Contributors: 14
Author Tokens Token Proportion Commits Commit Proportion
Christian Gromm 4793 90.03% 63 75.00%
Andrey Shvetsov 447 8.40% 9 10.71%
Colin Ian King 43 0.81% 1 1.19%
Kees Cook 14 0.26% 1 1.19%
Adrian Remonda 6 0.11% 1 1.19%
Eric Salem 4 0.08% 1 1.19%
Sandhya Bankar 3 0.06% 1 1.19%
Amitoj Kaur Chawla 3 0.06% 1 1.19%
Ravi Eluri 3 0.06% 1 1.19%
Muhammad Falak R Wani 3 0.06% 1 1.19%
Alex Briskin 2 0.04% 1 1.19%
Greg Kroah-Hartman 1 0.02% 1 1.19%
Arvind Yadav 1 0.02% 1 1.19%
Ramiro Oliveira 1 0.02% 1 1.19%
Total 5324 84


// SPDX-License-Identifier: GPL-2.0
/*
 * usb.c - Hardware dependent module for USB
 *
 * Copyright (C) 2013-2015 Microchip Technology Germany II GmbH & Co. KG
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/usb.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/cdev.h>
#include <linux/device.h>
#include <linux/list.h>
#include <linux/completion.h>
#include <linux/mutex.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/workqueue.h>
#include <linux/sysfs.h>
#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/uaccess.h>
#include <linux/most.h>

#define USB_MTU			512
#define NO_ISOCHRONOUS_URB	0
#define AV_PACKETS_PER_XACT	2
#define BUF_CHAIN_SIZE		0xFFFF
#define MAX_NUM_ENDPOINTS	30
#define MAX_SUFFIX_LEN		10
#define MAX_STRING_LEN		80
#define MAX_BUF_SIZE		0xFFFF

#define USB_VENDOR_ID_SMSC	0x0424  /* VID: SMSC */
#define USB_DEV_ID_BRDG		0xC001  /* PID: USB Bridge */
#define USB_DEV_ID_OS81118	0xCF18  /* PID: USB OS81118 */
#define USB_DEV_ID_OS81119	0xCF19  /* PID: USB OS81119 */
#define USB_DEV_ID_OS81210	0xCF30  /* PID: USB OS81210 */
/* DRCI Addresses */
#define DRCI_REG_NI_STATE	0x0100
#define DRCI_REG_PACKET_BW	0x0101
#define DRCI_REG_NODE_ADDR	0x0102
#define DRCI_REG_NODE_POS	0x0103
#define DRCI_REG_MEP_FILTER	0x0140
#define DRCI_REG_HASH_TBL0	0x0141
#define DRCI_REG_HASH_TBL1	0x0142
#define DRCI_REG_HASH_TBL2	0x0143
#define DRCI_REG_HASH_TBL3	0x0144
#define DRCI_REG_HW_ADDR_HI	0x0145
#define DRCI_REG_HW_ADDR_MI	0x0146
#define DRCI_REG_HW_ADDR_LO	0x0147
#define DRCI_REG_BASE		0x1100
#define DRCI_COMMAND		0x02
#define DRCI_READ_REQ		0xA0
#define DRCI_WRITE_REQ		0xA1

/**
 * struct most_dci_obj - Direct Communication Interface
 * @kobj:position in sysfs
 * @usb_device: pointer to the usb device
 * @reg_addr: register address for arbitrary DCI access
 */
struct most_dci_obj {
	struct device dev;
	struct usb_device *usb_device;
	u16 reg_addr;
};

#define to_dci_obj(p) container_of(p, struct most_dci_obj, dev)

struct most_dev;

struct clear_hold_work {
	struct work_struct ws;
	struct most_dev *mdev;
	unsigned int channel;
	int pipe;
};

#define to_clear_hold_work(w) container_of(w, struct clear_hold_work, ws)

/**
 * struct most_dev - holds all usb interface specific stuff
 * @usb_device: pointer to usb device
 * @iface: hardware interface
 * @cap: channel capabilities
 * @conf: channel configuration
 * @dci: direct communication interface of hardware
 * @ep_address: endpoint address table
 * @description: device description
 * @suffix: suffix for channel name
 * @channel_lock: synchronize channel access
 * @padding_active: indicates channel uses padding
 * @is_channel_healthy: health status table of each channel
 * @busy_urbs: list of anchored items
 * @io_mutex: synchronize I/O with disconnect
 * @link_stat_timer: timer for link status reports
 * @poll_work_obj: work for polling link status
 */
struct most_dev {
	struct device dev;
	struct usb_device *usb_device;
	struct most_interface iface;
	struct most_channel_capability *cap;
	struct most_channel_config *conf;
	struct most_dci_obj *dci;
	u8 *ep_address;
	char description[MAX_STRING_LEN];
	char suffix[MAX_NUM_ENDPOINTS][MAX_SUFFIX_LEN];
	spinlock_t channel_lock[MAX_NUM_ENDPOINTS]; /* sync channel access */
	bool padding_active[MAX_NUM_ENDPOINTS];
	bool is_channel_healthy[MAX_NUM_ENDPOINTS];
	struct clear_hold_work clear_work[MAX_NUM_ENDPOINTS];
	struct usb_anchor *busy_urbs;
	struct mutex io_mutex;
	struct timer_list link_stat_timer;
	struct work_struct poll_work_obj;
	void (*on_netinfo)(struct most_interface *most_iface,
			   unsigned char link_state, unsigned char *addrs);
};

#define to_mdev(d) container_of(d, struct most_dev, iface)
#define to_mdev_from_dev(d) container_of(d, struct most_dev, dev)
#define to_mdev_from_work(w) container_of(w, struct most_dev, poll_work_obj)

static void wq_clear_halt(struct work_struct *wq_obj);
static void wq_netinfo(struct work_struct *wq_obj);

/**
 * drci_rd_reg - read a DCI register
 * @dev: usb device
 * @reg: register address
 * @buf: buffer to store data
 *
 * This is reads data from INIC's direct register communication interface
 */
static inline int drci_rd_reg(struct usb_device *dev, u16 reg, u16 *buf)
{
	int retval;
	__le16 *dma_buf;
	u8 req_type = USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE;

	dma_buf = kzalloc(sizeof(*dma_buf), GFP_KERNEL);
	if (!dma_buf)
		return -ENOMEM;

	retval = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
				 DRCI_READ_REQ, req_type,
				 0x0000,
				 reg, dma_buf, sizeof(*dma_buf), 5 * HZ);
	*buf = le16_to_cpu(*dma_buf);
	kfree(dma_buf);

	if (retval < 0)
		return retval;
	return 0;
}

/**
 * drci_wr_reg - write a DCI register
 * @dev: usb device
 * @reg: register address
 * @data: data to write
 *
 * This is writes data to INIC's direct register communication interface
 */
static inline int drci_wr_reg(struct usb_device *dev, u16 reg, u16 data)
{
	return usb_control_msg(dev,
			       usb_sndctrlpipe(dev, 0),
			       DRCI_WRITE_REQ,
			       USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
			       data,
			       reg,
			       NULL,
			       0,
			       5 * HZ);
}

static inline int start_sync_ep(struct usb_device *usb_dev, u16 ep)
{
	return drci_wr_reg(usb_dev, DRCI_REG_BASE + DRCI_COMMAND + ep * 16, 1);
}

/**
 * get_stream_frame_size - calculate frame size of current configuration
 * @dev: device structure
 * @cfg: channel configuration
 */
static unsigned int get_stream_frame_size(struct device *dev,
					  struct most_channel_config *cfg)
{
	unsigned int frame_size;
	unsigned int sub_size = cfg->subbuffer_size;

	if (!sub_size) {
		dev_warn(dev, "Misconfig: Subbuffer size zero.\n");
		return 0;
	}
	switch (cfg->data_type) {
	case MOST_CH_ISOC:
		frame_size = AV_PACKETS_PER_XACT * sub_size;
		break;
	case MOST_CH_SYNC:
		if (cfg->packets_per_xact == 0) {
			dev_warn(dev, "Misconfig: Packets per XACT zero\n");
			frame_size = 0;
		} else if (cfg->packets_per_xact == 0xFF) {
			frame_size = (USB_MTU / sub_size) * sub_size;
		} else {
			frame_size = cfg->packets_per_xact * sub_size;
		}
		break;
	default:
		dev_warn(dev, "Query frame size of non-streaming channel\n");
		frame_size = 0;
		break;
	}
	return frame_size;
}

/**
 * hdm_poison_channel - mark buffers of this channel as invalid
 * @iface: pointer to the interface
 * @channel: channel ID
 *
 * This unlinks all URBs submitted to the HCD,
 * calls the associated completion function of the core and removes
 * them from the list.
 *
 * Returns 0 on success or error code otherwise.
 */
static int hdm_poison_channel(struct most_interface *iface, int channel)
{
	struct most_dev *mdev = to_mdev(iface);
	unsigned long flags;
	spinlock_t *lock; /* temp. lock */

	if (channel < 0 || channel >= iface->num_channels) {
		dev_warn(&mdev->usb_device->dev, "Channel ID out of range.\n");
		return -ECHRNG;
	}

	lock = mdev->channel_lock + channel;
	spin_lock_irqsave(lock, flags);
	mdev->is_channel_healthy[channel] = false;
	spin_unlock_irqrestore(lock, flags);

	cancel_work_sync(&mdev->clear_work[channel].ws);

	mutex_lock(&mdev->io_mutex);
	usb_kill_anchored_urbs(&mdev->busy_urbs[channel]);
	if (mdev->padding_active[channel])
		mdev->padding_active[channel] = false;

	if (mdev->conf[channel].data_type == MOST_CH_ASYNC) {
		del_timer_sync(&mdev->link_stat_timer);
		cancel_work_sync(&mdev->poll_work_obj);
	}
	mutex_unlock(&mdev->io_mutex);
	return 0;
}

/**
 * hdm_add_padding - add padding bytes
 * @mdev: most device
 * @channel: channel ID
 * @mbo: buffer object
 *
 * This inserts the INIC hardware specific padding bytes into a streaming
 * channel's buffer
 */
static int hdm_add_padding(struct most_dev *mdev, int channel, struct mbo *mbo)
{
	struct most_channel_config *conf = &mdev->conf[channel];
	unsigned int frame_size = get_stream_frame_size(&mdev->dev, conf);
	unsigned int j, num_frames;

	if (!frame_size)
		return -EINVAL;
	num_frames = mbo->buffer_length / frame_size;

	if (num_frames < 1) {
		dev_err(&mdev->usb_device->dev,
			"Missed minimal transfer unit.\n");
		return -EINVAL;
	}

	for (j = num_frames - 1; j > 0; j--)
		memmove(mbo->virt_address + j * USB_MTU,
			mbo->virt_address + j * frame_size,
			frame_size);
	mbo->buffer_length = num_frames * USB_MTU;
	return 0;
}

/**
 * hdm_remove_padding - remove padding bytes
 * @mdev: most device
 * @channel: channel ID
 * @mbo: buffer object
 *
 * This takes the INIC hardware specific padding bytes off a streaming
 * channel's buffer.
 */
static int hdm_remove_padding(struct most_dev *mdev, int channel,
			      struct mbo *mbo)
{
	struct most_channel_config *const conf = &mdev->conf[channel];
	unsigned int frame_size = get_stream_frame_size(&mdev->dev, conf);
	unsigned int j, num_frames;

	if (!frame_size)
		return -EINVAL;
	num_frames = mbo->processed_length / USB_MTU;

	for (j = 1; j < num_frames; j++)
		memmove(mbo->virt_address + frame_size * j,
			mbo->virt_address + USB_MTU * j,
			frame_size);

	mbo->processed_length = frame_size * num_frames;
	return 0;
}

/**
 * hdm_write_completion - completion function for submitted Tx URBs
 * @urb: the URB that has been completed
 *
 * This checks the status of the completed URB. In case the URB has been
 * unlinked before, it is immediately freed. On any other error the MBO
 * transfer flag is set. On success it frees allocated resources and calls
 * the completion function.
 *
 * Context: interrupt!
 */
static void hdm_write_completion(struct urb *urb)
{
	struct mbo *mbo = urb->context;
	struct most_dev *mdev = to_mdev(mbo->ifp);
	unsigned int channel = mbo->hdm_channel_id;
	spinlock_t *lock = mdev->channel_lock + channel;
	unsigned long flags;

	spin_lock_irqsave(lock, flags);

	mbo->processed_length = 0;
	mbo->status = MBO_E_INVAL;
	if (likely(mdev->is_channel_healthy[channel])) {
		switch (urb->status) {
		case 0:
		case -ESHUTDOWN:
			mbo->processed_length = urb->actual_length;
			mbo->status = MBO_SUCCESS;
			break;
		case -EPIPE:
			dev_warn(&mdev->usb_device->dev,
				 "Broken pipe on ep%02x\n",
				 mdev->ep_address[channel]);
			mdev->is_channel_healthy[channel] = false;
			mdev->clear_work[channel].pipe = urb->pipe;
			schedule_work(&mdev->clear_work[channel].ws);
			break;
		case -ENODEV:
		case -EPROTO:
			mbo->status = MBO_E_CLOSE;
			break;
		}
	}

	spin_unlock_irqrestore(lock, flags);

	if (likely(mbo->complete))
		mbo->complete(mbo);
	usb_free_urb(urb);
}

/**
 * hdm_read_completion - completion function for submitted Rx URBs
 * @urb: the URB that has been completed
 *
 * This checks the status of the completed URB. In case the URB has been
 * unlinked before it is immediately freed. On any other error the MBO transfer
 * flag is set. On success it frees allocated resources, removes
 * padding bytes -if necessary- and calls the completion function.
 *
 * Context: interrupt!
 */
static void hdm_read_completion(struct urb *urb)
{
	struct mbo *mbo = urb->context;
	struct most_dev *mdev = to_mdev(mbo->ifp);
	unsigned int channel = mbo->hdm_channel_id;
	struct device *dev = &mdev->usb_device->dev;
	spinlock_t *lock = mdev->channel_lock + channel;
	unsigned long flags;

	spin_lock_irqsave(lock, flags);

	mbo->processed_length = 0;
	mbo->status = MBO_E_INVAL;
	if (likely(mdev->is_channel_healthy[channel])) {
		switch (urb->status) {
		case 0:
		case -ESHUTDOWN:
			mbo->processed_length = urb->actual_length;
			mbo->status = MBO_SUCCESS;
			if (mdev->padding_active[channel] &&
			    hdm_remove_padding(mdev, channel, mbo)) {
				mbo->processed_length = 0;
				mbo->status = MBO_E_INVAL;
			}
			break;
		case -EPIPE:
			dev_warn(dev, "Broken pipe on ep%02x\n",
				 mdev->ep_address[channel]);
			mdev->is_channel_healthy[channel] = false;
			mdev->clear_work[channel].pipe = urb->pipe;
			schedule_work(&mdev->clear_work[channel].ws);
			break;
		case -ENODEV:
		case -EPROTO:
			mbo->status = MBO_E_CLOSE;
			break;
		case -EOVERFLOW:
			dev_warn(dev, "Babble on ep%02x\n",
				 mdev->ep_address[channel]);
			break;
		}
	}

	spin_unlock_irqrestore(lock, flags);

	if (likely(mbo->complete))
		mbo->complete(mbo);
	usb_free_urb(urb);
}

/**
 * hdm_enqueue - receive a buffer to be used for data transfer
 * @iface: interface to enqueue to
 * @channel: ID of the channel
 * @mbo: pointer to the buffer object
 *
 * This allocates a new URB and fills it according to the channel
 * that is being used for transmission of data. Before the URB is
 * submitted it is stored in the private anchor list.
 *
 * Returns 0 on success. On any error the URB is freed and a error code
 * is returned.
 *
 * Context: Could in _some_ cases be interrupt!
 */
static int hdm_enqueue(struct most_interface *iface, int channel,
		       struct mbo *mbo)
{
	struct most_dev *mdev = to_mdev(iface);
	struct most_channel_config *conf;
	int retval = 0;
	struct urb *urb;
	unsigned long length;
	void *virt_address;

	if (!mbo)
		return -EINVAL;
	if (iface->num_channels <= channel || channel < 0)
		return -ECHRNG;

	urb = usb_alloc_urb(NO_ISOCHRONOUS_URB, GFP_KERNEL);
	if (!urb)
		return -ENOMEM;

	conf = &mdev->conf[channel];

	mutex_lock(&mdev->io_mutex);
	if (!mdev->usb_device) {
		retval = -ENODEV;
		goto err_free_urb;
	}

	if ((conf->direction & MOST_CH_TX) && mdev->padding_active[channel] &&
	    hdm_add_padding(mdev, channel, mbo)) {
		retval = -EINVAL;
		goto err_free_urb;
	}

	urb->transfer_dma = mbo->bus_address;
	virt_address = mbo->virt_address;
	length = mbo->buffer_length;

	if (conf->direction & MOST_CH_TX) {
		usb_fill_bulk_urb(urb, mdev->usb_device,
				  usb_sndbulkpipe(mdev->usb_device,
						  mdev->ep_address[channel]),
				  virt_address,
				  length,
				  hdm_write_completion,
				  mbo);
		if (conf->data_type != MOST_CH_ISOC &&
		    conf->data_type != MOST_CH_SYNC)
			urb->transfer_flags |= URB_ZERO_PACKET;
	} else {
		usb_fill_bulk_urb(urb, mdev->usb_device,
				  usb_rcvbulkpipe(mdev->usb_device,
						  mdev->ep_address[channel]),
				  virt_address,
				  length + conf->extra_len,
				  hdm_read_completion,
				  mbo);
	}
	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;

	usb_anchor_urb(urb, &mdev->busy_urbs[channel]);

	retval = usb_submit_urb(urb, GFP_KERNEL);
	if (retval) {
		dev_err(&mdev->usb_device->dev,
			"URB submit failed with error %d.\n", retval);
		goto err_unanchor_urb;
	}
	mutex_unlock(&mdev->io_mutex);
	return 0;

err_unanchor_urb:
	usb_unanchor_urb(urb);
err_free_urb:
	usb_free_urb(urb);
	mutex_unlock(&mdev->io_mutex);
	return retval;
}

static void *hdm_dma_alloc(struct mbo *mbo, u32 size)
{
	struct most_dev *mdev = to_mdev(mbo->ifp);

	return usb_alloc_coherent(mdev->usb_device, size, GFP_KERNEL,
				  &mbo->bus_address);
}

static void hdm_dma_free(struct mbo *mbo, u32 size)
{
	struct most_dev *mdev = to_mdev(mbo->ifp);

	usb_free_coherent(mdev->usb_device, size, mbo->virt_address,
			  mbo->bus_address);
}

/**
 * hdm_configure_channel - receive channel configuration from core
 * @iface: interface
 * @channel: channel ID
 * @conf: structure that holds the configuration information
 *
 * The attached network interface controller (NIC) supports a padding mode
 * to avoid short packets on USB, hence increasing the performance due to a
 * lower interrupt load. This mode is default for synchronous data and can
 * be switched on for isochronous data. In case padding is active the
 * driver needs to know the frame size of the payload in order to calculate
 * the number of bytes it needs to pad when transmitting or to cut off when
 * receiving data.
 *
 */
static int hdm_configure_channel(struct most_interface *iface, int channel,
				 struct most_channel_config *conf)
{
	unsigned int num_frames;
	unsigned int frame_size;
	struct most_dev *mdev = to_mdev(iface);
	struct device *dev = &mdev->usb_device->dev;

	if (!conf) {
		dev_err(dev, "Bad config pointer.\n");
		return -EINVAL;
	}
	if (channel < 0 || channel >= iface->num_channels) {
		dev_err(dev, "Channel ID out of range.\n");
		return -EINVAL;
	}

	mdev->is_channel_healthy[channel] = true;
	mdev->clear_work[channel].channel = channel;
	mdev->clear_work[channel].mdev = mdev;
	INIT_WORK(&mdev->clear_work[channel].ws, wq_clear_halt);

	if (!conf->num_buffers || !conf->buffer_size) {
		dev_err(dev, "Misconfig: buffer size or #buffers zero.\n");
		return -EINVAL;
	}

	if (conf->data_type != MOST_CH_SYNC &&
	    !(conf->data_type == MOST_CH_ISOC &&
	      conf->packets_per_xact != 0xFF)) {
		mdev->padding_active[channel] = false;
		/*
		 * Since the NIC's padding mode is not going to be
		 * used, we can skip the frame size calculations and
		 * move directly on to exit.
		 */
		goto exit;
	}

	mdev->padding_active[channel] = true;

	frame_size = get_stream_frame_size(&mdev->dev, conf);
	if (frame_size == 0 || frame_size > USB_MTU) {
		dev_warn(dev, "Misconfig: frame size wrong\n");
		return -EINVAL;
	}

	num_frames = conf->buffer_size / frame_size;

	if (conf->buffer_size % frame_size) {
		u16 old_size = conf->buffer_size;

		conf->buffer_size = num_frames * frame_size;
		dev_warn(dev, "%s: fixed buffer size (%d -> %d)\n",
			 mdev->suffix[channel], old_size, conf->buffer_size);
	}

	/* calculate extra length to comply w/ HW padding */
	conf->extra_len = num_frames * (USB_MTU - frame_size);

exit:
	mdev->conf[channel] = *conf;
	if (conf->data_type == MOST_CH_ASYNC) {
		u16 ep = mdev->ep_address[channel];

		if (start_sync_ep(mdev->usb_device, ep) < 0)
			dev_warn(dev, "sync for ep%02x failed", ep);
	}
	return 0;
}

/**
 * hdm_request_netinfo - request network information
 * @iface: pointer to interface
 * @channel: channel ID
 *
 * This is used as trigger to set up the link status timer that
 * polls for the NI state of the INIC every 2 seconds.
 *
 */
static void hdm_request_netinfo(struct most_interface *iface, int channel,
				void (*on_netinfo)(struct most_interface *,
						   unsigned char,
						   unsigned char *))
{
	struct most_dev *mdev = to_mdev(iface);

	mdev->on_netinfo = on_netinfo;
	if (!on_netinfo)
		return;

	mdev->link_stat_timer.expires = jiffies + HZ;
	mod_timer(&mdev->link_stat_timer, mdev->link_stat_timer.expires);
}

/**
 * link_stat_timer_handler - schedule work obtaining mac address and link status
 * @data: pointer to USB device instance
 *
 * The handler runs in interrupt context. That's why we need to defer the
 * tasks to a work queue.
 */
static void link_stat_timer_handler(struct timer_list *t)
{
	struct most_dev *mdev = from_timer(mdev, t, link_stat_timer);

	schedule_work(&mdev->poll_work_obj);
	mdev->link_stat_timer.expires = jiffies + (2 * HZ);
	add_timer(&mdev->link_stat_timer);
}

/**
 * wq_netinfo - work queue function to deliver latest networking information
 * @wq_obj: object that holds data for our deferred work to do
 *
 * This retrieves the network interface status of the USB INIC
 */
static void wq_netinfo(struct work_struct *wq_obj)
{
	struct most_dev *mdev = to_mdev_from_work(wq_obj);
	struct usb_device *usb_device = mdev->usb_device;
	struct device *dev = &usb_device->dev;
	u16 hi, mi, lo, link;
	u8 hw_addr[6];

	if (drci_rd_reg(usb_device, DRCI_REG_HW_ADDR_HI, &hi)) {
		dev_err(dev, "Vendor request 'hw_addr_hi' failed\n");
		return;
	}

	if (drci_rd_reg(usb_device, DRCI_REG_HW_ADDR_MI, &mi)) {
		dev_err(dev, "Vendor request 'hw_addr_mid' failed\n");
		return;
	}

	if (drci_rd_reg(usb_device, DRCI_REG_HW_ADDR_LO, &lo)) {
		dev_err(dev, "Vendor request 'hw_addr_low' failed\n");
		return;
	}

	if (drci_rd_reg(usb_device, DRCI_REG_NI_STATE, &link)) {
		dev_err(dev, "Vendor request 'link status' failed\n");
		return;
	}

	hw_addr[0] = hi >> 8;
	hw_addr[1] = hi;
	hw_addr[2] = mi >> 8;
	hw_addr[3] = mi;
	hw_addr[4] = lo >> 8;
	hw_addr[5] = lo;

	if (mdev->on_netinfo)
		mdev->on_netinfo(&mdev->iface, link, hw_addr);
}

/**
 * wq_clear_halt - work queue function
 * @wq_obj: work_struct object to execute
 *
 * This sends a clear_halt to the given USB pipe.
 */
static void wq_clear_halt(struct work_struct *wq_obj)
{
	struct clear_hold_work *clear_work = to_clear_hold_work(wq_obj);
	struct most_dev *mdev = clear_work->mdev;
	unsigned int channel = clear_work->channel;
	int pipe = clear_work->pipe;
	int snd_pipe;
	int peer;

	mutex_lock(&mdev->io_mutex);
	most_stop_enqueue(&mdev->iface, channel);
	usb_kill_anchored_urbs(&mdev->busy_urbs[channel]);
	if (usb_clear_halt(mdev->usb_device, pipe))
		dev_warn(&mdev->usb_device->dev, "Failed to reset endpoint.\n");

	/* If the functional Stall condition has been set on an
	 * asynchronous rx channel, we need to clear the tx channel
	 * too, since the hardware runs its clean-up sequence on both
	 * channels, as they are physically one on the network.
	 *
	 * The USB interface that exposes the asynchronous channels
	 * contains always two endpoints, and two only.
	 */
	if (mdev->conf[channel].data_type == MOST_CH_ASYNC &&
	    mdev->conf[channel].direction == MOST_CH_RX) {
		if (channel == 0)
			peer = 1;
		else
			peer = 0;
		snd_pipe = usb_sndbulkpipe(mdev->usb_device,
					   mdev->ep_address[peer]);
		usb_clear_halt(mdev->usb_device, snd_pipe);
	}
	mdev->is_channel_healthy[channel] = true;
	most_resume_enqueue(&mdev->iface, channel);
	mutex_unlock(&mdev->io_mutex);
}

/**
 * hdm_usb_fops - file operation table for USB driver
 */
static const struct file_operations hdm_usb_fops = {
	.owner = THIS_MODULE,
};

/**
 * usb_device_id - ID table for HCD device probing
 */
static const struct usb_device_id usbid[] = {
	{ USB_DEVICE(USB_VENDOR_ID_SMSC, USB_DEV_ID_BRDG), },
	{ USB_DEVICE(USB_VENDOR_ID_SMSC, USB_DEV_ID_OS81118), },
	{ USB_DEVICE(USB_VENDOR_ID_SMSC, USB_DEV_ID_OS81119), },
	{ USB_DEVICE(USB_VENDOR_ID_SMSC, USB_DEV_ID_OS81210), },
	{ } /* Terminating entry */
};

struct regs {
	const char *name;
	u16 reg;
};

static const struct regs ro_regs[] = {
	{ "ni_state", DRCI_REG_NI_STATE },
	{ "packet_bandwidth", DRCI_REG_PACKET_BW },
	{ "node_address", DRCI_REG_NODE_ADDR },
	{ "node_position", DRCI_REG_NODE_POS },
};

static const struct regs rw_regs[] = {
	{ "mep_filter", DRCI_REG_MEP_FILTER },
	{ "mep_hash0", DRCI_REG_HASH_TBL0 },
	{ "mep_hash1", DRCI_REG_HASH_TBL1 },
	{ "mep_hash2", DRCI_REG_HASH_TBL2 },
	{ "mep_hash3", DRCI_REG_HASH_TBL3 },
	{ "mep_eui48_hi", DRCI_REG_HW_ADDR_HI },
	{ "mep_eui48_mi", DRCI_REG_HW_ADDR_MI },
	{ "mep_eui48_lo", DRCI_REG_HW_ADDR_LO },
};

static int get_stat_reg_addr(const struct regs *regs, int size,
			     const char *name, u16 *reg_addr)
{
	int i;

	for (i = 0; i < size; i++) {
		if (sysfs_streq(name, regs[i].name)) {
			*reg_addr = regs[i].reg;
			return 0;
		}
	}
	return -EINVAL;
}

#define get_static_reg_addr(regs, name, reg_addr) \
	get_stat_reg_addr(regs, ARRAY_SIZE(regs), name, reg_addr)

static ssize_t value_show(struct device *dev, struct device_attribute *attr,
			  char *buf)
{
	const char *name = attr->attr.name;
	struct most_dci_obj *dci_obj = to_dci_obj(dev);
	u16 val;
	u16 reg_addr;
	int err;

	if (sysfs_streq(name, "arb_address"))
		return snprintf(buf, PAGE_SIZE, "%04x\n", dci_obj->reg_addr);

	if (sysfs_streq(name, "arb_value"))
		reg_addr = dci_obj->reg_addr;
	else if (get_static_reg_addr(ro_regs, name, &reg_addr) &&
		 get_static_reg_addr(rw_regs, name, &reg_addr))
		return -EINVAL;

	err = drci_rd_reg(dci_obj->usb_device, reg_addr, &val);
	if (err < 0)
		return err;

	return snprintf(buf, PAGE_SIZE, "%04x\n", val);
}

static ssize_t value_store(struct device *dev, struct device_attribute *attr,
			   const char *buf, size_t count)
{
	u16 val;
	u16 reg_addr;
	const char *name = attr->attr.name;
	struct most_dci_obj *dci_obj = to_dci_obj(dev);
	struct usb_device *usb_dev = dci_obj->usb_device;
	int err;

	err = kstrtou16(buf, 16, &val);
	if (err)
		return err;

	if (sysfs_streq(name, "arb_address")) {
		dci_obj->reg_addr = val;
		return count;
	}

	if (sysfs_streq(name, "arb_value"))
		err = drci_wr_reg(usb_dev, dci_obj->reg_addr, val);
	else if (sysfs_streq(name, "sync_ep"))
		err = start_sync_ep(usb_dev, val);
	else if (!get_static_reg_addr(rw_regs, name, &reg_addr))
		err = drci_wr_reg(usb_dev, reg_addr, val);
	else
		return -EINVAL;

	if (err < 0)
		return err;

	return count;
}

static DEVICE_ATTR(ni_state, 0444, value_show, NULL);
static DEVICE_ATTR(packet_bandwidth, 0444, value_show, NULL);
static DEVICE_ATTR(node_address, 0444, value_show, NULL);
static DEVICE_ATTR(node_position, 0444, value_show, NULL);
static DEVICE_ATTR(sync_ep, 0200, NULL, value_store);
static DEVICE_ATTR(mep_filter, 0644, value_show, value_store);
static DEVICE_ATTR(mep_hash0, 0644, value_show, value_store);
static DEVICE_ATTR(mep_hash1, 0644, value_show, value_store);
static DEVICE_ATTR(mep_hash2, 0644, value_show, value_store);
static DEVICE_ATTR(mep_hash3, 0644, value_show, value_store);
static DEVICE_ATTR(mep_eui48_hi, 0644, value_show, value_store);
static DEVICE_ATTR(mep_eui48_mi, 0644, value_show, value_store);
static DEVICE_ATTR(mep_eui48_lo, 0644, value_show, value_store);
static DEVICE_ATTR(arb_address, 0644, value_show, value_store);
static DEVICE_ATTR(arb_value, 0644, value_show, value_store);

static struct attribute *dci_attrs[] = {
	&dev_attr_ni_state.attr,
	&dev_attr_packet_bandwidth.attr,
	&dev_attr_node_address.attr,
	&dev_attr_node_position.attr,
	&dev_attr_sync_ep.attr,
	&dev_attr_mep_filter.attr,
	&dev_attr_mep_hash0.attr,
	&dev_attr_mep_hash1.attr,
	&dev_attr_mep_hash2.attr,
	&dev_attr_mep_hash3.attr,
	&dev_attr_mep_eui48_hi.attr,
	&dev_attr_mep_eui48_mi.attr,
	&dev_attr_mep_eui48_lo.attr,
	&dev_attr_arb_address.attr,
	&dev_attr_arb_value.attr,
	NULL,
};

ATTRIBUTE_GROUPS(dci);

static void release_dci(struct device *dev)
{
	struct most_dci_obj *dci = to_dci_obj(dev);

	put_device(dev->parent);
	kfree(dci);
}

static void release_mdev(struct device *dev)
{
	struct most_dev *mdev = to_mdev_from_dev(dev);

	kfree(mdev);
}
/**
 * hdm_probe - probe function of USB device driver
 * @interface: Interface of the attached USB device
 * @id: Pointer to the USB ID table.
 *
 * This allocates and initializes the device instance, adds the new
 * entry to the internal list, scans the USB descriptors and registers
 * the interface with the core.
 * Additionally, the DCI objects are created and the hardware is sync'd.
 *
 * Return 0 on success. In case of an error a negative number is returned.
 */
static int
hdm_probe(struct usb_interface *interface, const struct usb_device_id *id)
{
	struct usb_host_interface *usb_iface_desc = interface->cur_altsetting;
	struct usb_device *usb_dev = interface_to_usbdev(interface);
	struct device *dev = &usb_dev->dev;
	struct most_dev *mdev;
	unsigned int i;
	unsigned int num_endpoints;
	struct most_channel_capability *tmp_cap;
	struct usb_endpoint_descriptor *ep_desc;
	int ret = -ENOMEM;

	mdev = kzalloc(sizeof(*mdev), GFP_KERNEL);
	if (!mdev)
		return -ENOMEM;

	usb_set_intfdata(interface, mdev);
	num_endpoints = usb_iface_desc->desc.bNumEndpoints;
	if (num_endpoints > MAX_NUM_ENDPOINTS) {
		kfree(mdev);
		return -EINVAL;
	}
	mutex_init(&mdev->io_mutex);
	INIT_WORK(&mdev->poll_work_obj, wq_netinfo);
	timer_setup(&mdev->link_stat_timer, link_stat_timer_handler, 0);

	mdev->usb_device = usb_dev;
	mdev->link_stat_timer.expires = jiffies + (2 * HZ);

	mdev->iface.mod = hdm_usb_fops.owner;
	mdev->iface.dev = &mdev->dev;
	mdev->iface.driver_dev = &interface->dev;
	mdev->iface.interface = ITYPE_USB;
	mdev->iface.configure = hdm_configure_channel;
	mdev->iface.request_netinfo = hdm_request_netinfo;
	mdev->iface.enqueue = hdm_enqueue;
	mdev->iface.poison_channel = hdm_poison_channel;
	mdev->iface.dma_alloc = hdm_dma_alloc;
	mdev->iface.dma_free = hdm_dma_free;
	mdev->iface.description = mdev->description;
	mdev->iface.num_channels = num_endpoints;

	snprintf(mdev->description, sizeof(mdev->description),
		 "%d-%s:%d.%d",
		 usb_dev->bus->busnum,
		 usb_dev->devpath,
		 usb_dev->config->desc.bConfigurationValue,
		 usb_iface_desc->desc.bInterfaceNumber);

	mdev->dev.init_name = mdev->description;
	mdev->dev.parent = &interface->dev;
	mdev->dev.release = release_mdev;
	mdev->conf = kcalloc(num_endpoints, sizeof(*mdev->conf), GFP_KERNEL);
	if (!mdev->conf)
		goto err_free_mdev;

	mdev->cap = kcalloc(num_endpoints, sizeof(*mdev->cap), GFP_KERNEL);
	if (!mdev->cap)
		goto err_free_conf;

	mdev->iface.channel_vector = mdev->cap;
	mdev->ep_address =
		kcalloc(num_endpoints, sizeof(*mdev->ep_address), GFP_KERNEL);
	if (!mdev->ep_address)
		goto err_free_cap;

	mdev->busy_urbs =
		kcalloc(num_endpoints, sizeof(*mdev->busy_urbs), GFP_KERNEL);
	if (!mdev->busy_urbs)
		goto err_free_ep_address;

	tmp_cap = mdev->cap;
	for (i = 0; i < num_endpoints; i++) {
		ep_desc = &usb_iface_desc->endpoint[i].desc;
		mdev->ep_address[i] = ep_desc->bEndpointAddress;
		mdev->padding_active[i] = false;
		mdev->is_channel_healthy[i] = true;

		snprintf(&mdev->suffix[i][0], MAX_SUFFIX_LEN, "ep%02x",
			 mdev->ep_address[i]);

		tmp_cap->name_suffix = &mdev->suffix[i][0];
		tmp_cap->buffer_size_packet = MAX_BUF_SIZE;
		tmp_cap->buffer_size_streaming = MAX_BUF_SIZE;
		tmp_cap->num_buffers_packet = BUF_CHAIN_SIZE;
		tmp_cap->num_buffers_streaming = BUF_CHAIN_SIZE;
		tmp_cap->data_type = MOST_CH_CONTROL | MOST_CH_ASYNC |
				     MOST_CH_ISOC | MOST_CH_SYNC;
		if (usb_endpoint_dir_in(ep_desc))
			tmp_cap->direction = MOST_CH_RX;
		else
			tmp_cap->direction = MOST_CH_TX;
		tmp_cap++;
		init_usb_anchor(&mdev->busy_urbs[i]);
		spin_lock_init(&mdev->channel_lock[i]);
	}
	dev_dbg(dev, "claimed gadget: Vendor=%4.4x ProdID=%4.4x Bus=%02x Device=%02x\n",
		le16_to_cpu(usb_dev->descriptor.idVendor),
		le16_to_cpu(usb_dev->descriptor.idProduct),
		usb_dev->bus->busnum,
		usb_dev->devnum);

	dev_dbg(dev, "device path: /sys/bus/usb/devices/%d-%s:%d.%d\n",
		usb_dev->bus->busnum,
		usb_dev->devpath,
		usb_dev->config->desc.bConfigurationValue,
		usb_iface_desc->desc.bInterfaceNumber);

	ret = most_register_interface(&mdev->iface);
	if (ret)
		goto err_free_busy_urbs;

	mutex_lock(&mdev->io_mutex);
	if (le16_to_cpu(usb_dev->descriptor.idProduct) == USB_DEV_ID_OS81118 ||
	    le16_to_cpu(usb_dev->descriptor.idProduct) == USB_DEV_ID_OS81119 ||
	    le16_to_cpu(usb_dev->descriptor.idProduct) == USB_DEV_ID_OS81210) {
		mdev->dci = kzalloc(sizeof(*mdev->dci), GFP_KERNEL);
		if (!mdev->dci) {
			mutex_unlock(&mdev->io_mutex);
			most_deregister_interface(&mdev->iface);
			ret = -ENOMEM;
			goto err_free_busy_urbs;
		}

		mdev->dci->dev.init_name = "dci";
		mdev->dci->dev.parent = get_device(mdev->iface.dev);
		mdev->dci->dev.groups = dci_groups;
		mdev->dci->dev.release = release_dci;
		if (device_register(&mdev->dci->dev)) {
			mutex_unlock(&mdev->io_mutex);
			most_deregister_interface(&mdev->iface);
			ret = -ENOMEM;
			goto err_free_dci;
		}
		mdev->dci->usb_device = mdev->usb_device;
	}
	mutex_unlock(&mdev->io_mutex);
	return 0;
err_free_dci:
	put_device(&mdev->dci->dev);
err_free_busy_urbs:
	kfree(mdev->busy_urbs);
err_free_ep_address:
	kfree(mdev->ep_address);
err_free_cap:
	kfree(mdev->cap);
err_free_conf:
	kfree(mdev->conf);
err_free_mdev:
	put_device(&mdev->dev);
	return ret;
}

/**
 * hdm_disconnect - disconnect function of USB device driver
 * @interface: Interface of the attached USB device
 *
 * This deregisters the interface with the core, removes the kernel timer
 * and frees resources.
 *
 * Context: hub kernel thread
 */
static void hdm_disconnect(struct usb_interface *interface)
{
	struct most_dev *mdev = usb_get_intfdata(interface);

	mutex_lock(&mdev->io_mutex);
	usb_set_intfdata(interface, NULL);
	mdev->usb_device = NULL;
	mutex_unlock(&mdev->io_mutex);

	del_timer_sync(&mdev->link_stat_timer);
	cancel_work_sync(&mdev->poll_work_obj);

	if (mdev->dci)
		device_unregister(&mdev->dci->dev);
	most_deregister_interface(&mdev->iface);

	kfree(mdev->busy_urbs);
	kfree(mdev->cap);
	kfree(mdev->conf);
	kfree(mdev->ep_address);
	put_device(&mdev->dci->dev);
	put_device(&mdev->dev);
}

static int hdm_suspend(struct usb_interface *interface, pm_message_t message)
{
	struct most_dev *mdev = usb_get_intfdata(interface);
	int i;

	mutex_lock(&mdev->io_mutex);
	for (i = 0; i < mdev->iface.num_channels; i++) {
		most_stop_enqueue(&mdev->iface, i);
		usb_kill_anchored_urbs(&mdev->busy_urbs[i]);
	}
	mutex_unlock(&mdev->io_mutex);
	return 0;
}

static int hdm_resume(struct usb_interface *interface)
{
	struct most_dev *mdev = usb_get_intfdata(interface);
	int i;

	mutex_lock(&mdev->io_mutex);
	for (i = 0; i < mdev->iface.num_channels; i++)
		most_resume_enqueue(&mdev->iface, i);
	mutex_unlock(&mdev->io_mutex);
	return 0;
}

static struct usb_driver hdm_usb = {
	.name = "hdm_usb",
	.id_table = usbid,
	.probe = hdm_probe,
	.disconnect = hdm_disconnect,
	.resume = hdm_resume,
	.suspend = hdm_suspend,
};

module_usb_driver(hdm_usb);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Christian Gromm <christian.gromm@microchip.com>");
MODULE_DESCRIPTION("HDM_4_USB");