Contributors: 1
Author Tokens Token Proportion Commits Commit Proportion
Mauro Carvalho Chehab 6000 100.00% 9 100.00%
Total 6000 9


// SPDX-License-Identifier: GPL-2.0
/*
 * Support for OmniVision OV2680 1080p HD camera sensor.
 *
 * Copyright (c) 2013 Intel Corporation. All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License version
 * 2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 */

#include <asm/unaligned.h>

#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/kmod.h>
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/moduleparam.h>
#include <media/v4l2-device.h>
#include <linux/io.h>
#include <linux/acpi.h>
#include "../include/linux/atomisp_gmin_platform.h"

#include "ov2680.h"

static int h_flag;
static int v_flag;
static enum atomisp_bayer_order ov2680_bayer_order_mapping[] = {
	atomisp_bayer_order_bggr,
	atomisp_bayer_order_grbg,
	atomisp_bayer_order_gbrg,
	atomisp_bayer_order_rggb,
};

/* i2c read/write stuff */
static int ov2680_read_reg(struct i2c_client *client,
			   int len, u16 reg, u16 *val)
{
	struct i2c_msg msgs[2];
	u8 addr_buf[2] = { reg >> 8, reg & 0xff };
	u8 data_buf[4] = { 0, };
	int ret;

	if (len > 4)
		return -EINVAL;

	msgs[0].addr = client->addr;
	msgs[0].flags = 0;
	msgs[0].len = ARRAY_SIZE(addr_buf);
	msgs[0].buf = addr_buf;

	msgs[1].addr = client->addr;
	msgs[1].flags = I2C_M_RD;
	msgs[1].len = len;
	msgs[1].buf = &data_buf[4 - len];

	ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
	if (ret != ARRAY_SIZE(msgs)) {
		dev_err(&client->dev, "read error: reg=0x%4x: %d\n", reg, ret);
		return -EIO;
	}

	*val = get_unaligned_be32(data_buf);

	return 0;
}

static int ov2680_write_reg(struct i2c_client *client, unsigned int len,
			    u16 reg, u16 val)
{
	u8 buf[6];
	int ret;

	if (len == 2)
		put_unaligned_be16(val << (8 * (4 - len)), buf + 2);
	else if (len == 1)
		buf[2] = val;
	else
		return -EINVAL;

	put_unaligned_be16(reg, buf);

	ret = i2c_master_send(client, buf, len + 2);
	if (ret != len + 2) {
		dev_err(&client->dev, "write error %d reg 0x%04x, val 0x%02x: buf sent: %*ph\n",
			ret, reg, val, len + 2, &buf);
		return -EIO;
	}

	return 0;
}

static int ov2680_write_reg_array(struct i2c_client *client,
				  const struct ov2680_reg *reglist)
{
	const struct ov2680_reg *next = reglist;
	int ret;

	for (; next->reg != 0; next++) {
		ret = ov2680_write_reg(client, 1, next->reg, next->val);
		if (ret)
			return ret;
	}

	return 0;
}

static int ov2680_g_focal(struct v4l2_subdev *sd, s32 *val)
{
	*val = (OV2680_FOCAL_LENGTH_NUM << 16) | OV2680_FOCAL_LENGTH_DEM;
	return 0;
}

static int ov2680_g_fnumber(struct v4l2_subdev *sd, s32 *val)
{
	/*const f number for ov2680*/

	*val = (OV2680_F_NUMBER_DEFAULT_NUM << 16) | OV2680_F_NUMBER_DEM;
	return 0;
}

static int ov2680_g_fnumber_range(struct v4l2_subdev *sd, s32 *val)
{
	*val = (OV2680_F_NUMBER_DEFAULT_NUM << 24) |
	       (OV2680_F_NUMBER_DEM << 16) |
	       (OV2680_F_NUMBER_DEFAULT_NUM << 8) | OV2680_F_NUMBER_DEM;
	return 0;
}

static int ov2680_g_bin_factor_x(struct v4l2_subdev *sd, s32 *val)
{
	struct ov2680_device *dev = to_ov2680_sensor(sd);
	struct i2c_client *client = v4l2_get_subdevdata(sd);

	dev_dbg(&client->dev,  "++++ov2680_g_bin_factor_x\n");
	*val = ov2680_res[dev->fmt_idx].bin_factor_x;

	return 0;
}

static int ov2680_g_bin_factor_y(struct v4l2_subdev *sd, s32 *val)
{
	struct ov2680_device *dev = to_ov2680_sensor(sd);
	struct i2c_client *client = v4l2_get_subdevdata(sd);

	*val = ov2680_res[dev->fmt_idx].bin_factor_y;
	dev_dbg(&client->dev,  "++++ov2680_g_bin_factor_y\n");
	return 0;
}

static int ov2680_get_intg_factor(struct i2c_client *client,
				  struct camera_mipi_info *info,
				  const struct ov2680_resolution *res)
{
	struct v4l2_subdev *sd = i2c_get_clientdata(client);
	struct ov2680_device *dev = to_ov2680_sensor(sd);
	struct atomisp_sensor_mode_data *buf = &info->data;
	unsigned int pix_clk_freq_hz;
	u16 reg_val;
	int ret;

	dev_dbg(&client->dev,  "++++ov2680_get_intg_factor\n");
	if (!info)
		return -EINVAL;

	/* pixel clock */
	pix_clk_freq_hz = res->pix_clk_freq * 1000000;

	dev->vt_pix_clk_freq_mhz = pix_clk_freq_hz;
	buf->vt_pix_clk_freq_mhz = pix_clk_freq_hz;

	/* get integration time */
	buf->coarse_integration_time_min = OV2680_COARSE_INTG_TIME_MIN;
	buf->coarse_integration_time_max_margin =
	    OV2680_COARSE_INTG_TIME_MAX_MARGIN;

	buf->fine_integration_time_min = OV2680_FINE_INTG_TIME_MIN;
	buf->fine_integration_time_max_margin =
	    OV2680_FINE_INTG_TIME_MAX_MARGIN;

	buf->fine_integration_time_def = OV2680_FINE_INTG_TIME_MIN;
	buf->frame_length_lines = res->lines_per_frame;
	buf->line_length_pck = res->pixels_per_line;
	buf->read_mode = res->bin_mode;

	/* get the cropping and output resolution to ISP for this mode. */
	ret =  ov2680_read_reg(client, 2,
			       OV2680_HORIZONTAL_START_H, &reg_val);
	if (ret)
		return ret;
	buf->crop_horizontal_start = reg_val;

	ret =  ov2680_read_reg(client, 2,
			       OV2680_VERTICAL_START_H, &reg_val);
	if (ret)
		return ret;
	buf->crop_vertical_start = reg_val;

	ret = ov2680_read_reg(client, 2,
			      OV2680_HORIZONTAL_END_H, &reg_val);
	if (ret)
		return ret;
	buf->crop_horizontal_end = reg_val;

	ret = ov2680_read_reg(client, 2,
			      OV2680_VERTICAL_END_H, &reg_val);
	if (ret)
		return ret;
	buf->crop_vertical_end = reg_val;

	ret = ov2680_read_reg(client, 2,
			      OV2680_HORIZONTAL_OUTPUT_SIZE_H, &reg_val);
	if (ret)
		return ret;
	buf->output_width = reg_val;

	ret = ov2680_read_reg(client, 2,
			      OV2680_VERTICAL_OUTPUT_SIZE_H, &reg_val);
	if (ret)
		return ret;
	buf->output_height = reg_val;

	buf->binning_factor_x = res->bin_factor_x ?
				(res->bin_factor_x * 2) : 1;
	buf->binning_factor_y = res->bin_factor_y ?
				(res->bin_factor_y * 2) : 1;
	return 0;
}

static long __ov2680_set_exposure(struct v4l2_subdev *sd, int coarse_itg,
				  int gain, int digitgain)

{
	struct i2c_client *client = v4l2_get_subdevdata(sd);
	struct ov2680_device *dev = to_ov2680_sensor(sd);
	u16 vts;
	int ret, exp_val;

	dev_dbg(&client->dev,
		"+++++++__ov2680_set_exposure coarse_itg %d, gain %d, digitgain %d++\n",
		coarse_itg, gain, digitgain);

	vts = ov2680_res[dev->fmt_idx].lines_per_frame;

	/* group hold */
	ret = ov2680_write_reg(client, 1,
			       OV2680_GROUP_ACCESS, 0x00);
	if (ret) {
		dev_err(&client->dev, "%s: write 0x%02x: error, aborted\n",
			__func__, OV2680_GROUP_ACCESS);
		return ret;
	}

	/* Increase the VTS to match exposure + MARGIN */
	if (coarse_itg > vts - OV2680_INTEGRATION_TIME_MARGIN)
		vts = (u16)coarse_itg + OV2680_INTEGRATION_TIME_MARGIN;

	ret = ov2680_write_reg(client, 2, OV2680_TIMING_VTS_H, vts);
	if (ret) {
		dev_err(&client->dev, "%s: write 0x%02x: error, aborted\n",
			__func__, OV2680_TIMING_VTS_H);
		return ret;
	}

	/* set exposure */

	/* Lower four bit should be 0*/
	exp_val = coarse_itg << 4;
	ret = ov2680_write_reg(client, 1,
			       OV2680_EXPOSURE_L, exp_val & 0xFF);
	if (ret) {
		dev_err(&client->dev, "%s: write 0x%02x: error, aborted\n",
			__func__, OV2680_EXPOSURE_L);
		return ret;
	}

	ret = ov2680_write_reg(client, 1,
			       OV2680_EXPOSURE_M, (exp_val >> 8) & 0xFF);
	if (ret) {
		dev_err(&client->dev, "%s: write 0x%02x: error, aborted\n",
			__func__, OV2680_EXPOSURE_M);
		return ret;
	}

	ret = ov2680_write_reg(client, 1,
			       OV2680_EXPOSURE_H, (exp_val >> 16) & 0x0F);
	if (ret) {
		dev_err(&client->dev, "%s: write 0x%02x: error, aborted\n",
			__func__, OV2680_EXPOSURE_H);
		return ret;
	}

	/* Analog gain */
	ret = ov2680_write_reg(client, 2, OV2680_AGC_H, gain);
	if (ret) {
		dev_err(&client->dev, "%s: write 0x%02x: error, aborted\n",
			__func__, OV2680_AGC_H);
		return ret;
	}
	/* Digital gain */
	if (digitgain) {
		ret = ov2680_write_reg(client, 2,
				       OV2680_MWB_RED_GAIN_H, digitgain);
		if (ret) {
			dev_err(&client->dev,
				"%s: write 0x%02x: error, aborted\n",
				__func__, OV2680_MWB_RED_GAIN_H);
			return ret;
		}

		ret = ov2680_write_reg(client, 2,
				       OV2680_MWB_GREEN_GAIN_H, digitgain);
		if (ret) {
			dev_err(&client->dev,
				"%s: write 0x%02x: error, aborted\n",
				__func__, OV2680_MWB_RED_GAIN_H);
			return ret;
		}

		ret = ov2680_write_reg(client, 2,
				       OV2680_MWB_BLUE_GAIN_H, digitgain);
		if (ret) {
			dev_err(&client->dev,
				"%s: write 0x%02x: error, aborted\n",
				__func__, OV2680_MWB_RED_GAIN_H);
			return ret;
		}
	}

	/* End group */
	ret = ov2680_write_reg(client, 1,
			       OV2680_GROUP_ACCESS, 0x10);
	if (ret)
		return ret;

	/* Delay launch group */
	ret = ov2680_write_reg(client, 1,
			       OV2680_GROUP_ACCESS, 0xa0);
	if (ret)
		return ret;
	return ret;
}

static int ov2680_set_exposure(struct v4l2_subdev *sd, int exposure,
			       int gain, int digitgain)
{
	struct ov2680_device *dev = to_ov2680_sensor(sd);
	int ret;

	mutex_lock(&dev->input_lock);
	ret = __ov2680_set_exposure(sd, exposure, gain, digitgain);
	mutex_unlock(&dev->input_lock);

	return ret;
}

static long ov2680_s_exposure(struct v4l2_subdev *sd,
			      struct atomisp_exposure *exposure)
{
	u16 coarse_itg = exposure->integration_time[0];
	u16 analog_gain = exposure->gain[0];
	u16 digital_gain = exposure->gain[1];

	/* we should not accept the invalid value below */
	if (analog_gain == 0) {
		struct i2c_client *client = v4l2_get_subdevdata(sd);

		v4l2_err(client, "%s: invalid value\n", __func__);
		return -EINVAL;
	}

	// EXPOSURE CONTROL DISABLED FOR INITIAL CHECKIN, TUNING DOESN'T WORK
	return ov2680_set_exposure(sd, coarse_itg, analog_gain, digital_gain);
}

static long ov2680_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
{
	switch (cmd) {
	case ATOMISP_IOC_S_EXPOSURE:
		return ov2680_s_exposure(sd, arg);

	default:
		return -EINVAL;
	}
	return 0;
}

/* This returns the exposure time being used. This should only be used
 * for filling in EXIF data, not for actual image processing.
 */
static int ov2680_q_exposure(struct v4l2_subdev *sd, s32 *value)
{
	struct i2c_client *client = v4l2_get_subdevdata(sd);
	u16 reg_v, reg_v2;
	int ret;

	/* get exposure */
	ret = ov2680_read_reg(client, 1,
			      OV2680_EXPOSURE_L,
			      &reg_v);
	if (ret)
		goto err;

	ret = ov2680_read_reg(client, 1,
			      OV2680_EXPOSURE_M,
			      &reg_v2);
	if (ret)
		goto err;

	reg_v += reg_v2 << 8;
	ret = ov2680_read_reg(client, 1,
			      OV2680_EXPOSURE_H,
			      &reg_v2);
	if (ret)
		goto err;

	*value = reg_v + (((u32)reg_v2 << 16));
err:
	return ret;
}

static u32 ov2680_translate_bayer_order(enum atomisp_bayer_order code)
{
	switch (code) {
	case atomisp_bayer_order_rggb:
		return MEDIA_BUS_FMT_SRGGB10_1X10;
	case atomisp_bayer_order_grbg:
		return MEDIA_BUS_FMT_SGRBG10_1X10;
	case atomisp_bayer_order_bggr:
		return MEDIA_BUS_FMT_SBGGR10_1X10;
	case atomisp_bayer_order_gbrg:
		return MEDIA_BUS_FMT_SGBRG10_1X10;
	}
	return 0;
}

static int ov2680_v_flip(struct v4l2_subdev *sd, s32 value)
{
	struct ov2680_device *dev = to_ov2680_sensor(sd);
	struct camera_mipi_info *ov2680_info = NULL;
	struct i2c_client *client = v4l2_get_subdevdata(sd);
	int ret;
	u16 val;
	u8 index;

	dev_dbg(&client->dev, "@%s: value:%d\n", __func__, value);
	ret = ov2680_read_reg(client, 1, OV2680_FLIP_REG, &val);
	if (ret)
		return ret;
	if (value) {
		val |= OV2680_FLIP_MIRROR_BIT_ENABLE;
	} else {
		val &= ~OV2680_FLIP_MIRROR_BIT_ENABLE;
	}
	ret = ov2680_write_reg(client, 1,
			       OV2680_FLIP_REG, val);
	if (ret)
		return ret;
	index = (v_flag > 0 ? OV2680_FLIP_BIT : 0) | (h_flag > 0 ? OV2680_MIRROR_BIT :
		0);
	ov2680_info = v4l2_get_subdev_hostdata(sd);
	if (ov2680_info) {
		ov2680_info->raw_bayer_order = ov2680_bayer_order_mapping[index];
		dev->format.code = ov2680_translate_bayer_order(
				       ov2680_info->raw_bayer_order);
	}
	return ret;
}

static int ov2680_h_flip(struct v4l2_subdev *sd, s32 value)
{
	struct ov2680_device *dev = to_ov2680_sensor(sd);
	struct camera_mipi_info *ov2680_info = NULL;
	struct i2c_client *client = v4l2_get_subdevdata(sd);
	int ret;
	u16 val;
	u8 index;

	dev_dbg(&client->dev, "@%s: value:%d\n", __func__, value);

	ret = ov2680_read_reg(client, 1, OV2680_MIRROR_REG, &val);
	if (ret)
		return ret;
	if (value)
		val |= OV2680_FLIP_MIRROR_BIT_ENABLE;
	else
		val &= ~OV2680_FLIP_MIRROR_BIT_ENABLE;

	ret = ov2680_write_reg(client, 1,
			       OV2680_MIRROR_REG, val);
	if (ret)
		return ret;
	index = (v_flag > 0 ? OV2680_FLIP_BIT : 0) | (h_flag > 0 ? OV2680_MIRROR_BIT :
		0);
	ov2680_info = v4l2_get_subdev_hostdata(sd);
	if (ov2680_info) {
		ov2680_info->raw_bayer_order = ov2680_bayer_order_mapping[index];
		dev->format.code = ov2680_translate_bayer_order(
				       ov2680_info->raw_bayer_order);
	}
	return ret;
}

static int ov2680_s_ctrl(struct v4l2_ctrl *ctrl)
{
	struct ov2680_device *dev =
	    container_of(ctrl->handler, struct ov2680_device, ctrl_handler);
	struct i2c_client *client = v4l2_get_subdevdata(&dev->sd);
	int ret = 0;

	switch (ctrl->id) {
	case V4L2_CID_VFLIP:
		dev_dbg(&client->dev, "%s: CID_VFLIP:%d.\n",
			__func__, ctrl->val);
		ret = ov2680_v_flip(&dev->sd, ctrl->val);
		break;
	case V4L2_CID_HFLIP:
		dev_dbg(&client->dev, "%s: CID_HFLIP:%d.\n",
			__func__, ctrl->val);
		ret = ov2680_h_flip(&dev->sd, ctrl->val);
		break;
	default:
		ret = -EINVAL;
	}
	return ret;
}

static int ov2680_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
{
	struct ov2680_device *dev =
	    container_of(ctrl->handler, struct ov2680_device, ctrl_handler);
	int ret = 0;

	switch (ctrl->id) {
	case V4L2_CID_EXPOSURE_ABSOLUTE:
		ret = ov2680_q_exposure(&dev->sd, &ctrl->val);
		break;
	case V4L2_CID_FOCAL_ABSOLUTE:
		ret = ov2680_g_focal(&dev->sd, &ctrl->val);
		break;
	case V4L2_CID_FNUMBER_ABSOLUTE:
		ret = ov2680_g_fnumber(&dev->sd, &ctrl->val);
		break;
	case V4L2_CID_FNUMBER_RANGE:
		ret = ov2680_g_fnumber_range(&dev->sd, &ctrl->val);
		break;
	case V4L2_CID_BIN_FACTOR_HORZ:
		ret = ov2680_g_bin_factor_x(&dev->sd, &ctrl->val);
		break;
	case V4L2_CID_BIN_FACTOR_VERT:
		ret = ov2680_g_bin_factor_y(&dev->sd, &ctrl->val);
		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}

static const struct v4l2_ctrl_ops ctrl_ops = {
	.s_ctrl = ov2680_s_ctrl,
	.g_volatile_ctrl = ov2680_g_volatile_ctrl
};

static const struct v4l2_ctrl_config ov2680_controls[] = {
	{
		.ops = &ctrl_ops,
		.id = V4L2_CID_EXPOSURE_ABSOLUTE,
		.type = V4L2_CTRL_TYPE_INTEGER,
		.name = "exposure",
		.min = 0x0,
		.max = 0xffff,
		.step = 0x01,
		.def = 0x00,
		.flags = 0,
	},
	{
		.ops = &ctrl_ops,
		.id = V4L2_CID_FOCAL_ABSOLUTE,
		.type = V4L2_CTRL_TYPE_INTEGER,
		.name = "focal length",
		.min = OV2680_FOCAL_LENGTH_DEFAULT,
		.max = OV2680_FOCAL_LENGTH_DEFAULT,
		.step = 0x01,
		.def = OV2680_FOCAL_LENGTH_DEFAULT,
		.flags = 0,
	},
	{
		.ops = &ctrl_ops,
		.id = V4L2_CID_FNUMBER_ABSOLUTE,
		.type = V4L2_CTRL_TYPE_INTEGER,
		.name = "f-number",
		.min = OV2680_F_NUMBER_DEFAULT,
		.max = OV2680_F_NUMBER_DEFAULT,
		.step = 0x01,
		.def = OV2680_F_NUMBER_DEFAULT,
		.flags = 0,
	},
	{
		.ops = &ctrl_ops,
		.id = V4L2_CID_FNUMBER_RANGE,
		.type = V4L2_CTRL_TYPE_INTEGER,
		.name = "f-number range",
		.min = OV2680_F_NUMBER_RANGE,
		.max = OV2680_F_NUMBER_RANGE,
		.step = 0x01,
		.def = OV2680_F_NUMBER_RANGE,
		.flags = 0,
	},
	{
		.ops = &ctrl_ops,
		.id = V4L2_CID_BIN_FACTOR_HORZ,
		.type = V4L2_CTRL_TYPE_INTEGER,
		.name = "horizontal binning factor",
		.min = 0,
		.max = OV2680_BIN_FACTOR_MAX,
		.step = 1,
		.def = 0,
		.flags = 0,
	},
	{
		.ops = &ctrl_ops,
		.id = V4L2_CID_BIN_FACTOR_VERT,
		.type = V4L2_CTRL_TYPE_INTEGER,
		.name = "vertical binning factor",
		.min = 0,
		.max = OV2680_BIN_FACTOR_MAX,
		.step = 1,
		.def = 0,
		.flags = 0,
	},
	{
		.ops = &ctrl_ops,
		.id = V4L2_CID_VFLIP,
		.type = V4L2_CTRL_TYPE_BOOLEAN,
		.name = "Flip",
		.min = 0,
		.max = 1,
		.step = 1,
		.def = 0,
	},
	{
		.ops = &ctrl_ops,
		.id = V4L2_CID_HFLIP,
		.type = V4L2_CTRL_TYPE_BOOLEAN,
		.name = "Mirror",
		.min = 0,
		.max = 1,
		.step = 1,
		.def = 0,
	},
};

static int ov2680_init_registers(struct v4l2_subdev *sd)
{
	struct i2c_client *client = v4l2_get_subdevdata(sd);
	int ret;

	ret = ov2680_write_reg(client, 1, OV2680_SW_RESET, 0x01);
	ret |= ov2680_write_reg_array(client, ov2680_global_setting);

	return ret;
}

static int ov2680_init(struct v4l2_subdev *sd)
{
	struct ov2680_device *dev = to_ov2680_sensor(sd);

	int ret;

	mutex_lock(&dev->input_lock);

	/* restore settings */
	ov2680_res = ov2680_res_preview;
	N_RES = N_RES_PREVIEW;

	ret = ov2680_init_registers(sd);

	mutex_unlock(&dev->input_lock);

	return ret;
}

static int power_ctrl(struct v4l2_subdev *sd, bool flag)
{
	int ret = 0;
	struct ov2680_device *dev = to_ov2680_sensor(sd);
	struct i2c_client *client = v4l2_get_subdevdata(sd);

	if (!dev || !dev->platform_data)
		return -ENODEV;

	dev_dbg(&client->dev, "%s: %s", __func__, flag ? "on" : "off");

	if (flag) {
		ret |= dev->platform_data->v1p8_ctrl(sd, 1);
		ret |= dev->platform_data->v2p8_ctrl(sd, 1);
		usleep_range(10000, 15000);
	}

	if (!flag || ret) {
		ret |= dev->platform_data->v1p8_ctrl(sd, 0);
		ret |= dev->platform_data->v2p8_ctrl(sd, 0);
	}
	return ret;
}

static int gpio_ctrl(struct v4l2_subdev *sd, bool flag)
{
	int ret;
	struct ov2680_device *dev = to_ov2680_sensor(sd);

	if (!dev || !dev->platform_data)
		return -ENODEV;

	/* The OV2680 documents only one GPIO input (#XSHUTDN), but
	 * existing integrations often wire two (reset/power_down)
	 * because that is the way other sensors work.  There is no
	 * way to tell how it is wired internally, so existing
	 * firmwares expose both and we drive them symmetrically. */
	if (flag) {
		ret = dev->platform_data->gpio0_ctrl(sd, 1);
		usleep_range(10000, 15000);
		/* Ignore return from second gpio, it may not be there */
		dev->platform_data->gpio1_ctrl(sd, 1);
		usleep_range(10000, 15000);
	} else {
		dev->platform_data->gpio1_ctrl(sd, 0);
		ret = dev->platform_data->gpio0_ctrl(sd, 0);
	}
	return ret;
}

static int power_up(struct v4l2_subdev *sd)
{
	struct ov2680_device *dev = to_ov2680_sensor(sd);
	struct i2c_client *client = v4l2_get_subdevdata(sd);
	int ret;

	if (!dev->platform_data) {
		dev_err(&client->dev,
			"no camera_sensor_platform_data");
		return -ENODEV;
	}

	/* power control */
	ret = power_ctrl(sd, 1);
	if (ret)
		goto fail_power;

	/* according to DS, at least 5ms is needed between DOVDD and PWDN */
	usleep_range(5000, 6000);

	/* gpio ctrl */
	ret = gpio_ctrl(sd, 1);
	if (ret) {
		ret = gpio_ctrl(sd, 1);
		if (ret)
			goto fail_power;
	}

	/* flis clock control */
	ret = dev->platform_data->flisclk_ctrl(sd, 1);
	if (ret)
		goto fail_clk;

	/* according to DS, 20ms is needed between PWDN and i2c access */
	msleep(20);

	return 0;

fail_clk:
	gpio_ctrl(sd, 0);
fail_power:
	power_ctrl(sd, 0);
	dev_err(&client->dev, "sensor power-up failed\n");

	return ret;
}

static int power_down(struct v4l2_subdev *sd)
{
	struct ov2680_device *dev = to_ov2680_sensor(sd);
	struct i2c_client *client = v4l2_get_subdevdata(sd);
	int ret = 0;

	h_flag = 0;
	v_flag = 0;
	if (!dev->platform_data) {
		dev_err(&client->dev,
			"no camera_sensor_platform_data");
		return -ENODEV;
	}

	ret = dev->platform_data->flisclk_ctrl(sd, 0);
	if (ret)
		dev_err(&client->dev, "flisclk failed\n");

	/* gpio ctrl */
	ret = gpio_ctrl(sd, 0);
	if (ret) {
		ret = gpio_ctrl(sd, 0);
		if (ret)
			dev_err(&client->dev, "gpio failed 2\n");
	}

	/* power control */
	ret = power_ctrl(sd, 0);
	if (ret)
		dev_err(&client->dev, "vprog failed.\n");

	return ret;
}

static int ov2680_s_power(struct v4l2_subdev *sd, int on)
{
	int ret;

	if (on == 0) {
		ret = power_down(sd);
	} else {
		ret = power_up(sd);
		if (!ret)
			return ov2680_init(sd);
	}
	return ret;
}

/*
 * distance - calculate the distance
 * @res: resolution
 * @w: width
 * @h: height
 *
 * Get the gap between resolution and w/h.
 * res->width/height smaller than w/h wouldn't be considered.
 * Returns the value of gap or -1 if fail.
 */
#define LARGEST_ALLOWED_RATIO_MISMATCH 600
static int distance(struct ov2680_resolution *res, u32 w, u32 h)
{
	unsigned int w_ratio = (res->width << 13) / w;
	unsigned int h_ratio;
	int match;

	if (h == 0)
		return -1;
	h_ratio = (res->height << 13) / h;
	if (h_ratio == 0)
		return -1;
	match   = abs(((w_ratio << 13) / h_ratio) - 8192);

	if ((w_ratio < 8192) || (h_ratio < 8192)  ||
	    (match > LARGEST_ALLOWED_RATIO_MISMATCH))
		return -1;

	return w_ratio + h_ratio;
}

/* Return the nearest higher resolution index */
static int nearest_resolution_index(int w, int h)
{
	int i;
	int idx = -1;
	int dist;
	int min_dist = INT_MAX;
	struct ov2680_resolution *tmp_res = NULL;

	for (i = 0; i < N_RES; i++) {
		tmp_res = &ov2680_res[i];
		dist = distance(tmp_res, w, h);
		if (dist == -1)
			continue;
		if (dist < min_dist) {
			min_dist = dist;
			idx = i;
		}
	}

	return idx;
}

static int get_resolution_index(int w, int h)
{
	int i;

	for (i = 0; i < N_RES; i++) {
		if (w != ov2680_res[i].width)
			continue;
		if (h != ov2680_res[i].height)
			continue;

		return i;
	}

	return -1;
}

static int ov2680_set_fmt(struct v4l2_subdev *sd,
			  struct v4l2_subdev_pad_config *cfg,
			  struct v4l2_subdev_format *format)
{
	struct v4l2_mbus_framefmt *fmt = &format->format;
	struct ov2680_device *dev = to_ov2680_sensor(sd);
	struct i2c_client *client = v4l2_get_subdevdata(sd);
	struct camera_mipi_info *ov2680_info = NULL;
	int ret = 0;
	int idx = 0;

	dev_dbg(&client->dev, "%s: %s: pad: %d, fmt: %p\n",
		__func__,
		(format->which == V4L2_SUBDEV_FORMAT_TRY) ? "try" : "set",
		format->pad, fmt);

	if (format->pad)
		return -EINVAL;

	if (!fmt)
		return -EINVAL;

	ov2680_info = v4l2_get_subdev_hostdata(sd);
	if (!ov2680_info)
		return -EINVAL;

	mutex_lock(&dev->input_lock);
	idx = nearest_resolution_index(fmt->width, fmt->height);
	if (idx == -1) {
		/* return the largest resolution */
		fmt->width = ov2680_res[N_RES - 1].width;
		fmt->height = ov2680_res[N_RES - 1].height;
	} else {
		fmt->width = ov2680_res[idx].width;
		fmt->height = ov2680_res[idx].height;
	}
	fmt->code = MEDIA_BUS_FMT_SBGGR10_1X10;
	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
		cfg->try_fmt = *fmt;
		mutex_unlock(&dev->input_lock);
		return 0;
	}
	dev->fmt_idx = get_resolution_index(fmt->width, fmt->height);
	dev_dbg(&client->dev, "%s: Resolution index: %d\n",
		__func__, dev->fmt_idx);
	if (dev->fmt_idx == -1) {
		dev_err(&client->dev, "get resolution fail\n");
		mutex_unlock(&dev->input_lock);
		return -EINVAL;
	}
	dev_dbg(&client->dev, "%s: i=%d, w=%d, h=%d\n",
		__func__, dev->fmt_idx, fmt->width, fmt->height);

	// IS IT NEEDED?
	power_up(sd);
	ret = ov2680_write_reg_array(client, ov2680_res[dev->fmt_idx].regs);
	if (ret)
		dev_err(&client->dev,
			"ov2680 write resolution register err: %d\n", ret);

	ret = ov2680_get_intg_factor(client, ov2680_info,
				     &ov2680_res[dev->fmt_idx]);
	if (ret) {
		dev_err(&client->dev, "failed to get integration factor\n");
		goto err;
	}

	/*recall flip functions to avoid flip registers
	 * were overridden by default setting
	 */
	if (h_flag)
		ov2680_h_flip(sd, h_flag);
	if (v_flag)
		ov2680_v_flip(sd, v_flag);

	v4l2_info(client, "\n%s idx %d\n", __func__, dev->fmt_idx);

	/*ret = startup(sd);
	 * if (ret)
	 * dev_err(&client->dev, "ov2680 startup err\n");
	 */
err:
	mutex_unlock(&dev->input_lock);
	return ret;
}

static int ov2680_get_fmt(struct v4l2_subdev *sd,
			  struct v4l2_subdev_pad_config *cfg,
			  struct v4l2_subdev_format *format)
{
	struct v4l2_mbus_framefmt *fmt = &format->format;
	struct ov2680_device *dev = to_ov2680_sensor(sd);

	if (format->pad)
		return -EINVAL;

	if (!fmt)
		return -EINVAL;

	fmt->width = ov2680_res[dev->fmt_idx].width;
	fmt->height = ov2680_res[dev->fmt_idx].height;
	fmt->code = MEDIA_BUS_FMT_SBGGR10_1X10;

	return 0;
}

static int ov2680_detect(struct i2c_client *client)
{
	struct i2c_adapter *adapter = client->adapter;
	u16 high, low;
	int ret;
	u16 id;
	u8 revision;

	if (!i2c_check_functionality(adapter, I2C_FUNC_I2C))
		return -ENODEV;

	ret = ov2680_read_reg(client, 1,
			      OV2680_SC_CMMN_CHIP_ID_H, &high);
	if (ret) {
		dev_err(&client->dev, "sensor_id_high = 0x%x\n", high);
		return -ENODEV;
	}
	ret = ov2680_read_reg(client, 1,
			      OV2680_SC_CMMN_CHIP_ID_L, &low);
	id = ((((u16)high) << 8) | (u16)low);

	if (id != OV2680_ID) {
		dev_err(&client->dev, "sensor ID error 0x%x\n", id);
		return -ENODEV;
	}

	ret = ov2680_read_reg(client, 1,
			      OV2680_SC_CMMN_SUB_ID, &high);
	revision = (u8)high & 0x0f;

	dev_info(&client->dev, "sensor_revision id = 0x%x, rev= %d\n",
		 id, revision);

	return 0;
}

static int ov2680_s_stream(struct v4l2_subdev *sd, int enable)
{
	struct ov2680_device *dev = to_ov2680_sensor(sd);
	struct i2c_client *client = v4l2_get_subdevdata(sd);
	int ret;

	mutex_lock(&dev->input_lock);
	if (enable)
		dev_dbg(&client->dev, "ov2680_s_stream one\n");
	else
		dev_dbg(&client->dev, "ov2680_s_stream off\n");

	ret = ov2680_write_reg(client, 1, OV2680_SW_STREAM,
			       enable ? OV2680_START_STREAMING :
			       OV2680_STOP_STREAMING);
#if 0
	/* restore settings */
	ov2680_res = ov2680_res_preview;
	N_RES = N_RES_PREVIEW;
#endif

	//otp valid at stream on state
	//if(!dev->otp_data)
	//	dev->otp_data = ov2680_otp_read(sd);

	mutex_unlock(&dev->input_lock);

	return ret;
}

static int ov2680_s_config(struct v4l2_subdev *sd,
			   int irq, void *platform_data)
{
	struct ov2680_device *dev = to_ov2680_sensor(sd);
	struct i2c_client *client = v4l2_get_subdevdata(sd);
	int ret = 0;

	if (!platform_data)
		return -ENODEV;

	dev->platform_data =
	    (struct camera_sensor_platform_data *)platform_data;

	mutex_lock(&dev->input_lock);
	/* power off the module, then power on it in future
	 * as first power on by board may not fulfill the
	 * power on sequqence needed by the module
	 */
	ret = power_down(sd);
	if (ret) {
		dev_err(&client->dev, "ov2680 power-off err.\n");
		goto fail_power_off;
	}

	ret = power_up(sd);
	if (ret) {
		dev_err(&client->dev, "ov2680 power-up err.\n");
		goto fail_power_on;
	}

	ret = dev->platform_data->csi_cfg(sd, 1);
	if (ret)
		goto fail_csi_cfg;

	/* config & detect sensor */
	ret = ov2680_detect(client);
	if (ret) {
		dev_err(&client->dev, "ov2680_detect err s_config.\n");
		goto fail_csi_cfg;
	}

	/* turn off sensor, after probed */
	ret = power_down(sd);
	if (ret) {
		dev_err(&client->dev, "ov2680 power-off err.\n");
		goto fail_csi_cfg;
	}
	mutex_unlock(&dev->input_lock);

	return 0;

fail_csi_cfg:
	dev->platform_data->csi_cfg(sd, 0);
fail_power_on:
	power_down(sd);
	dev_err(&client->dev, "sensor power-gating failed\n");
fail_power_off:
	mutex_unlock(&dev->input_lock);
	return ret;
}

static int ov2680_g_frame_interval(struct v4l2_subdev *sd,
				   struct v4l2_subdev_frame_interval *interval)
{
	struct ov2680_device *dev = to_ov2680_sensor(sd);

	interval->interval.numerator = 1;
	interval->interval.denominator = ov2680_res[dev->fmt_idx].fps;

	return 0;
}

static int ov2680_enum_mbus_code(struct v4l2_subdev *sd,
				 struct v4l2_subdev_pad_config *cfg,
				 struct v4l2_subdev_mbus_code_enum *code)
{
	if (code->index >= MAX_FMTS)
		return -EINVAL;

	code->code = MEDIA_BUS_FMT_SBGGR10_1X10;
	return 0;
}

static int ov2680_enum_frame_size(struct v4l2_subdev *sd,
				  struct v4l2_subdev_pad_config *cfg,
				  struct v4l2_subdev_frame_size_enum *fse)
{
	int index = fse->index;

	if (index >= N_RES)
		return -EINVAL;

	fse->min_width = ov2680_res[index].width;
	fse->min_height = ov2680_res[index].height;
	fse->max_width = ov2680_res[index].width;
	fse->max_height = ov2680_res[index].height;

	return 0;
}

static int ov2680_g_skip_frames(struct v4l2_subdev *sd, u32 *frames)
{
	struct ov2680_device *dev = to_ov2680_sensor(sd);

	mutex_lock(&dev->input_lock);
	*frames = ov2680_res[dev->fmt_idx].skip_frames;
	mutex_unlock(&dev->input_lock);

	return 0;
}

static const struct v4l2_subdev_video_ops ov2680_video_ops = {
	.s_stream = ov2680_s_stream,
	.g_frame_interval = ov2680_g_frame_interval,
};

static const struct v4l2_subdev_sensor_ops ov2680_sensor_ops = {
	.g_skip_frames	= ov2680_g_skip_frames,
};

static const struct v4l2_subdev_core_ops ov2680_core_ops = {
	.s_power = ov2680_s_power,
	.ioctl = ov2680_ioctl,
};

static const struct v4l2_subdev_pad_ops ov2680_pad_ops = {
	.enum_mbus_code = ov2680_enum_mbus_code,
	.enum_frame_size = ov2680_enum_frame_size,
	.get_fmt = ov2680_get_fmt,
	.set_fmt = ov2680_set_fmt,
};

static const struct v4l2_subdev_ops ov2680_ops = {
	.core = &ov2680_core_ops,
	.video = &ov2680_video_ops,
	.pad = &ov2680_pad_ops,
	.sensor = &ov2680_sensor_ops,
};

static int ov2680_remove(struct i2c_client *client)
{
	struct v4l2_subdev *sd = i2c_get_clientdata(client);
	struct ov2680_device *dev = to_ov2680_sensor(sd);

	dev_dbg(&client->dev, "ov2680_remove...\n");

	dev->platform_data->csi_cfg(sd, 0);

	v4l2_device_unregister_subdev(sd);
	media_entity_cleanup(&dev->sd.entity);
	v4l2_ctrl_handler_free(&dev->ctrl_handler);
	kfree(dev);

	return 0;
}

static int ov2680_probe(struct i2c_client *client)
{
	struct ov2680_device *dev;
	int ret;
	void *pdata;
	unsigned int i;

	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
	if (!dev)
		return -ENOMEM;

	mutex_init(&dev->input_lock);

	dev->fmt_idx = 0;
	v4l2_i2c_subdev_init(&dev->sd, client, &ov2680_ops);

	pdata = gmin_camera_platform_data(&dev->sd,
					  ATOMISP_INPUT_FORMAT_RAW_10,
					  atomisp_bayer_order_bggr);
	if (!pdata) {
		ret = -EINVAL;
		goto out_free;
	}

	ret = ov2680_s_config(&dev->sd, client->irq, pdata);
	if (ret)
		goto out_free;

	ret = atomisp_register_i2c_module(&dev->sd, pdata, RAW_CAMERA);
	if (ret)
		goto out_free;

	dev->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
	dev->pad.flags = MEDIA_PAD_FL_SOURCE;
	dev->format.code = MEDIA_BUS_FMT_SBGGR10_1X10;
	dev->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
	ret =
	    v4l2_ctrl_handler_init(&dev->ctrl_handler,
				   ARRAY_SIZE(ov2680_controls));
	if (ret) {
		ov2680_remove(client);
		return ret;
	}

	for (i = 0; i < ARRAY_SIZE(ov2680_controls); i++)
		v4l2_ctrl_new_custom(&dev->ctrl_handler, &ov2680_controls[i],
				     NULL);

	if (dev->ctrl_handler.error) {
		ov2680_remove(client);
		return dev->ctrl_handler.error;
	}

	/* Use same lock for controls as for everything else. */
	dev->ctrl_handler.lock = &dev->input_lock;
	dev->sd.ctrl_handler = &dev->ctrl_handler;

	ret = media_entity_pads_init(&dev->sd.entity, 1, &dev->pad);
	if (ret) {
		ov2680_remove(client);
		dev_dbg(&client->dev, "+++ remove ov2680\n");
	}
	return ret;
out_free:
	dev_dbg(&client->dev, "+++ out free\n");
	v4l2_device_unregister_subdev(&dev->sd);
	kfree(dev);
	return ret;
}

static const struct acpi_device_id ov2680_acpi_match[] = {
	{"XXOV2680"},
	{"OVTI2680"},
	{},
};
MODULE_DEVICE_TABLE(acpi, ov2680_acpi_match);

static struct i2c_driver ov2680_driver = {
	.driver = {
		.name = "ov2680",
		.acpi_match_table = ov2680_acpi_match,
	},
	.probe_new = ov2680_probe,
	.remove = ov2680_remove,
};
module_i2c_driver(ov2680_driver);

MODULE_AUTHOR("Jacky Wang <Jacky_wang@ovt.com>");
MODULE_DESCRIPTION("A low-level driver for OmniVision 2680 sensors");
MODULE_LICENSE("GPL");