock(&cs->dcmd_mutex); cmd_blk = &cs->dcmd_blk; myrs_reset_cmd(cmd_blk); mbox = &cmd_blk->mbox; mbox->common.opcode = MYRS_CMD_OP_IOCTL; mbox->common.id = MYRS_DCMD_TAG; mbox->common.control.dma_ctrl_to_host = true; mbox->common.control.no_autosense = true; if (check) { mbox->cc.ldev.ldev_num = ldev_num; mbox->cc.ioctl_opcode = MYRS_IOCTL_CC_START; mbox->cc.restore_consistency = true; mbox->cc.initialized_area_only = false; } else { mbox->cc.ldev.ldev_num = ldev_num; mbox->cc.ioctl_opcode = MYRS_IOCTL_CC_STOP; } myrs_exec_cmd(cs, cmd_blk); status = cmd_blk->status; mutex_unlock(&cs->dcmd_mutex); if (status != MYRS_STATUS_SUCCESS) { sdev_printk(KERN_INFO, sdev, "Consistency Check Not %s, status 0x%02x\n", check ? "Initiated" : "Cancelled", status); ret = -EIO; } else { sdev_printk(KERN_INFO, sdev, "Consistency Check %s\n", check ? "Initiated" : "Cancelled"); ret = count; } return ret; } static DEVICE_ATTR_RW(consistency_check); static struct device_attribute *myrs_sdev_attrs[] = { &dev_attr_consistency_check, &dev_attr_rebuild, &dev_attr_raid_state, &dev_attr_raid_level, NULL, }; static ssize_t serial_show(struct device *dev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(dev); struct myrs_hba *cs = shost_priv(shost); char serial[17]; memcpy(serial, cs->ctlr_info->serial_number, 16); serial[16] = '\0'; return snprintf(buf, 16, "%s\n", serial); } static DEVICE_ATTR_RO(serial); static ssize_t ctlr_num_show(struct device *dev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(dev); struct myrs_hba *cs = shost_priv(shost); return snprintf(buf, 20, "%d\n", cs->host->host_no); } static DEVICE_ATTR_RO(ctlr_num); static struct myrs_cpu_type_tbl { enum myrs_cpu_type type; char *name; } myrs_cpu_type_names[] = { { MYRS_CPUTYPE_i960CA, "i960CA" }, { MYRS_CPUTYPE_i960RD, "i960RD" }, { MYRS_CPUTYPE_i960RN, "i960RN" }, { MYRS_CPUTYPE_i960RP, "i960RP" }, { MYRS_CPUTYPE_NorthBay, "NorthBay" }, { MYRS_CPUTYPE_StrongArm, "StrongARM" }, { MYRS_CPUTYPE_i960RM, "i960RM" }, }; static ssize_t processor_show(struct device *dev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(dev); struct myrs_hba *cs = shost_priv(shost); struct myrs_cpu_type_tbl *tbl; const char *first_processor = NULL; const char *second_processor = NULL; struct myrs_ctlr_info *info = cs->ctlr_info; ssize_t ret; int i; if (info->cpu[0].cpu_count) { tbl = myrs_cpu_type_names; for (i = 0; i < ARRAY_SIZE(myrs_cpu_type_names); i++) { if (tbl[i].type == info->cpu[0].cpu_type) { first_processor = tbl[i].name; break; } } } if (info->cpu[1].cpu_count) { tbl = myrs_cpu_type_names; for (i = 0; i < ARRAY_SIZE(myrs_cpu_type_names); i++) { if (tbl[i].type == info->cpu[1].cpu_type) { second_processor = tbl[i].name; break; } } } if (first_processor && second_processor) ret = snprintf(buf, 64, "1: %s (%s, %d cpus)\n" "2: %s (%s, %d cpus)\n", info->cpu[0].cpu_name, first_processor, info->cpu[0].cpu_count, info->cpu[1].cpu_name, second_processor, info->cpu[1].cpu_count); else if (first_processor && !second_processor) ret = snprintf(buf, 64, "1: %s (%s, %d cpus)\n2: absent\n", info->cpu[0].cpu_name, first_processor, info->cpu[0].cpu_count); else if (!first_processor && second_processor) ret = snprintf(buf, 64, "1: absent\n2: %s (%s, %d cpus)\n", info->cpu[1].cpu_name, second_processor, info->cpu[1].cpu_count); else ret = snprintf(buf, 64, "1: absent\n2: absent\n"); return ret; } static DEVICE_ATTR_RO(processor); static ssize_t model_show(struct device *dev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(dev); struct myrs_hba *cs = shost_priv(shost); return snprintf(buf, 28, "%s\n", cs->model_name); } static DEVICE_ATTR_RO(model); static ssize_t ctlr_type_show(struct device *dev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(dev); struct myrs_hba *cs = shost_priv(shost); return snprintf(buf, 4, "%d\n", cs->ctlr_info->ctlr_type); } static DEVICE_ATTR_RO(ctlr_type); static ssize_t cache_size_show(struct device *dev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(dev); struct myrs_hba *cs = shost_priv(shost); return snprintf(buf, 8, "%d MB\n", cs->ctlr_info->cache_size_mb); } static DEVICE_ATTR_RO(cache_size); static ssize_t firmware_show(struct device *dev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(dev); struct myrs_hba *cs = shost_priv(shost); return snprintf(buf, 16, "%d.%02d-%02d\n", cs->ctlr_info->fw_major_version, cs->ctlr_info->fw_minor_version, cs->ctlr_info->fw_turn_number); } static DEVICE_ATTR_RO(firmware); static ssize_t discovery_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct Scsi_Host *shost = class_to_shost(dev); struct myrs_hba *cs = shost_priv(shost); struct myrs_cmdblk *cmd_blk; union myrs_cmd_mbox *mbox; unsigned char status; mutex_lock(&cs->dcmd_mutex); cmd_blk = &cs->dcmd_blk; myrs_reset_cmd(cmd_blk); mbox = &cmd_blk->mbox; mbox->common.opcode = MYRS_CMD_OP_IOCTL; mbox->common.id = MYRS_DCMD_TAG; mbox->common.control.dma_ctrl_to_host = true; mbox->common.control.no_autosense = true; mbox->common.ioctl_opcode = MYRS_IOCTL_START_DISCOVERY; myrs_exec_cmd(cs, cmd_blk); status = cmd_blk->status; mutex_unlock(&cs->dcmd_mutex); if (status != MYRS_STATUS_SUCCESS) { shost_printk(KERN_INFO, shost, "Discovery Not Initiated, status %02X\n", status); return -EINVAL; } shost_printk(KERN_INFO, shost, "Discovery Initiated\n"); cs->next_evseq = 0; cs->needs_update = true; queue_delayed_work(cs->work_q, &cs->monitor_work, 1); flush_delayed_work(&cs->monitor_work); shost_printk(KERN_INFO, shost, "Discovery Completed\n"); return count; } static DEVICE_ATTR_WO(discovery); static ssize_t flush_cache_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct Scsi_Host *shost = class_to_shost(dev); struct myrs_hba *cs = shost_priv(shost); unsigned char status; status = myrs_dev_op(cs, MYRS_IOCTL_FLUSH_DEVICE_DATA, MYRS_RAID_CONTROLLER); if (status == MYRS_STATUS_SUCCESS) { shost_printk(KERN_INFO, shost, "Cache Flush Completed\n"); return count; } shost_printk(KERN_INFO, shost, "Cache Flush failed, status 0x%02x\n", status); return -EIO; } static DEVICE_ATTR_WO(flush_cache); static ssize_t disable_enclosure_messages_show(struct device *dev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(dev); struct myrs_hba *cs = shost_priv(shost); return snprintf(buf, 3, "%d\n", cs->disable_enc_msg); } static ssize_t disable_enclosure_messages_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct scsi_device *sdev = to_scsi_device(dev); struct myrs_hba *cs = shost_priv(sdev->host); int value, ret; ret = kstrtoint(buf, 0, &value); if (ret) return ret; if (value > 2) return -EINVAL; cs->disable_enc_msg = value; return count; } static DEVICE_ATTR_RW(disable_enclosure_messages); static struct device_attribute *myrs_shost_attrs[] = { &dev_attr_serial, &dev_attr_ctlr_num, &dev_attr_processor, &dev_attr_model, &dev_attr_ctlr_type, &dev_attr_cache_size, &dev_attr_firmware, &dev_attr_discovery, &dev_attr_flush_cache, &dev_attr_disable_enclosure_messages, NULL, }; /* * SCSI midlayer interface */ int myrs_host_reset(struct scsi_cmnd *scmd) { struct Scsi_Host *shost = scmd->device->host; struct myrs_hba *cs = shost_priv(shost); cs->reset(cs->io_base); return SUCCESS; } static void myrs_mode_sense(struct myrs_hba *cs, struct scsi_cmnd *scmd, struct myrs_ldev_info *ldev_info) { unsigned char modes[32], *mode_pg; bool dbd; size_t mode_len; dbd = (scmd->cmnd[1] & 0x08) == 0x08; if (dbd) { mode_len = 24; mode_pg = &modes[4]; } else { mode_len = 32; mode_pg = &modes[12]; } memset(modes, 0, sizeof(modes)); modes[0] = mode_len - 1; modes[2] = 0x10; /* Enable FUA */ if (ldev_info->ldev_control.wce == MYRS_LOGICALDEVICE_RO) modes[2] |= 0x80; if (!dbd) { unsigned char *block_desc = &modes[4]; modes[3] = 8; put_unaligned_be32(ldev_info->cfg_devsize, &block_desc[0]); put_unaligned_be32(ldev_info->devsize_bytes, &block_desc[5]); } mode_pg[0] = 0x08; mode_pg[1] = 0x12; if (ldev_info->ldev_control.rce == MYRS_READCACHE_DISABLED) mode_pg[2] |= 0x01; if (ldev_info->ldev_control.wce == MYRS_WRITECACHE_ENABLED || ldev_info->ldev_control.wce == MYRS_INTELLIGENT_WRITECACHE_ENABLED) mode_pg[2] |= 0x04; if (ldev_info->cacheline_size) { mode_pg[2] |= 0x08; put_unaligned_be16(1 << ldev_info->cacheline_size, &mode_pg[14]); } scsi_sg_copy_from_buffer(scmd, modes, mode_len); } static int myrs_queuecommand(struct Scsi_Host *shost, struct scsi_cmnd *scmd) { struct myrs_hba *cs = shost_priv(shost); struct myrs_cmdblk *cmd_blk = scsi_cmd_priv(scmd); union myrs_cmd_mbox *mbox = &cmd_blk->mbox; struct scsi_device *sdev = scmd->device; union myrs_sgl *hw_sge; dma_addr_t sense_addr; struct scatterlist *sgl; unsigned long flags, timeout; int nsge; if (!scmd->device->hostdata) { scmd->result = (DID_NO_CONNECT << 16); scmd->scsi_done(scmd); return 0; } switch (scmd->cmnd[0]) { case REPORT_LUNS: scsi_build_sense_buffer(0, scmd->sense_buffer, ILLEGAL_REQUEST, 0x20, 0x0); scmd->result = (DRIVER_SENSE << 24) | SAM_STAT_CHECK_CONDITION; scmd->scsi_done(scmd); return 0; case MODE_SENSE: if (scmd->device->channel >= cs->ctlr_info->physchan_present) { struct myrs_ldev_info *ldev_info = sdev->hostdata; if ((scmd->cmnd[2] & 0x3F) != 0x3F && (scmd->cmnd[2] & 0x3F) != 0x08) { /* Illegal request, invalid field in CDB */ scsi_build_sense_buffer(0, scmd->sense_buffer, ILLEGAL_REQUEST, 0x24, 0); scmd->result = (DRIVER_SENSE << 24) | SAM_STAT_CHECK_CONDITION; } else { myrs_mode_sense(cs, scmd, ldev_info); scmd->result = (DID_OK << 16); } scmd->scsi_done(scmd); return 0; } break; } myrs_reset_cmd(cmd_blk); cmd_blk->sense = dma_pool_alloc(cs->sense_pool, GFP_ATOMIC, &sense_addr); if (!cmd_blk->sense) return SCSI_MLQUEUE_HOST_BUSY; cmd_blk->sense_addr = sense_addr; timeout = scmd->request->timeout; if (scmd->cmd_len <= 10) { if (scmd->device->channel >= cs->ctlr_info->physchan_present) { struct myrs_ldev_info *ldev_info = sdev->hostdata; mbox->SCSI_10.opcode = MYRS_CMD_OP_SCSI_10; mbox->SCSI_10.pdev.lun = ldev_info->lun; mbox->SCSI_10.pdev.target = ldev_info->target; mbox->SCSI_10.pdev.channel = ldev_info->channel; mbox->SCSI_10.pdev.ctlr = 0; } else { mbox->SCSI_10.opcode = MYRS_CMD_OP_SCSI_10_PASSTHRU; mbox->SCSI_10.pdev.lun = sdev->lun; mbox->SCSI_10.pdev.target = sdev->id; mbox->SCSI_10.pdev.channel = sdev->channel; } mbox->SCSI_10.id = scmd->request->tag + 3; mbox->SCSI_10.control.dma_ctrl_to_host = (scmd->sc_data_direction == DMA_FROM_DEVICE); if (scmd->request->cmd_flags & REQ_FUA) mbox->SCSI_10.control.fua = true; mbox->SCSI_10.dma_size = scsi_bufflen(scmd); mbox->SCSI_10.sense_addr = cmd_blk->sense_addr; mbox->SCSI_10.sense_len = MYRS_SENSE_SIZE; mbox->SCSI_10.cdb_len = scmd->cmd_len; if (timeout > 60) { mbox->SCSI_10.tmo.tmo_scale = MYRS_TMO_SCALE_MINUTES; mbox->SCSI_10.tmo.tmo_val = timeout / 60; } else { mbox->SCSI_10.tmo.tmo_scale = MYRS_TMO_SCALE_SECONDS; mbox->SCSI_10.tmo.tmo_val = timeout; } memcpy(&mbox->SCSI_10.cdb, scmd->cmnd, scmd->cmd_len); hw_sge = &mbox->SCSI_10.dma_addr; cmd_blk->dcdb = NULL; } else { dma_addr_t dcdb_dma; cmd_blk->dcdb = dma_pool_alloc(cs->dcdb_pool, GFP_ATOMIC, &dcdb_dma); if (!cmd_blk->dcdb) { dma_pool_free(cs->sense_pool, cmd_blk->sense, cmd_blk->sense_addr); cmd_blk->sense = NULL; cmd_blk->sense_addr = 0; return SCSI_MLQUEUE_HOST_BUSY; } cmd_blk->dcdb_dma = dcdb_dma; if (scmd->device->channel >= cs->ctlr_info->physchan_present) { struct myrs_ldev_info *ldev_info = sdev->hostdata; mbox->SCSI_255.opcode = MYRS_CMD_OP_SCSI_256; mbox->SCSI_255.pdev.lun = ldev_info->lun; mbox->SCSI_255.pdev.target = ldev_info->target; mbox->SCSI_255.pdev.channel = ldev_info->channel; mbox->SCSI_255.pdev.ctlr = 0; } else { mbox->SCSI_255.opcode = MYRS_CMD_OP_SCSI_255_PASSTHRU; mbox->SCSI_255.pdev.lun = sdev->lun; mbox->SCSI_255.pdev.target = sdev->id; mbox->SCSI_255.pdev.channel = sdev->channel; } mbox->SCSI_255.id = scmd->request->tag + 3; mbox->SCSI_255.control.dma_ctrl_to_host = (scmd->sc_data_direction == DMA_FROM_DEVICE); if (scmd->request->cmd_flags & REQ_FUA) mbox->SCSI_255.control.fua = true; mbox->SCSI_255.dma_size = scsi_bufflen(scmd); mbox->SCSI_255.sense_addr = cmd_blk->sense_addr; mbox->SCSI_255.sense_len = MYRS_SENSE_SIZE; mbox->SCSI_255.cdb_len = scmd->cmd_len; mbox->SCSI_255.cdb_addr = cmd_blk->dcdb_dma; if (timeout > 60) { mbox->SCSI_255.tmo.tmo_scale = MYRS_TMO_SCALE_MINUTES; mbox->SCSI_255.tmo.tmo_val = timeout / 60; } else { mbox->SCSI_255.tmo.tmo_scale = MYRS_TMO_SCALE_SECONDS; mbox->SCSI_255.tmo.tmo_val = timeout; } memcpy(cmd_blk->dcdb, scmd->cmnd, scmd->cmd_len); hw_sge = &mbox->SCSI_255.dma_addr; } if (scmd->sc_data_direction == DMA_NONE) goto submit; nsge = scsi_dma_map(scmd); if (nsge == 1) { sgl = scsi_sglist(scmd); hw_sge->sge[0].sge_addr = (u64)sg_dma_address(sgl); hw_sge->sge[0].sge_count = (u64)sg_dma_len(sgl); } else { struct myrs_sge *hw_sgl; dma_addr_t hw_sgl_addr; int i; if (nsge > 2) { hw_sgl = dma_pool_alloc(cs->sg_pool, GFP_ATOMIC, &hw_sgl_addr); if (WARN_ON(!hw_sgl)) { if (cmd_blk->dcdb) { dma_pool_free(cs->dcdb_pool, cmd_blk->dcdb, cmd_blk->dcdb_dma); cmd_blk->dcdb = NULL; cmd_blk->dcdb_dma = 0; } dma_pool_free(cs->sense_pool, cmd_blk->sense, cmd_blk->sense_addr); cmd_blk->sense = NULL; cmd_blk->sense_addr = 0; return SCSI_MLQUEUE_HOST_BUSY; } cmd_blk->sgl = hw_sgl; cmd_blk->sgl_addr = hw_sgl_addr; if (scmd->cmd_len <= 10) mbox->SCSI_10.control.add_sge_mem = true; else mbox->SCSI_255.control.add_sge_mem = true; hw_sge->ext.sge0_len = nsge; hw_sge->ext.sge0_addr = cmd_blk->sgl_addr; } else hw_sgl = hw_sge->sge; scsi_for_each_sg(scmd, sgl, nsge, i) { if (WARN_ON(!hw_sgl)) { scsi_dma_unmap(scmd); scmd->result = (DID_ERROR << 16); scmd->scsi_done(scmd); return 0; } hw_sgl->sge_addr = (u64)sg_dma_address(sgl); hw_sgl->sge_count = (u64)sg_dma_len(sgl); hw_sgl++; } } submit: spin_lock_irqsave(&cs->queue_lock, flags); myrs_qcmd(cs, cmd_blk); spin_unlock_irqrestore(&cs->queue_lock, flags); return 0; } static unsigned short myrs_translate_ldev(struct myrs_hba *cs, struct scsi_device *sdev) { unsigned short ldev_num; unsigned int chan_offset = sdev->channel - cs->ctlr_info->physchan_present; ldev_num = sdev->id + chan_offset * sdev->host->max_id; return ldev_num; } static int myrs_slave_alloc(struct scsi_device *sdev) { struct myrs_hba *cs = shost_priv(sdev->host); unsigned char status; if (sdev->channel > sdev->host->max_channel) return 0; if (sdev->channel >= cs->ctlr_info->physchan_present) { struct myrs_ldev_info *ldev_info; unsigned short ldev_num; if (sdev->lun > 0) return -ENXIO; ldev_num = myrs_translate_ldev(cs, sdev); ldev_info = kzalloc(sizeof(*ldev_info), GFP_KERNEL|GFP_DMA); if (!ldev_info) return -ENOMEM; status = myrs_get_ldev_info(cs, ldev_num, ldev_info); if (status != MYRS_STATUS_SUCCESS) { sdev->hostdata = NULL; kfree(ldev_info); } else { enum raid_level level; dev_dbg(&sdev->sdev_gendev, "Logical device mapping %d:%d:%d -> %d\n", ldev_info->channel, ldev_info->target, ldev_info->lun, ldev_info->ldev_num); sdev->hostdata = ldev_info; switch (ldev_info->raid_level) { case MYRS_RAID_LEVEL0: level = RAID_LEVEL_LINEAR; break; case MYRS_RAID_LEVEL1: level = RAID_LEVEL_1; break; case MYRS_RAID_LEVEL3: case MYRS_RAID_LEVEL3F: case MYRS_RAID_LEVEL3L: level = RAID_LEVEL_3; break; case MYRS_RAID_LEVEL5: case MYRS_RAID_LEVEL5L: level = RAID_LEVEL_5; break; case MYRS_RAID_LEVEL6: level = RAID_LEVEL_6; break; case MYRS_RAID_LEVELE: case MYRS_RAID_NEWSPAN: case MYRS_RAID_SPAN: level = RAID_LEVEL_LINEAR; break; case MYRS_RAID_JBOD: level = RAID_LEVEL_JBOD; break; default: level = RAID_LEVEL_UNKNOWN; break; } raid_set_level(myrs_raid_template, &sdev->sdev_gendev, level); if (ldev_info->dev_state != MYRS_DEVICE_ONLINE) { const char *name; name = myrs_devstate_name(ldev_info->dev_state); sdev_printk(KERN_DEBUG, sdev, "logical device in state %s\n", name ? name : "Invalid"); } } } else { struct myrs_pdev_info *pdev_info; pdev_info = kzalloc(sizeof(*pdev_info), GFP_KERNEL|GFP_DMA); if (!pdev_info) return -ENOMEM; status = myrs_get_pdev_info(cs, sdev->channel, sdev->id, sdev->lun, pdev_info); if (status != MYRS_STATUS_SUCCESS) { sdev->hostdata = NULL; kfree(pdev_info); return -ENXIO; } sdev->hostdata = pdev_info; } return 0; } static int myrs_slave_configure(struct scsi_device *sdev) { struct myrs_hba *cs = shost_priv(sdev->host); struct myrs_ldev_info *ldev_info; if (sdev->channel > sdev->host->max_channel) return -ENXIO; if (sdev->channel < cs->ctlr_info->physchan_present) { /* Skip HBA device */ if (sdev->type == TYPE_RAID) return -ENXIO; sdev->no_uld_attach = 1; return 0; } if (sdev->lun != 0) return -ENXIO; ldev_info = sdev->hostdata; if (!ldev_info) return -ENXIO; if (ldev_info->ldev_control.wce == MYRS_WRITECACHE_ENABLED || ldev_info->ldev_control.wce == MYRS_INTELLIGENT_WRITECACHE_ENABLED) sdev->wce_default_on = 1; sdev->tagged_supported = 1; return 0; } static void myrs_slave_destroy(struct scsi_device *sdev) { kfree(sdev->hostdata); } struct scsi_host_template myrs_template = { .module = THIS_MODULE, .name = "DAC960", .proc_name = "myrs", .queuecommand = myrs_queuecommand, .eh_host_reset_handler = myrs_host_reset, .slave_alloc = myrs_slave_alloc, .slave_configure = myrs_slave_configure, .slave_destroy = myrs_slave_destroy, .cmd_size = sizeof(struct myrs_cmdblk), .shost_attrs = myrs_shost_attrs, .sdev_attrs = myrs_sdev_attrs, .this_id = -1, }; static struct myrs_hba *myrs_alloc_host(struct pci_dev *pdev, const struct pci_device_id *entry) { struct Scsi_Host *shost; struct myrs_hba *cs; shost = scsi_host_alloc(&myrs_template, sizeof(struct myrs_hba)); if (!shost) return NULL; shost->max_cmd_len = 16; shost->max_lun = 256; cs = shost_priv(shost); mutex_init(&cs->dcmd_mutex); mutex_init(&cs->cinfo_mutex); cs->host = shost; return cs; } /* * RAID template functions */ /** * myrs_is_raid - return boolean indicating device is raid volume * @dev the device struct object */ static int myrs_is_raid(struct device *dev) { struct scsi_device *sdev = to_scsi_device(dev); struct myrs_hba *cs = shost_priv(sdev->host); return (sdev->channel >= cs->ctlr_info->physchan_present) ? 1 : 0; } /** * myrs_get_resync - get raid volume resync percent complete * @dev the device struct object */ static void myrs_get_resync(struct device *dev) { struct scsi_device *sdev = to_scsi_device(dev); struct myrs_hba *cs = shost_priv(sdev->host); struct myrs_ldev_info *ldev_info = sdev->hostdata; u64 percent_complete = 0; u8 status; if (sdev->channel < cs->ctlr_info->physchan_present || !ldev_info) return; if (ldev_info->rbld_active) { unsigned short ldev_num = ldev_info->ldev_num; status = myrs_get_ldev_info(cs, ldev_num, ldev_info); percent_complete = ldev_info->rbld_lba * 100; do_div(percent_complete, ldev_info->cfg_devsize); } raid_set_resync(myrs_raid_template, dev, percent_complete); } /** * myrs_get_state - get raid volume status * @dev the device struct object */ static void myrs_get_state(struct device *dev) { struct scsi_device *sdev = to_scsi_device(dev); struct myrs_hba *cs = shost_priv(sdev->host); struct myrs_ldev_info *ldev_info = sdev->hostdata; enum raid_state state = RAID_STATE_UNKNOWN; if (sdev->channel < cs->ctlr_info->physchan_present || !ldev_info) state = RAID_STATE_UNKNOWN; else { switch (ldev_info->dev_state) { case MYRS_DEVICE_ONLINE: state = RAID_STATE_ACTIVE; break; case MYRS_DEVICE_SUSPECTED_CRITICAL: case MYRS_DEVICE_CRITICAL: state = RAID_STATE_DEGRADED; break; case MYRS_DEVICE_REBUILD: state = RAID_STATE_RESYNCING; break; case MYRS_DEVICE_UNCONFIGURED: case MYRS_DEVICE_INVALID_STATE: state = RAID_STATE_UNKNOWN; break; default: state = RAID_STATE_OFFLINE; } } raid_set_state(myrs_raid_template, dev, state); } struct raid_function_template myrs_raid_functions = { .cookie = &myrs_template, .is_raid = myrs_is_raid, .get_resync = myrs_get_resync, .get_state = myrs_get_state, }; /* * PCI interface functions */ void myrs_flush_cache(struct myrs_hba *cs) { myrs_dev_op(cs, MYRS_IOCTL_FLUSH_DEVICE_DATA, MYRS_RAID_CONTROLLER); } static void myrs_handle_scsi(struct myrs_hba *cs, struct myrs_cmdblk *cmd_blk, struct scsi_cmnd *scmd) { unsigned char status; if (!cmd_blk) return; scsi_dma_unmap(scmd); status = cmd_blk->status; if (cmd_blk->sense) { if (status == MYRS_STATUS_FAILED && cmd_blk->sense_len) { unsigned int sense_len = SCSI_SENSE_BUFFERSIZE; if (sense_len > cmd_blk->sense_len) sense_len = cmd_blk->sense_len; memcpy(scmd->sense_buffer, cmd_blk->sense, sense_len); } dma_pool_free(cs->sense_pool, cmd_blk->sense, cmd_blk->sense_addr); cmd_blk->sense = NULL; cmd_blk->sense_addr = 0; } if (cmd_blk->dcdb) { dma_pool_free(cs->dcdb_pool, cmd_blk->dcdb, cmd_blk->dcdb_dma); cmd_blk->dcdb = NULL; cmd_blk->dcdb_dma = 0; } if (cmd_blk->sgl) { dma_pool_free(cs->sg_pool, cmd_blk->sgl, cmd_blk->sgl_addr); cmd_blk->sgl = NULL; cmd_blk->sgl_addr = 0; } if (cmd_blk->residual) scsi_set_resid(scmd, cmd_blk->residual); if (status == MYRS_STATUS_DEVICE_NON_RESPONSIVE || status == MYRS_STATUS_DEVICE_NON_RESPONSIVE2) scmd->result = (DID_BAD_TARGET << 16); else scmd->result = (DID_OK << 16) | status; scmd->scsi_done(scmd); } static void myrs_handle_cmdblk(struct myrs_hba *cs, struct myrs_cmdblk *cmd_blk) { if (!cmd_blk) return; if (cmd_blk->complete) { complete(cmd_blk->complete); cmd_blk->complete = NULL; } } static void myrs_monitor(struct work_struct *work) { struct myrs_hba *cs = container_of(work, struct myrs_hba, monitor_work.work); struct Scsi_Host *shost = cs->host; struct myrs_ctlr_info *info = cs->ctlr_info; unsigned int epoch = cs->fwstat_buf->epoch; unsigned long interval = MYRS_PRIMARY_MONITOR_INTERVAL; unsigned char status; dev_dbg(&shost->shost_gendev, "monitor tick\n"); status = myrs_get_fwstatus(cs); if (cs->needs_update) { cs->needs_update = false; mutex_lock(&cs->cinfo_mutex); status = myrs_get_ctlr_info(cs); mutex_unlock(&cs->cinfo_mutex); } if (cs->fwstat_buf->next_evseq - cs->next_evseq > 0) { status = myrs_get_event(cs, cs->next_evseq, cs->event_buf); if (status == MYRS_STATUS_SUCCESS) { myrs_log_event(cs, cs->event_buf); cs->next_evseq++; interval = 1; } } if (time_after(jiffies, cs->secondary_monitor_time + MYRS_SECONDARY_MONITOR_INTERVAL)) cs->secondary_monitor_time = jiffies; if (info->bg_init_active + info->ldev_init_active + info->pdev_init_active + info->cc_active + info->rbld_active + info->exp_active != 0) { struct scsi_device *sdev; shost_for_each_device(sdev, shost) { struct myrs_ldev_info *ldev_info; int ldev_num; if (sdev->channel < info->physchan_present) continue; ldev_info = sdev->hostdata; if (!ldev_info) continue; ldev_num = ldev_info->ldev_num; myrs_get_ldev_info(cs, ldev_num, ldev_info); } cs->needs_update = true; } if (epoch == cs->epoch && cs->fwstat_buf->next_evseq == cs->next_evseq && (cs->needs_update == false || time_before(jiffies, cs->primary_monitor_time + MYRS_PRIMARY_MONITOR_INTERVAL))) { interval = MYRS_SECONDARY_MONITOR_INTERVAL; } if (interval > 1) cs->primary_monitor_time = jiffies; queue_delayed_work(cs->work_q, &cs->monitor_work, interval); } static bool myrs_create_mempools(struct pci_dev *pdev, struct myrs_hba *cs) { struct Scsi_Host *shost = cs->host; size_t elem_size, elem_align; elem_align = sizeof(struct myrs_sge); elem_size = shost->sg_tablesize * elem_align; cs->sg_pool = dma_pool_create("myrs_sg", &pdev->dev, elem_size, elem_align, 0); if (cs->sg_pool == NULL) { shost_printk(KERN_ERR, shost, "Failed to allocate SG pool\n"); return false; } cs->sense_pool = dma_pool_create("myrs_sense", &pdev->dev, MYRS_SENSE_SIZE, sizeof(int), 0); if (cs->sense_pool == NULL) { dma_pool_destroy(cs->sg_pool); cs->sg_pool = NULL; shost_printk(KERN_ERR, shost, "Failed to allocate sense data pool\n"); return false; } cs->dcdb_pool = dma_pool_create("myrs_dcdb", &pdev->dev, MYRS_DCDB_SIZE, sizeof(unsigned char), 0); if (!cs->dcdb_pool) { dma_pool_destroy(cs->sg_pool); cs->sg_pool = NULL; dma_pool_destroy(cs->sense_pool); cs->sense_pool = NULL; shost_printk(KERN_ERR, shost, "Failed to allocate DCDB pool\n"); return false; } snprintf(cs->work_q_name, sizeof(cs->work_q_name), "myrs_wq_%d", shost->host_no); cs->work_q = create_singlethread_workqueue(cs->work_q_name); if (!cs->work_q) { dma_pool_destroy(cs->dcdb_pool); cs->dcdb_pool = NULL; dma_pool_destroy(cs->sg_pool); cs->sg_pool = NULL; dma_pool_destroy(cs->sense_pool); cs->sense_pool = NULL; shost_printk(KERN_ERR, shost, "Failed to create workqueue\n"); return false; } /* Initialize the Monitoring Timer. */ INIT_DELAYED_WORK(&cs->monitor_work, myrs_monitor); queue_delayed_work(cs->work_q, &cs->monitor_work, 1); return true; } static void myrs_destroy_mempools(struct myrs_hba *cs) { cancel_delayed_work_sync(&cs->monitor_work); destroy_workqueue(cs->work_q); dma_pool_destroy(cs->sg_pool); dma_pool_destroy(cs->dcdb_pool); dma_pool_destroy(cs->sense_pool); } static void myrs_unmap(struct myrs_hba *cs) { kfree(cs->event_buf); kfree(cs->ctlr_info); if (cs->fwstat_buf) { dma_free_coherent(&cs->pdev->dev, sizeof(struct myrs_fwstat), cs->fwstat_buf, cs->fwstat_addr); cs->fwstat_buf = NULL; } if (cs->first_stat_mbox) { dma_free_coherent(&cs->pdev->dev, cs->stat_mbox_size, cs->first_stat_mbox, cs->stat_mbox_addr); cs->first_stat_mbox = NULL; } if (cs->first_cmd_mbox) { dma_free_coherent(&cs->pdev->dev, cs->cmd_mbox_size, cs->first_cmd_mbox, cs->cmd_mbox_addr); cs->first_cmd_mbox = NULL; } } static void myrs_cleanup(struct myrs_hba *cs) { struct pci_dev *pdev = cs->pdev; /* Free the memory mailbox, status, and related structures */ myrs_unmap(cs); if (cs->mmio_base) { cs->disable_intr(cs); iounmap(cs->mmio_base); } if (cs->irq) free_irq(cs->irq, cs); if (cs->io_addr) release_region(cs->io_addr, 0x80); iounmap(cs->mmio_base); pci_set_drvdata(pdev, NULL); pci_disable_device(pdev); scsi_host_put(cs->host); } static struct myrs_hba *myrs_detect(struct pci_dev *pdev, const struct pci_device_id *entry) { struct myrs_privdata *privdata = (struct myrs_privdata *)entry->driver_data; irq_handler_t irq_handler = privdata->irq_handler; unsigned int mmio_size = privdata->mmio_size; struct myrs_hba *cs = NULL; cs = myrs_alloc_host(pdev, entry); if (!cs) { dev_err(&pdev->dev, "Unable to allocate Controller\n"); return NULL; } cs->pdev = pdev; if (pci_enable_device(pdev)) goto Failure; cs->pci_addr = pci_resource_start(pdev, 0); pci_set_drvdata(pdev, cs); spin_lock_init(&cs->queue_lock); /* Map the Controller Register Window. */ if (mmio_size < PAGE_SIZE) mmio_size = PAGE_SIZE; cs->mmio_base = ioremap(cs->pci_addr & PAGE_MASK, mmio_size); if (cs->mmio_base == NULL) { dev_err(&pdev->dev, "Unable to map Controller Register Window\n"); goto Failure; } cs->io_base = cs->mmio_base + (cs->pci_addr & ~PAGE_MASK); if (privdata->hw_init(pdev, cs, cs->io_base)) goto Failure; /* Acquire shared access to the IRQ Channel. */ if (request_irq(pdev->irq, irq_handler, IRQF_SHARED, "myrs", cs) < 0) { dev_err(&pdev->dev, "Unable to acquire IRQ Channel %d\n", pdev->irq); goto Failure; } cs->irq = pdev->irq; return cs; Failure: dev_err(&pdev->dev, "Failed to initialize Controller\n"); myrs_cleanup(cs); return NULL; } /** * myrs_err_status reports Controller BIOS Messages passed through the Error Status Register when the driver performs the BIOS handshaking. It returns true for fatal errors and false otherwise. */ static bool myrs_err_status(struct myrs_hba *cs, unsigned char status, unsigned char parm0, unsigned char parm1) { struct pci_dev *pdev = cs->pdev; switch (status) { case 0x00: dev_info(&pdev->dev, "Physical Device %d:%d Not Responding\n", parm1, parm0); break; case 0x08: dev_notice(&pdev->dev, "Spinning Up Drives\n"); break; case 0x30: dev_notice(&pdev->dev, "Configuration Checksum Error\n"); break; case 0x60: dev_notice(&pdev->dev, "Mirror Race Recovery Failed\n"); break; case 0x70: dev_notice(&pdev->dev, "Mirror Race Recovery In Progress\n"); break; case 0x90: dev_notice(&pdev->dev, "Physical Device %d:%d COD Mismatch\n", parm1, parm0); break; case 0xA0: dev_notice(&pdev->dev, "Logical Drive Installation Aborted\n"); break; case 0xB0: dev_notice(&pdev->dev, "Mirror Race On A Critical Logical Drive\n"); break; case 0xD0: dev_notice(&pdev->dev, "New Controller Configuration Found\n"); break; case 0xF0: dev_err(&pdev->dev, "Fatal Memory Parity Error\n"); return true; default: dev_err(&pdev->dev, "Unknown Initialization Error %02X\n", status); return true; } return false; } /* * Hardware-specific functions */ /* * DAC960 GEM Series Controllers. */ static inline void DAC960_GEM_hw_mbox_new_cmd(void __iomem *base) { __le32 val = cpu_to_le32(DAC960_GEM_IDB_HWMBOX_NEW_CMD << 24); writel(val, base + DAC960_GEM_IDB_READ_OFFSET); } static inline void DAC960_GEM_ack_hw_mbox_status(void __iomem *base) { __le32 val = cpu_to_le32(DAC960_GEM_IDB_HWMBOX_ACK_STS << 24); writel(val, base + DAC960_GEM_IDB_CLEAR_OFFSET); } static inline void DAC960_GEM_gen_intr(void __iomem *base) { __le32 val = cpu_to_le32(DAC960_GEM_IDB_GEN_IRQ << 24); writel(val, base + DAC960_GEM_IDB_READ_OFFSET); } static inline void DAC960_GEM_reset_ctrl(void __iomem *base) { __le32 val = cpu_to_le32(DAC960_GEM_IDB_CTRL_RESET << 24); writel(val, base + DAC960_GEM_IDB_READ_OFFSET); } static inline void DAC960_GEM_mem_mbox_new_cmd(void __iomem *base) { __le32 val = cpu_to_le32(DAC960_GEM_IDB_HWMBOX_NEW_CMD << 24); writel(val, base + DAC960_GEM_IDB_READ_OFFSET); } static inline bool DAC960_GEM_hw_mbox_is_full(void __iomem *base) { __le32 val; val = readl(base + DAC960_GEM_IDB_READ_OFFSET); return (le32_to_cpu(val) >> 24) & DAC960_GEM_IDB_HWMBOX_FULL; } static inline bool DAC960_GEM_init_in_progress(void __iomem *base) { __le32 val; val = readl(base + DAC960_GEM_IDB_READ_OFFSET); return (le32_to_cpu(val) >> 24) & DAC960_GEM_IDB_INIT_IN_PROGRESS; } static inline void DAC960_GEM_ack_hw_mbox_intr(void __iomem *base) { __le32 val = cpu_to_le32(DAC960_GEM_ODB_HWMBOX_ACK_IRQ << 24); writel(val, base + DAC960_GEM_ODB_CLEAR_OFFSET); } static inline void DAC960_GEM_ack_mem_mbox_intr(void __iomem *base) { __le32 val = cpu_to_le32(DAC960_GEM_ODB_MMBOX_ACK_IRQ << 24); writel(val, base + DAC960_GEM_ODB_CLEAR_OFFSET); } static inline void DAC960_GEM_ack_intr(void __iomem *base) { __le32 val = cpu_to_le32((DAC960_GEM_ODB_HWMBOX_ACK_IRQ | DAC960_GEM_ODB_MMBOX_ACK_IRQ) << 24); writel(val, base + DAC960_GEM_ODB_CLEAR_OFFSET); } static inline bool DAC960_GEM_hw_mbox_status_available(void __iomem *base) { __le32 val; val = readl(base + DAC960_GEM_ODB_READ_OFFSET); return (le32_to_cpu(val) >> 24) & DAC960_GEM_ODB_HWMBOX_STS_AVAIL; } static inline bool DAC960_GEM_mem_mbox_status_available(void __iomem *base) { __le32 val; val = readl(base + DAC960_GEM_ODB_READ_OFFSET); return (le32_to_cpu(val) >> 24) & DAC960_GEM_ODB_MMBOX_STS_AVAIL; } static inline void DAC960_GEM_enable_intr(void __iomem *base) { __le32 val = cpu_to_le32((DAC960_GEM_IRQMASK_HWMBOX_IRQ | DAC960_GEM_IRQMASK_MMBOX_IRQ) << 24); writel(val, base + DAC960_GEM_IRQMASK_CLEAR_OFFSET); } static inline void DAC960_GEM_disable_intr(void __iomem *base) { __le32 val = 0; writel(val, base + DAC960_GEM_IRQMASK_READ_OFFSET); } static inline bool DAC960_GEM_intr_enabled(void __iomem *base) { __le32 val; val = readl(base + DAC960_GEM_IRQMASK_READ_OFFSET); return !((le32_to_cpu(val) >> 24) & (DAC960_GEM_IRQMASK_HWMBOX_IRQ | DAC960_GEM_IRQMASK_MMBOX_IRQ)); } static inline void DAC960_GEM_write_cmd_mbox(union myrs_cmd_mbox *mem_mbox, union myrs_cmd_mbox *mbox) { memcpy(&mem_mbox->words[1], &mbox->words[1], sizeof(union myrs_cmd_mbox) - sizeof(unsigned int)); /* Barrier to avoid reordering */ wmb(); mem_mbox->words[0] = mbox->words[0]; /* Barrier to force PCI access */ mb(); } static inline void DAC960_GEM_write_hw_mbox(void __iomem *base, dma_addr_t cmd_mbox_addr) { dma_addr_writeql(cmd_mbox_addr, base + DAC960_GEM_CMDMBX_OFFSET); } static inline unsigned short DAC960_GEM_read_cmd_ident(void __iomem *base) { return readw(base + DAC960_GEM_CMDSTS_OFFSET); } static inline unsigned char DAC960_GEM_read_cmd_status(void __iomem *base) { return readw(base + DAC960_GEM_CMDSTS_OFFSET + 2); } static inline bool DAC960_GEM_read_error_status(void __iomem *base, unsigned char *error, unsigned char *param0, unsigned char *param1) { __le32 val; val = readl(base + DAC960_GEM_ERRSTS_READ_OFFSET); if (!((le32_to_cpu(val) >> 24) & DAC960_GEM_ERRSTS_PENDING)) return false; *error = val & ~(DAC960_GEM_ERRSTS_PENDING << 24); *param0 = readb(base + DAC960_GEM_CMDMBX_OFFSET + 0); *param1 = readb(base + DAC960_GEM_CMDMBX_OFFSET + 1); writel(0x03000000, base + DAC960_GEM_ERRSTS_CLEAR_OFFSET); return true; } static inline unsigned char DAC960_GEM_mbox_init(void __iomem *base, dma_addr_t mbox_addr) { unsigned char status; while (DAC960_GEM_hw_mbox_is_full(base)) udelay(1); DAC960_GEM_write_hw_mbox(base, mbox_addr); DAC960_GEM_hw_mbox_new_cmd(base); while (!DAC960_GEM_hw_mbox_status_available(base)) udelay(1); status = DAC960_GEM_read_cmd_status(base); DAC960_GEM_ack_hw_mbox_intr(base); DAC960_GEM_ack_hw_mbox_status(base); return status; } static int DAC960_GEM_hw_init(struct pci_dev *pdev, struct myrs_hba *cs, void __iomem *base) { int timeout = 0; unsigned char status, parm0, parm1; DAC960_GEM_disable_intr(base); DAC960_GEM_ack_hw_mbox_status(base); udelay(1000); while (DAC960_GEM_init_in_progress(base) && timeout < MYRS_MAILBOX_TIMEOUT) { if (DAC960_GEM_read_error_status(base, &status, &parm0, &parm1) && myrs_err_status(cs, status, parm0, parm1)) return -EIO; udelay(10); timeout++; } if (timeout == MYRS_MAILBOX_TIMEOUT) { dev_err(&pdev->dev, "Timeout waiting for Controller Initialisation\n"); return -ETIMEDOUT; } if (!myrs_enable_mmio_mbox(cs, DAC960_GEM_mbox_init)) { dev_err(&pdev->dev, "Unable to Enable Memory Mailbox Interface\n"); DAC960_GEM_reset_ctrl(base); return -EAGAIN; } DAC960_GEM_enable_intr(base); cs->write_cmd_mbox = DAC960_GEM_write_cmd_mbox; cs->get_cmd_mbox = DAC960_GEM_mem_mbox_new_cmd; cs->disable_intr = DAC960_GEM_disable_intr; cs->reset = DAC960_GEM_reset_ctrl; return 0; } static irqreturn_t DAC960_GEM_intr_handler(int irq, void *arg) { struct myrs_hba *cs = arg; void __iomem *base = cs->io_base; struct myrs_stat_mbox *next_stat_mbox; unsigned long flags; spin_lock_irqsave(&cs->queue_lock, flags); DAC960_GEM_ack_intr(base); next_stat_mbox = cs->next_stat_mbox; while (next_stat_mbox->id > 0) { unsigned short id = next_stat_mbox->id; struct scsi_cmnd *scmd = NULL; struct myrs_cmdblk *cmd_blk = NULL; if (id == MYRS_DCMD_TAG) cmd_blk = &cs->dcmd_blk; else if (id == MYRS_MCMD_TAG) cmd_blk = &cs->mcmd_blk; else { scmd = scsi_host_find_tag(cs->host, id - 3); if (scmd) cmd_blk = scsi_cmd_priv(scmd); } if (cmd_blk) { cmd_blk->status = next_stat_mbox->status; cmd_blk->sense_len = next_stat_mbox->sense_len; cmd_blk->residual = next_stat_mbox->residual; } else dev_err(&cs->pdev->dev, "Unhandled command completion %d\n", id); memset(next_stat_mbox, 0, sizeof(struct myrs_stat_mbox)); if (++next_stat_mbox > cs->last_stat_mbox) next_stat_mbox = cs->first_stat_mbox; if (cmd_blk) { if (id < 3) myrs_handle_cmdblk(cs, cmd_blk); else myrs_handle_scsi(cs, cmd_blk, scmd); } } cs->next_stat_mbox = next_stat_mbox; spin_unlock_irqrestore(&cs->queue_lock, flags); return IRQ_HANDLED; } struct myrs_privdata DAC960_GEM_privdata = { .hw_init = DAC960_GEM_hw_init, .irq_handler = DAC960_GEM_intr_handler, .mmio_size = DAC960_GEM_mmio_size, }; /* * DAC960 BA Series Controllers. */ static inline void DAC960_BA_hw_mbox_new_cmd(void __iomem *base) { writeb(DAC960_BA_IDB_HWMBOX_NEW_CMD, base + DAC960_BA_IDB_OFFSET); } static inline void DAC960_BA_ack_hw_mbox_status(void __iomem *base) { writeb(DAC960_BA_IDB_HWMBOX_ACK_STS, base + DAC960_BA_IDB_OFFSET); } static inline void DAC960_BA_gen_intr(void __iomem *base) { writeb(DAC960_BA_IDB_GEN_IRQ, base + DAC960_BA_IDB_OFFSET); } static inline void DAC960_BA_reset_ctrl(void __iomem *base) { writeb(DAC960_BA_IDB_CTRL_RESET, base + DAC960_BA_IDB_OFFSET); } static inline void DAC960_BA_mem_mbox_new_cmd(void __iomem *base) { writeb(DAC960_BA_IDB_MMBOX_NEW_CMD, base + DAC960_BA_IDB_OFFSET); } static inline bool DAC960_BA_hw_mbox_is_full(void __iomem *base) { u8 val; val = readb(base + DAC960_BA_IDB_OFFSET); return !(val & DAC960_BA_IDB_HWMBOX_EMPTY); } static inline bool DAC960_BA_init_in_progress(void __iomem *base) { u8 val; val = readb(base + DAC960_BA_IDB_OFFSET); return !(val & DAC960_BA_IDB_INIT_DONE); } static inline void DAC960_BA_ack_hw_mbox_intr(void __iomem *base) { writeb(DAC960_BA_ODB_HWMBOX_ACK_IRQ, base + DAC960_BA_ODB_OFFSET); } static inline void DAC960_BA_ack_mem_mbox_intr(void __iomem *base) { writeb(DAC960_BA_ODB_MMBOX_ACK_IRQ, base + DAC960_BA_ODB_OFFSET); } static inline void DAC960_BA_ack_intr(void __iomem *base) { writeb(DAC960_BA_ODB_HWMBOX_ACK_IRQ | DAC960_BA_ODB_MMBOX_ACK_IRQ, base + DAC960_BA_ODB_OFFSET); } static inline bool DAC960_BA_hw_mbox_status_available(void __iomem *base) { u8 val; val = readb(base + DAC960_BA_ODB_OFFSET); return val & DAC960_BA_ODB_HWMBOX_STS_AVAIL; } static inline bool DAC960_BA_mem_mbox_status_available(void __iomem *base) { u8 val; val = readb(base + DAC960_BA_ODB_OFFSET); return val & DAC960_BA_ODB_MMBOX_STS_AVAIL; } static inline void DAC960_BA_enable_intr(void __iomem *base) { writeb(~DAC960_BA_IRQMASK_DISABLE_IRQ, base + DAC960_BA_IRQMASK_OFFSET); } static inline void DAC960_BA_disable_intr(void __iomem *base) { writeb(0xFF, base + DAC960_BA_IRQMASK_OFFSET); } static inline bool DAC960_BA_intr_enabled(void __iomem *base) { u8 val; val = readb(base + DAC960_BA_IRQMASK_OFFSET); return !(val & DAC960_BA_IRQMASK_DISABLE_IRQ); } static inline void DAC960_BA_write_cmd_mbox(union myrs_cmd_mbox *mem_mbox, union myrs_cmd_mbox *mbox) { memcpy(&mem_mbox->words[1], &mbox->words[1], sizeof(union myrs_cmd_mbox) - sizeof(unsigned int)); /* Barrier to avoid reordering */ wmb(); mem_mbox->words[0] = mbox->words[0]; /* Barrier to force PCI access */ mb(); } static inline void DAC960_BA_write_hw_mbox(void __iomem *base, dma_addr_t cmd_mbox_addr) { dma_addr_writeql(cmd_mbox_addr, base + DAC960_BA_CMDMBX_OFFSET); } static inline unsigned short DAC960_BA_read_cmd_ident(void __iomem *base) { return readw(base + DAC960_BA_CMDSTS_OFFSET); } static inline unsigned char DAC960_BA_read_cmd_status(void __iomem *base) { return readw(base + DAC960_BA_CMDSTS_OFFSET + 2); } static inline bool DAC960_BA_read_error_status(void __iomem *base, unsigned char *error, unsigned char *param0, unsigned char *param1) { u8 val; val = readb(base + DAC960_BA_ERRSTS_OFFSET); if (!(val & DAC960_BA_ERRSTS_PENDING)) return false; val &= ~DAC960_BA_ERRSTS_PENDING; *error = val; *param0 = readb(base + DAC960_BA_CMDMBX_OFFSET + 0); *param1 = readb(base + DAC960_BA_CMDMBX_OFFSET + 1); writeb(0xFF, base + DAC960_BA_ERRSTS_OFFSET); return true; } static inline unsigned char DAC960_BA_mbox_init(void __iomem *base, dma_addr_t mbox_addr) { unsigned char status; while (DAC960_BA_hw_mbox_is_full(base)) udelay(1); DAC960_BA_write_hw_mbox(base, mbox_addr); DAC960_BA_hw_mbox_new_cmd(base); while (!DAC960_BA_hw_mbox_status_available(base)) udelay(1); status = DAC960_BA_read_cmd_status(base); DAC960_BA_ack_hw_mbox_intr(base); DAC960_BA_ack_hw_mbox_status(base); return status; } static int DAC960_BA_hw_init(struct pci_dev *pdev, struct myrs_hba *cs, void __iomem *base) { int timeout = 0; unsigned char status, parm0, parm1; DAC960_BA_disable_intr(base); DAC960_BA_ack_hw_mbox_status(base); udelay(1000); while (DAC960_BA_init_in_progress(base) && timeout < MYRS_MAILBOX_TIMEOUT) { if (DAC960_BA_read_error_status(base, &status, &parm0, &parm1) && myrs_err_status(cs, status, parm0, parm1)) return -EIO; udelay(10); timeout++; } if (timeout == MYRS_MAILBOX_TIMEOUT) { dev_err(&pdev->dev, "Timeout waiting for Controller Initialisation\n"); return -ETIMEDOUT; } if (!myrs_enable_mmio_mbox(cs, DAC960_BA_mbox_init)) { dev_err(&pdev->dev, "Unable to Enable Memory Mailbox Interface\n"); DAC960_BA_reset_ctrl(base); return -EAGAIN; } DAC960_BA_enable_intr(base); cs->write_cmd_mbox = DAC960_BA_write_cmd_mbox; cs->get_cmd_mbox = DAC960_BA_mem_mbox_new_cmd; cs->disable_intr = DAC960_BA_disable_intr; cs->reset = DAC960_BA_reset_ctrl; return 0; } static irqreturn_t DAC960_BA_intr_handler(int irq, void *arg) { struct myrs_hba *cs = arg; void __iomem *base = cs->io_base; struct myrs_stat_mbox *next_stat_mbox; unsigned long flags; spin_lock_irqsave(&cs->queue_lock, flags); DAC960_BA_ack_intr(base); next_stat_mbox = cs->next_stat_mbox; while (next_stat_mbox->id > 0) { unsigned short id = next_stat_mbox->id; struct scsi_cmnd *scmd = NULL; struct myrs_cmdblk *cmd_blk = NULL; if (id == MYRS_DCMD_TAG) cmd_blk = &cs->dcmd_blk; else if (id == MYRS_MCMD_TAG) cmd_blk = &cs->mcmd_blk; else { scmd = scsi_host_find_tag(cs->host, id - 3); if (scmd) cmd_blk = scsi_cmd_priv(scmd); } if (cmd_blk) { cmd_blk->status = next_stat_mbox->status; cmd_blk->sense_len = next_stat_mbox->sense_len; cmd_blk->residual = next_stat_mbox->residual; } else dev_err(&cs->pdev->dev, "Unhandled command completion %d\n", id); memset(next_stat_mbox, 0, sizeof(struct myrs_stat_mbox)); if (++next_stat_mbox > cs->last_stat_mbox) next_stat_mbox = cs->first_stat_mbox; if (cmd_blk) { if (id < 3) myrs_handle_cmdblk(cs, cmd_blk); else myrs_handle_scsi(cs, cmd_blk, scmd); } } cs->next_stat_mbox = next_stat_mbox; spin_unlock_irqrestore(&cs->queue_lock, flags); return IRQ_HANDLED; } struct myrs_privdata DAC960_BA_privdata = { .hw_init = DAC960_BA_hw_init, .irq_handler = DAC960_BA_intr_handler, .mmio_size = DAC960_BA_mmio_size, }; /* * DAC960 LP Series Controllers. */ static inline void DAC960_LP_hw_mbox_new_cmd(void __iomem *base) { writeb(DAC960_LP_IDB_HWMBOX_NEW_CMD, base + DAC960_LP_IDB_OFFSET); } static inline void DAC960_LP_ack_hw_mbox_status(void __iomem *base) { writeb(DAC960_LP_IDB_HWMBOX_ACK_STS, base + DAC960_LP_IDB_OFFSET); } static inline void DAC960_LP_gen_intr(void __iomem *base) { writeb(DAC960_LP_IDB_GEN_IRQ, base + DAC960_LP_IDB_OFFSET); } static inline void DAC960_LP_reset_ctrl(void __iomem *base) { writeb(DAC960_LP_IDB_CTRL_RESET, base + DAC960_LP_IDB_OFFSET); } static inline void DAC960_LP_mem_mbox_new_cmd(void __iomem *base) { writeb(DAC960_LP_IDB_MMBOX_NEW_CMD, base + DAC960_LP_IDB_OFFSET); } static inline bool DAC960_LP_hw_mbox_is_full(void __iomem *base) { u8 val; val = readb(base + DAC960_LP_IDB_OFFSET); return val & DAC960_LP_IDB_HWMBOX_FULL; } static inline bool DAC960_LP_init_in_progress(void __iomem *base) { u8 val; val = readb(base + DAC960_LP_IDB_OFFSET); return val & DAC960_LP_IDB_INIT_IN_PROGRESS; } static inline void DAC960_LP_ack_hw_mbox_intr(void __iomem *base) { writeb(DAC960_LP_ODB_HWMBOX_ACK_IRQ, base + DAC960_LP_ODB_OFFSET); } static inline void DAC960_LP_ack_mem_mbox_intr(void __iomem *base) { writeb(DAC960_LP_ODB_MMBOX_ACK_IRQ, base + DAC960_LP_ODB_OFFSET); } static inline void DAC960_LP_ack_intr(void __iomem *base) { writeb(DAC960_LP_ODB_HWMBOX_ACK_IRQ | DAC960_LP_ODB_MMBOX_ACK_IRQ, base + DAC960_LP_ODB_OFFSET); } static inline bool DAC960_LP_hw_mbox_status_available(void __iomem *base) { u8 val; val = readb(base + DAC960_LP_ODB_OFFSET); return val & DAC960_LP_ODB_HWMBOX_STS_AVAIL; } static inline bool DAC960_LP_mem_mbox_status_available(void __iomem *base) { u8 val; val = readb(base + DAC960_LP_ODB_OFFSET); return val & DAC960_LP_ODB_MMBOX_STS_AVAIL; } static inline void DAC960_LP_enable_intr(void __iomem *base) { writeb(~DAC960_LP_IRQMASK_DISABLE_IRQ, base + DAC960_LP_IRQMASK_OFFSET); } static inline void DAC960_LP_disable_intr(void __iomem *base) { writeb(0xFF, base + DAC960_LP_IRQMASK_OFFSET); } static inline bool DAC960_LP_intr_enabled(void __iomem *base) { u8 val; val = readb(base + DAC960_LP_IRQMASK_OFFSET); return !(val & DAC960_LP_IRQMASK_DISABLE_IRQ); } static inline void DAC960_LP_write_cmd_mbox(union myrs_cmd_mbox *mem_mbox, union myrs_cmd_mbox *mbox) { memcpy(&mem_mbox->words[1], &mbox->words[1], sizeof(union myrs_cmd_mbox) - sizeof(unsigned int)); /* Barrier to avoid reordering */ wmb(); mem_mbox->words[0] = mbox->words[0]; /* Barrier to force PCI access */ mb(); } static inline void DAC960_LP_write_hw_mbox(void __iomem *base, dma_addr_t cmd_mbox_addr) { dma_addr_writeql(cmd_mbox_addr, base + DAC960_LP_CMDMBX_OFFSET); } static inline unsigned short DAC960_LP_read_cmd_ident(void __iomem *base) { return readw(base + DAC960_LP_CMDSTS_OFFSET); } static inline unsigned char DAC960_LP_read_cmd_status(void __iomem *base) { return readw(base + DAC960_LP_CMDSTS_OFFSET + 2); } static inline bool DAC960_LP_read_error_status(void __iomem *base, unsigned char *error, unsigned char *param0, unsigned char *param1) { u8 val; val = readb(base + DAC960_LP_ERRSTS_OFFSET); if (!(val & DAC960_LP_ERRSTS_PENDING)) return false; val &= ~DAC960_LP_ERRSTS_PENDING; *error = val; *param0 = readb(base + DAC960_LP_CMDMBX_OFFSET + 0); *param1 = readb(base + DAC960_LP_CMDMBX_OFFSET + 1); writeb(0xFF, base + DAC960_LP_ERRSTS_OFFSET); return true; } static inline unsigned char DAC960_LP_mbox_init(void __iomem *base, dma_addr_t mbox_addr) { unsigned char status; while (DAC960_LP_hw_mbox_is_full(base)) udelay(1); DAC960_LP_write_hw_mbox(base, mbox_addr); DAC960_LP_hw_mbox_new_cmd(base); while (!DAC960_LP_hw_mbox_status_available(base)) udelay(1); status = DAC960_LP_read_cmd_status(base); DAC960_LP_ack_hw_mbox_intr(base); DAC960_LP_ack_hw_mbox_status(base); return status; } static int DAC960_LP_hw_init(struct pci_dev *pdev, struct myrs_hba *cs, void __iomem *base) { int timeout = 0; unsigned char status, parm0, parm1; DAC960_LP_disable_intr(base); DAC960_LP_ack_hw_mbox_status(base); udelay(1000); while (DAC960_LP_init_in_progress(base) && timeout < MYRS_MAILBOX_TIMEOUT) { if (DAC960_LP_read_error_status(base, &status, &parm0, &parm1) && myrs_err_status(cs, status, parm0, parm1)) return -EIO; udelay(10); timeout++; } if (timeout == MYRS_MAILBOX_TIMEOUT) { dev_err(&pdev->dev, "Timeout waiting for Controller Initialisation\n"); return -ETIMEDOUT; } if (!myrs_enable_mmio_mbox(cs, DAC960_LP_mbox_init)) { dev_err(&pdev->dev, "Unable to Enable Memory Mailbox Interface\n"); DAC960_LP_reset_ctrl(base); return -ENODEV; } DAC960_LP_enable_intr(base); cs->write_cmd_mbox = DAC960_LP_write_cmd_mbox; cs->get_cmd_mbox = DAC960_LP_mem_mbox_new_cmd; cs->disable_intr = DAC960_LP_disable_intr; cs->reset = DAC960_LP_reset_ctrl; return 0; } static irqreturn_t DAC960_LP_intr_handler(int irq, void *arg) { struct myrs_hba *cs = arg; void __iomem *base = cs->io_base; struct myrs_stat_mbox *next_stat_mbox; unsigned long flags; spin_lock_irqsave(&cs->queue_lock, flags); DAC960_LP_ack_intr(base); next_stat_mbox = cs->next_stat_mbox; while (next_stat_mbox->id > 0) { unsigned short id = next_stat_mbox->id; struct scsi_cmnd *scmd = NULL; struct myrs_cmdblk *cmd_blk = NULL; if (id == MYRS_DCMD_TAG) cmd_blk = &cs->dcmd_blk; else if (id == MYRS_MCMD_TAG) cmd_blk = &cs->mcmd_blk; else { scmd = scsi_host_find_tag(cs->host, id - 3); if (scmd) cmd_blk = scsi_cmd_priv(scmd); } if (cmd_blk) { cmd_blk->status = next_stat_mbox->status; cmd_blk->sense_len = next_stat_mbox->sense_len; cmd_blk->residual = next_stat_mbox->residual; } else dev_err(&cs->pdev->dev, "Unhandled command completion %d\n", id); memset(next_stat_mbox, 0, sizeof(struct myrs_stat_mbox)); if (++next_stat_mbox > cs->last_stat_mbox) next_stat_mbox = cs->first_stat_mbox; if (cmd_blk) { if (id < 3) myrs_handle_cmdblk(cs, cmd_blk); else myrs_handle_scsi(cs, cmd_blk, scmd); } } cs->next_stat_mbox = next_stat_mbox; spin_unlock_irqrestore(&cs->queue_lock, flags); return IRQ_HANDLED; } struct myrs_privdata DAC960_LP_privdata = { .hw_init = DAC960_LP_hw_init, .irq_handler = DAC960_LP_intr_handler, .mmio_size = DAC960_LP_mmio_size, }; /* * Module functions */ static int myrs_probe(struct pci_dev *dev, const struct pci_device_id *entry) { struct myrs_hba *cs; int ret; cs = myrs_detect(dev, entry); if (!cs) return -ENODEV; ret = myrs_get_config(cs); if (ret < 0) { myrs_cleanup(cs); return ret; } if (!myrs_create_mempools(dev, cs)) { ret = -ENOMEM; goto failed; } ret = scsi_add_host(cs->host, &dev->dev); if (ret) { dev_err(&dev->dev, "scsi_add_host failed with %d\n", ret); myrs_destroy_mempools(cs); goto failed; } scsi_scan_host(cs->host); return 0; failed: myrs_cleanup(cs); return ret; } static void myrs_remove(struct pci_dev *pdev) { struct myrs_hba *cs = pci_get_drvdata(pdev); if (cs == NULL) return; shost_printk(KERN_NOTICE, cs->host, "Flushing Cache..."); myrs_flush_cache(cs); myrs_destroy_mempools(cs); myrs_cleanup(cs); } static const struct pci_device_id myrs_id_table[] = { { PCI_DEVICE_SUB(PCI_VENDOR_ID_MYLEX, PCI_DEVICE_ID_MYLEX_DAC960_GEM, PCI_VENDOR_ID_MYLEX, PCI_ANY_ID), .driver_data = (unsigned long) &DAC960_GEM_privdata, }, { PCI_DEVICE_DATA(MYLEX, DAC960_BA, &DAC960_BA_privdata), }, { PCI_DEVICE_DATA(MYLEX, DAC960_LP, &DAC960_LP_privdata), }, {0, }, }; MODULE_DEVICE_TABLE(pci, myrs_id_table); static struct pci_driver myrs_pci_driver = { .name = "myrs", .id_table = myrs_id_table, .probe = myrs_probe, .remove = myrs_remove, }; static int __init myrs_init_module(void) { int ret; myrs_raid_template = raid_class_attach(&myrs_raid_functions); if (!myrs_raid_template) return -ENODEV; ret = pci_register_driver(&myrs_pci_driver); if (ret) raid_class_release(myrs_raid_template); return ret; } static void __exit myrs_cleanup_module(void) { pci_unregister_driver(&myrs_pci_driver); raid_class_release(myrs_raid_template); } module_init(myrs_init_module); module_exit(myrs_cleanup_module); MODULE_DESCRIPTION("Mylex DAC960/AcceleRAID/eXtremeRAID driver (SCSI Interface)"); MODULE_AUTHOR("Hannes Reinecke <hare@suse.com>"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1