Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Malcolm Priestley | 5854 | 67.06% | 64 | 60.38% |
Forest Bond | 2201 | 25.21% | 1 | 0.94% |
Ji-Hun Kim | 422 | 4.83% | 2 | 1.89% |
Charles Clément | 47 | 0.54% | 9 | 8.49% |
Haneen Mohammed | 34 | 0.39% | 1 | 0.94% |
Johannes Berg | 33 | 0.38% | 2 | 1.89% |
Quentin Lambert | 27 | 0.31% | 1 | 0.94% |
Jim Lieb | 18 | 0.21% | 2 | 1.89% |
Jia-Ju Bai | 14 | 0.16% | 2 | 1.89% |
Peter Hüwe | 12 | 0.14% | 1 | 0.94% |
Briana Oursler | 11 | 0.13% | 1 | 0.94% |
Roel Kluin | 8 | 0.09% | 1 | 0.94% |
Joe Perches | 7 | 0.08% | 1 | 0.94% |
Navid Emamdoost | 7 | 0.08% | 1 | 0.94% |
Jingoo Han | 6 | 0.07% | 1 | 0.94% |
Alex W Slater | 5 | 0.06% | 1 | 0.94% |
Mike Krinkin | 4 | 0.05% | 1 | 0.94% |
Tejun Heo | 3 | 0.03% | 1 | 0.94% |
Al Viro | 3 | 0.03% | 1 | 0.94% |
Luis R. Rodriguez | 2 | 0.02% | 1 | 0.94% |
Guillaume Clement | 2 | 0.02% | 2 | 1.89% |
Marko Stankovic | 2 | 0.02% | 1 | 0.94% |
Namrata A Shettar | 2 | 0.02% | 2 | 1.89% |
Sören Brinkmann | 1 | 0.01% | 1 | 0.94% |
Teodora Baluta | 1 | 0.01% | 1 | 0.94% |
Bartlomiej Zolnierkiewicz | 1 | 0.01% | 1 | 0.94% |
Greg Kroah-Hartman | 1 | 0.01% | 1 | 0.94% |
Anson Jacob | 1 | 0.01% | 1 | 0.94% |
Andy Shevchenko | 1 | 0.01% | 1 | 0.94% |
Total | 8730 | 106 |
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc. * All rights reserved. * * File: device_main.c * * Purpose: driver entry for initial, open, close, tx and rx. * * Author: Lyndon Chen * * Date: Jan 8, 2003 * * Functions: * * vt6655_probe - module initial (insmod) driver entry * vt6655_remove - module remove entry * device_free_info - device structure resource free function * device_print_info - print out resource * device_rx_srv - rx service function * device_alloc_rx_buf - rx buffer pre-allocated function * device_free_rx_buf - free rx buffer function * device_free_tx_buf - free tx buffer function * device_init_rd0_ring - initial rd dma0 ring * device_init_rd1_ring - initial rd dma1 ring * device_init_td0_ring - initial tx dma0 ring buffer * device_init_td1_ring - initial tx dma1 ring buffer * device_init_registers - initial MAC & BBP & RF internal registers. * device_init_rings - initial tx/rx ring buffer * device_free_rings - free all allocated ring buffer * device_tx_srv - tx interrupt service function * * Revision History: */ #include <linux/file.h> #include "device.h" #include "card.h" #include "channel.h" #include "baseband.h" #include "mac.h" #include "power.h" #include "rxtx.h" #include "dpc.h" #include "rf.h" #include <linux/delay.h> #include <linux/kthread.h> #include <linux/slab.h> /*--------------------- Static Definitions -------------------------*/ /* * Define module options */ MODULE_AUTHOR("VIA Networking Technologies, Inc., <lyndonchen@vntek.com.tw>"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("VIA Networking Solomon-A/B/G Wireless LAN Adapter Driver"); #define DEVICE_PARAM(N, D) #define RX_DESC_MIN0 16 #define RX_DESC_MAX0 128 #define RX_DESC_DEF0 32 DEVICE_PARAM(RxDescriptors0, "Number of receive descriptors0"); #define RX_DESC_MIN1 16 #define RX_DESC_MAX1 128 #define RX_DESC_DEF1 32 DEVICE_PARAM(RxDescriptors1, "Number of receive descriptors1"); #define TX_DESC_MIN0 16 #define TX_DESC_MAX0 128 #define TX_DESC_DEF0 32 DEVICE_PARAM(TxDescriptors0, "Number of transmit descriptors0"); #define TX_DESC_MIN1 16 #define TX_DESC_MAX1 128 #define TX_DESC_DEF1 64 DEVICE_PARAM(TxDescriptors1, "Number of transmit descriptors1"); #define INT_WORKS_DEF 20 #define INT_WORKS_MIN 10 #define INT_WORKS_MAX 64 DEVICE_PARAM(int_works, "Number of packets per interrupt services"); #define RTS_THRESH_DEF 2347 #define FRAG_THRESH_DEF 2346 #define SHORT_RETRY_MIN 0 #define SHORT_RETRY_MAX 31 #define SHORT_RETRY_DEF 8 DEVICE_PARAM(ShortRetryLimit, "Short frame retry limits"); #define LONG_RETRY_MIN 0 #define LONG_RETRY_MAX 15 #define LONG_RETRY_DEF 4 DEVICE_PARAM(LongRetryLimit, "long frame retry limits"); /* BasebandType[] baseband type selected * 0: indicate 802.11a type * 1: indicate 802.11b type * 2: indicate 802.11g type */ #define BBP_TYPE_MIN 0 #define BBP_TYPE_MAX 2 #define BBP_TYPE_DEF 2 DEVICE_PARAM(BasebandType, "baseband type"); /* * Static vars definitions */ static const struct pci_device_id vt6655_pci_id_table[] = { { PCI_VDEVICE(VIA, 0x3253) }, { 0, } }; /*--------------------- Static Functions --------------------------*/ static int vt6655_probe(struct pci_dev *pcid, const struct pci_device_id *ent); static void device_free_info(struct vnt_private *priv); static void device_print_info(struct vnt_private *priv); static int device_init_rd0_ring(struct vnt_private *priv); static int device_init_rd1_ring(struct vnt_private *priv); static int device_init_td0_ring(struct vnt_private *priv); static int device_init_td1_ring(struct vnt_private *priv); static int device_rx_srv(struct vnt_private *priv, unsigned int idx); static int device_tx_srv(struct vnt_private *priv, unsigned int idx); static bool device_alloc_rx_buf(struct vnt_private *, struct vnt_rx_desc *); static void device_free_rx_buf(struct vnt_private *priv, struct vnt_rx_desc *rd); static void device_init_registers(struct vnt_private *priv); static void device_free_tx_buf(struct vnt_private *, struct vnt_tx_desc *); static void device_free_td0_ring(struct vnt_private *priv); static void device_free_td1_ring(struct vnt_private *priv); static void device_free_rd0_ring(struct vnt_private *priv); static void device_free_rd1_ring(struct vnt_private *priv); static void device_free_rings(struct vnt_private *priv); /*--------------------- Export Variables --------------------------*/ /*--------------------- Export Functions --------------------------*/ static void vt6655_remove(struct pci_dev *pcid) { struct vnt_private *priv = pci_get_drvdata(pcid); if (!priv) return; device_free_info(priv); } static void device_get_options(struct vnt_private *priv) { struct vnt_options *opts = &priv->opts; opts->rx_descs0 = RX_DESC_DEF0; opts->rx_descs1 = RX_DESC_DEF1; opts->tx_descs[0] = TX_DESC_DEF0; opts->tx_descs[1] = TX_DESC_DEF1; opts->int_works = INT_WORKS_DEF; opts->short_retry = SHORT_RETRY_DEF; opts->long_retry = LONG_RETRY_DEF; opts->bbp_type = BBP_TYPE_DEF; } static void device_set_options(struct vnt_private *priv) { priv->byShortRetryLimit = priv->opts.short_retry; priv->byLongRetryLimit = priv->opts.long_retry; priv->byBBType = priv->opts.bbp_type; priv->byPacketType = priv->byBBType; priv->byAutoFBCtrl = AUTO_FB_0; priv->bUpdateBBVGA = true; priv->byPreambleType = 0; pr_debug(" byShortRetryLimit= %d\n", (int)priv->byShortRetryLimit); pr_debug(" byLongRetryLimit= %d\n", (int)priv->byLongRetryLimit); pr_debug(" byPreambleType= %d\n", (int)priv->byPreambleType); pr_debug(" byShortPreamble= %d\n", (int)priv->byShortPreamble); pr_debug(" byBBType= %d\n", (int)priv->byBBType); } /* * Initialisation of MAC & BBP registers */ static void device_init_registers(struct vnt_private *priv) { unsigned long flags; unsigned int ii; unsigned char byValue; unsigned char byCCKPwrdBm = 0; unsigned char byOFDMPwrdBm = 0; MACbShutdown(priv); bb_software_reset(priv); /* Do MACbSoftwareReset in MACvInitialize */ MACbSoftwareReset(priv); priv->bAES = false; /* Only used in 11g type, sync with ERP IE */ priv->bProtectMode = false; priv->bNonERPPresent = false; priv->bBarkerPreambleMd = false; priv->wCurrentRate = RATE_1M; priv->byTopOFDMBasicRate = RATE_24M; priv->byTopCCKBasicRate = RATE_1M; /* init MAC */ MACvInitialize(priv); /* Get Local ID */ VNSvInPortB(priv->PortOffset + MAC_REG_LOCALID, &priv->byLocalID); spin_lock_irqsave(&priv->lock, flags); SROMvReadAllContents(priv->PortOffset, priv->abyEEPROM); spin_unlock_irqrestore(&priv->lock, flags); /* Get Channel range */ priv->byMinChannel = 1; priv->byMaxChannel = CB_MAX_CHANNEL; /* Get Antena */ byValue = SROMbyReadEmbedded(priv->PortOffset, EEP_OFS_ANTENNA); if (byValue & EEP_ANTINV) priv->bTxRxAntInv = true; else priv->bTxRxAntInv = false; byValue &= (EEP_ANTENNA_AUX | EEP_ANTENNA_MAIN); /* if not set default is All */ if (byValue == 0) byValue = (EEP_ANTENNA_AUX | EEP_ANTENNA_MAIN); if (byValue == (EEP_ANTENNA_AUX | EEP_ANTENNA_MAIN)) { priv->byAntennaCount = 2; priv->byTxAntennaMode = ANT_B; priv->dwTxAntennaSel = 1; priv->dwRxAntennaSel = 1; if (priv->bTxRxAntInv) priv->byRxAntennaMode = ANT_A; else priv->byRxAntennaMode = ANT_B; } else { priv->byAntennaCount = 1; priv->dwTxAntennaSel = 0; priv->dwRxAntennaSel = 0; if (byValue & EEP_ANTENNA_AUX) { priv->byTxAntennaMode = ANT_A; if (priv->bTxRxAntInv) priv->byRxAntennaMode = ANT_B; else priv->byRxAntennaMode = ANT_A; } else { priv->byTxAntennaMode = ANT_B; if (priv->bTxRxAntInv) priv->byRxAntennaMode = ANT_A; else priv->byRxAntennaMode = ANT_B; } } /* Set initial antenna mode */ bb_set_tx_antenna_mode(priv, priv->byTxAntennaMode); bb_set_rx_antenna_mode(priv, priv->byRxAntennaMode); /* zonetype initial */ priv->byOriginalZonetype = priv->abyEEPROM[EEP_OFS_ZONETYPE]; if (!priv->bZoneRegExist) priv->byZoneType = priv->abyEEPROM[EEP_OFS_ZONETYPE]; pr_debug("priv->byZoneType = %x\n", priv->byZoneType); /* Init RF module */ RFbInit(priv); /* Get Desire Power Value */ priv->byCurPwr = 0xFF; priv->byCCKPwr = SROMbyReadEmbedded(priv->PortOffset, EEP_OFS_PWR_CCK); priv->byOFDMPwrG = SROMbyReadEmbedded(priv->PortOffset, EEP_OFS_PWR_OFDMG); /* Load power Table */ for (ii = 0; ii < CB_MAX_CHANNEL_24G; ii++) { priv->abyCCKPwrTbl[ii + 1] = SROMbyReadEmbedded(priv->PortOffset, (unsigned char)(ii + EEP_OFS_CCK_PWR_TBL)); if (priv->abyCCKPwrTbl[ii + 1] == 0) priv->abyCCKPwrTbl[ii + 1] = priv->byCCKPwr; priv->abyOFDMPwrTbl[ii + 1] = SROMbyReadEmbedded(priv->PortOffset, (unsigned char)(ii + EEP_OFS_OFDM_PWR_TBL)); if (priv->abyOFDMPwrTbl[ii + 1] == 0) priv->abyOFDMPwrTbl[ii + 1] = priv->byOFDMPwrG; priv->abyCCKDefaultPwr[ii + 1] = byCCKPwrdBm; priv->abyOFDMDefaultPwr[ii + 1] = byOFDMPwrdBm; } /* recover 12,13 ,14channel for EUROPE by 11 channel */ for (ii = 11; ii < 14; ii++) { priv->abyCCKPwrTbl[ii] = priv->abyCCKPwrTbl[10]; priv->abyOFDMPwrTbl[ii] = priv->abyOFDMPwrTbl[10]; } /* Load OFDM A Power Table */ for (ii = 0; ii < CB_MAX_CHANNEL_5G; ii++) { priv->abyOFDMPwrTbl[ii + CB_MAX_CHANNEL_24G + 1] = SROMbyReadEmbedded(priv->PortOffset, (unsigned char)(ii + EEP_OFS_OFDMA_PWR_TBL)); priv->abyOFDMDefaultPwr[ii + CB_MAX_CHANNEL_24G + 1] = SROMbyReadEmbedded(priv->PortOffset, (unsigned char)(ii + EEP_OFS_OFDMA_PWR_dBm)); } if (priv->byLocalID > REV_ID_VT3253_B1) { MACvSelectPage1(priv->PortOffset); VNSvOutPortB(priv->PortOffset + MAC_REG_MSRCTL + 1, (MSRCTL1_TXPWR | MSRCTL1_CSAPAREN)); MACvSelectPage0(priv->PortOffset); } /* use relative tx timeout and 802.11i D4 */ MACvWordRegBitsOn(priv->PortOffset, MAC_REG_CFG, (CFG_TKIPOPT | CFG_NOTXTIMEOUT)); /* set performance parameter by registry */ MACvSetShortRetryLimit(priv, priv->byShortRetryLimit); MACvSetLongRetryLimit(priv, priv->byLongRetryLimit); /* reset TSF counter */ VNSvOutPortB(priv->PortOffset + MAC_REG_TFTCTL, TFTCTL_TSFCNTRST); /* enable TSF counter */ VNSvOutPortB(priv->PortOffset + MAC_REG_TFTCTL, TFTCTL_TSFCNTREN); /* initialize BBP registers */ bb_vt3253_init(priv); if (priv->bUpdateBBVGA) { priv->byBBVGACurrent = priv->abyBBVGA[0]; priv->byBBVGANew = priv->byBBVGACurrent; bb_set_vga_gain_offset(priv, priv->abyBBVGA[0]); } bb_set_rx_antenna_mode(priv, priv->byRxAntennaMode); bb_set_tx_antenna_mode(priv, priv->byTxAntennaMode); /* Set BB and packet type at the same time. */ /* Set Short Slot Time, xIFS, and RSPINF. */ priv->wCurrentRate = RATE_54M; priv->bRadioOff = false; priv->byRadioCtl = SROMbyReadEmbedded(priv->PortOffset, EEP_OFS_RADIOCTL); priv->bHWRadioOff = false; if (priv->byRadioCtl & EEP_RADIOCTL_ENABLE) { /* Get GPIO */ MACvGPIOIn(priv->PortOffset, &priv->byGPIO); if (((priv->byGPIO & GPIO0_DATA) && !(priv->byRadioCtl & EEP_RADIOCTL_INV)) || (!(priv->byGPIO & GPIO0_DATA) && (priv->byRadioCtl & EEP_RADIOCTL_INV))) priv->bHWRadioOff = true; } if (priv->bHWRadioOff || priv->bRadioControlOff) CARDbRadioPowerOff(priv); /* get Permanent network address */ SROMvReadEtherAddress(priv->PortOffset, priv->abyCurrentNetAddr); pr_debug("Network address = %pM\n", priv->abyCurrentNetAddr); /* reset Tx pointer */ CARDvSafeResetRx(priv); /* reset Rx pointer */ CARDvSafeResetTx(priv); if (priv->byLocalID <= REV_ID_VT3253_A1) MACvRegBitsOn(priv->PortOffset, MAC_REG_RCR, RCR_WPAERR); /* Turn On Rx DMA */ MACvReceive0(priv->PortOffset); MACvReceive1(priv->PortOffset); /* start the adapter */ MACvStart(priv->PortOffset); } static void device_print_info(struct vnt_private *priv) { dev_info(&priv->pcid->dev, "MAC=%pM IO=0x%lx Mem=0x%lx IRQ=%d\n", priv->abyCurrentNetAddr, (unsigned long)priv->ioaddr, (unsigned long)priv->PortOffset, priv->pcid->irq); } static void device_free_info(struct vnt_private *priv) { if (!priv) return; if (priv->mac_hw) ieee80211_unregister_hw(priv->hw); if (priv->PortOffset) iounmap(priv->PortOffset); if (priv->pcid) pci_release_regions(priv->pcid); if (priv->hw) ieee80211_free_hw(priv->hw); } static bool device_init_rings(struct vnt_private *priv) { void *vir_pool; /*allocate all RD/TD rings a single pool*/ vir_pool = dma_alloc_coherent(&priv->pcid->dev, priv->opts.rx_descs0 * sizeof(struct vnt_rx_desc) + priv->opts.rx_descs1 * sizeof(struct vnt_rx_desc) + priv->opts.tx_descs[0] * sizeof(struct vnt_tx_desc) + priv->opts.tx_descs[1] * sizeof(struct vnt_tx_desc), &priv->pool_dma, GFP_ATOMIC); if (!vir_pool) { dev_err(&priv->pcid->dev, "allocate desc dma memory failed\n"); return false; } priv->aRD0Ring = vir_pool; priv->aRD1Ring = vir_pool + priv->opts.rx_descs0 * sizeof(struct vnt_rx_desc); priv->rd0_pool_dma = priv->pool_dma; priv->rd1_pool_dma = priv->rd0_pool_dma + priv->opts.rx_descs0 * sizeof(struct vnt_rx_desc); priv->tx0_bufs = dma_alloc_coherent(&priv->pcid->dev, priv->opts.tx_descs[0] * PKT_BUF_SZ + priv->opts.tx_descs[1] * PKT_BUF_SZ + CB_BEACON_BUF_SIZE + CB_MAX_BUF_SIZE, &priv->tx_bufs_dma0, GFP_ATOMIC); if (!priv->tx0_bufs) { dev_err(&priv->pcid->dev, "allocate buf dma memory failed\n"); dma_free_coherent(&priv->pcid->dev, priv->opts.rx_descs0 * sizeof(struct vnt_rx_desc) + priv->opts.rx_descs1 * sizeof(struct vnt_rx_desc) + priv->opts.tx_descs[0] * sizeof(struct vnt_tx_desc) + priv->opts.tx_descs[1] * sizeof(struct vnt_tx_desc), vir_pool, priv->pool_dma); return false; } priv->td0_pool_dma = priv->rd1_pool_dma + priv->opts.rx_descs1 * sizeof(struct vnt_rx_desc); priv->td1_pool_dma = priv->td0_pool_dma + priv->opts.tx_descs[0] * sizeof(struct vnt_tx_desc); /* vir_pool: pvoid type */ priv->apTD0Rings = vir_pool + priv->opts.rx_descs0 * sizeof(struct vnt_rx_desc) + priv->opts.rx_descs1 * sizeof(struct vnt_rx_desc); priv->apTD1Rings = vir_pool + priv->opts.rx_descs0 * sizeof(struct vnt_rx_desc) + priv->opts.rx_descs1 * sizeof(struct vnt_rx_desc) + priv->opts.tx_descs[0] * sizeof(struct vnt_tx_desc); priv->tx1_bufs = priv->tx0_bufs + priv->opts.tx_descs[0] * PKT_BUF_SZ; priv->tx_beacon_bufs = priv->tx1_bufs + priv->opts.tx_descs[1] * PKT_BUF_SZ; priv->pbyTmpBuff = priv->tx_beacon_bufs + CB_BEACON_BUF_SIZE; priv->tx_bufs_dma1 = priv->tx_bufs_dma0 + priv->opts.tx_descs[0] * PKT_BUF_SZ; priv->tx_beacon_dma = priv->tx_bufs_dma1 + priv->opts.tx_descs[1] * PKT_BUF_SZ; return true; } static void device_free_rings(struct vnt_private *priv) { dma_free_coherent(&priv->pcid->dev, priv->opts.rx_descs0 * sizeof(struct vnt_rx_desc) + priv->opts.rx_descs1 * sizeof(struct vnt_rx_desc) + priv->opts.tx_descs[0] * sizeof(struct vnt_tx_desc) + priv->opts.tx_descs[1] * sizeof(struct vnt_tx_desc), priv->aRD0Ring, priv->pool_dma); if (priv->tx0_bufs) dma_free_coherent(&priv->pcid->dev, priv->opts.tx_descs[0] * PKT_BUF_SZ + priv->opts.tx_descs[1] * PKT_BUF_SZ + CB_BEACON_BUF_SIZE + CB_MAX_BUF_SIZE, priv->tx0_bufs, priv->tx_bufs_dma0); } static int device_init_rd0_ring(struct vnt_private *priv) { int i; dma_addr_t curr = priv->rd0_pool_dma; struct vnt_rx_desc *desc; int ret; /* Init the RD0 ring entries */ for (i = 0; i < priv->opts.rx_descs0; i ++, curr += sizeof(struct vnt_rx_desc)) { desc = &priv->aRD0Ring[i]; desc->rd_info = kzalloc(sizeof(*desc->rd_info), GFP_KERNEL); if (!desc->rd_info) { ret = -ENOMEM; goto err_free_desc; } if (!device_alloc_rx_buf(priv, desc)) { dev_err(&priv->pcid->dev, "can not alloc rx bufs\n"); ret = -ENOMEM; goto err_free_rd; } desc->next = &priv->aRD0Ring[(i + 1) % priv->opts.rx_descs0]; desc->next_desc = cpu_to_le32(curr + sizeof(struct vnt_rx_desc)); } if (i > 0) priv->aRD0Ring[i-1].next_desc = cpu_to_le32(priv->rd0_pool_dma); priv->pCurrRD[0] = &priv->aRD0Ring[0]; return 0; err_free_rd: kfree(desc->rd_info); err_free_desc: while (--i) { desc = &priv->aRD0Ring[i]; device_free_rx_buf(priv, desc); kfree(desc->rd_info); } return ret; } static int device_init_rd1_ring(struct vnt_private *priv) { int i; dma_addr_t curr = priv->rd1_pool_dma; struct vnt_rx_desc *desc; int ret; /* Init the RD1 ring entries */ for (i = 0; i < priv->opts.rx_descs1; i ++, curr += sizeof(struct vnt_rx_desc)) { desc = &priv->aRD1Ring[i]; desc->rd_info = kzalloc(sizeof(*desc->rd_info), GFP_KERNEL); if (!desc->rd_info) { ret = -ENOMEM; goto err_free_desc; } if (!device_alloc_rx_buf(priv, desc)) { dev_err(&priv->pcid->dev, "can not alloc rx bufs\n"); ret = -ENOMEM; goto err_free_rd; } desc->next = &priv->aRD1Ring[(i+1) % priv->opts.rx_descs1]; desc->next_desc = cpu_to_le32(curr + sizeof(struct vnt_rx_desc)); } if (i > 0) priv->aRD1Ring[i-1].next_desc = cpu_to_le32(priv->rd1_pool_dma); priv->pCurrRD[1] = &priv->aRD1Ring[0]; return 0; err_free_rd: kfree(desc->rd_info); err_free_desc: while (--i) { desc = &priv->aRD1Ring[i]; device_free_rx_buf(priv, desc); kfree(desc->rd_info); } return ret; } static void device_free_rd0_ring(struct vnt_private *priv) { int i; for (i = 0; i < priv->opts.rx_descs0; i++) { struct vnt_rx_desc *desc = &priv->aRD0Ring[i]; device_free_rx_buf(priv, desc); kfree(desc->rd_info); } } static void device_free_rd1_ring(struct vnt_private *priv) { int i; for (i = 0; i < priv->opts.rx_descs1; i++) { struct vnt_rx_desc *desc = &priv->aRD1Ring[i]; device_free_rx_buf(priv, desc); kfree(desc->rd_info); } } static int device_init_td0_ring(struct vnt_private *priv) { int i; dma_addr_t curr; struct vnt_tx_desc *desc; int ret; curr = priv->td0_pool_dma; for (i = 0; i < priv->opts.tx_descs[0]; i++, curr += sizeof(struct vnt_tx_desc)) { desc = &priv->apTD0Rings[i]; desc->td_info = kzalloc(sizeof(*desc->td_info), GFP_KERNEL); if (!desc->td_info) { ret = -ENOMEM; goto err_free_desc; } desc->td_info->buf = priv->tx0_bufs + i * PKT_BUF_SZ; desc->td_info->buf_dma = priv->tx_bufs_dma0 + i * PKT_BUF_SZ; desc->next = &(priv->apTD0Rings[(i + 1) % priv->opts.tx_descs[0]]); desc->next_desc = cpu_to_le32(curr + sizeof(struct vnt_tx_desc)); } if (i > 0) priv->apTD0Rings[i - 1].next_desc = cpu_to_le32(priv->td0_pool_dma); priv->apTailTD[0] = priv->apCurrTD[0] = &priv->apTD0Rings[0]; return 0; err_free_desc: while (--i) { desc = &priv->apTD0Rings[i]; kfree(desc->td_info); } return ret; } static int device_init_td1_ring(struct vnt_private *priv) { int i; dma_addr_t curr; struct vnt_tx_desc *desc; int ret; /* Init the TD ring entries */ curr = priv->td1_pool_dma; for (i = 0; i < priv->opts.tx_descs[1]; i++, curr += sizeof(struct vnt_tx_desc)) { desc = &priv->apTD1Rings[i]; desc->td_info = kzalloc(sizeof(*desc->td_info), GFP_KERNEL); if (!desc->td_info) { ret = -ENOMEM; goto err_free_desc; } desc->td_info->buf = priv->tx1_bufs + i * PKT_BUF_SZ; desc->td_info->buf_dma = priv->tx_bufs_dma1 + i * PKT_BUF_SZ; desc->next = &(priv->apTD1Rings[(i + 1) % priv->opts.tx_descs[1]]); desc->next_desc = cpu_to_le32(curr + sizeof(struct vnt_tx_desc)); } if (i > 0) priv->apTD1Rings[i - 1].next_desc = cpu_to_le32(priv->td1_pool_dma); priv->apTailTD[1] = priv->apCurrTD[1] = &priv->apTD1Rings[0]; return 0; err_free_desc: while (--i) { desc = &priv->apTD1Rings[i]; kfree(desc->td_info); } return ret; } static void device_free_td0_ring(struct vnt_private *priv) { int i; for (i = 0; i < priv->opts.tx_descs[0]; i++) { struct vnt_tx_desc *desc = &priv->apTD0Rings[i]; struct vnt_td_info *td_info = desc->td_info; dev_kfree_skb(td_info->skb); kfree(desc->td_info); } } static void device_free_td1_ring(struct vnt_private *priv) { int i; for (i = 0; i < priv->opts.tx_descs[1]; i++) { struct vnt_tx_desc *desc = &priv->apTD1Rings[i]; struct vnt_td_info *td_info = desc->td_info; dev_kfree_skb(td_info->skb); kfree(desc->td_info); } } /*-----------------------------------------------------------------*/ static int device_rx_srv(struct vnt_private *priv, unsigned int idx) { struct vnt_rx_desc *rd; int works = 0; for (rd = priv->pCurrRD[idx]; rd->rd0.owner == OWNED_BY_HOST; rd = rd->next) { if (works++ > 15) break; if (!rd->rd_info->skb) break; if (vnt_receive_frame(priv, rd)) { if (!device_alloc_rx_buf(priv, rd)) { dev_err(&priv->pcid->dev, "can not allocate rx buf\n"); break; } } rd->rd0.owner = OWNED_BY_NIC; } priv->pCurrRD[idx] = rd; return works; } static bool device_alloc_rx_buf(struct vnt_private *priv, struct vnt_rx_desc *rd) { struct vnt_rd_info *rd_info = rd->rd_info; rd_info->skb = dev_alloc_skb((int)priv->rx_buf_sz); if (!rd_info->skb) return false; rd_info->skb_dma = dma_map_single(&priv->pcid->dev, skb_put(rd_info->skb, skb_tailroom(rd_info->skb)), priv->rx_buf_sz, DMA_FROM_DEVICE); if (dma_mapping_error(&priv->pcid->dev, rd_info->skb_dma)) { dev_kfree_skb(rd_info->skb); rd_info->skb = NULL; return false; } *((unsigned int *)&rd->rd0) = 0; /* FIX cast */ rd->rd0.res_count = cpu_to_le16(priv->rx_buf_sz); rd->rd0.owner = OWNED_BY_NIC; rd->rd1.req_count = cpu_to_le16(priv->rx_buf_sz); rd->buff_addr = cpu_to_le32(rd_info->skb_dma); return true; } static void device_free_rx_buf(struct vnt_private *priv, struct vnt_rx_desc *rd) { struct vnt_rd_info *rd_info = rd->rd_info; dma_unmap_single(&priv->pcid->dev, rd_info->skb_dma, priv->rx_buf_sz, DMA_FROM_DEVICE); dev_kfree_skb(rd_info->skb); } static const u8 fallback_rate0[5][5] = { {RATE_18M, RATE_18M, RATE_12M, RATE_12M, RATE_12M}, {RATE_24M, RATE_24M, RATE_18M, RATE_12M, RATE_12M}, {RATE_36M, RATE_36M, RATE_24M, RATE_18M, RATE_18M}, {RATE_48M, RATE_48M, RATE_36M, RATE_24M, RATE_24M}, {RATE_54M, RATE_54M, RATE_48M, RATE_36M, RATE_36M} }; static const u8 fallback_rate1[5][5] = { {RATE_18M, RATE_18M, RATE_12M, RATE_6M, RATE_6M}, {RATE_24M, RATE_24M, RATE_18M, RATE_6M, RATE_6M}, {RATE_36M, RATE_36M, RATE_24M, RATE_12M, RATE_12M}, {RATE_48M, RATE_48M, RATE_24M, RATE_12M, RATE_12M}, {RATE_54M, RATE_54M, RATE_36M, RATE_18M, RATE_18M} }; static int vnt_int_report_rate(struct vnt_private *priv, struct vnt_td_info *context, u8 tsr0, u8 tsr1) { struct vnt_tx_fifo_head *fifo_head; struct ieee80211_tx_info *info; struct ieee80211_rate *rate; u16 fb_option; u8 tx_retry = (tsr0 & TSR0_NCR); s8 idx; if (!context) return -ENOMEM; if (!context->skb) return -EINVAL; fifo_head = (struct vnt_tx_fifo_head *)context->buf; fb_option = (le16_to_cpu(fifo_head->fifo_ctl) & (FIFOCTL_AUTO_FB_0 | FIFOCTL_AUTO_FB_1)); info = IEEE80211_SKB_CB(context->skb); idx = info->control.rates[0].idx; if (fb_option && !(tsr1 & TSR1_TERR)) { u8 tx_rate; u8 retry = tx_retry; rate = ieee80211_get_tx_rate(priv->hw, info); tx_rate = rate->hw_value - RATE_18M; if (retry > 4) retry = 4; if (fb_option & FIFOCTL_AUTO_FB_0) tx_rate = fallback_rate0[tx_rate][retry]; else if (fb_option & FIFOCTL_AUTO_FB_1) tx_rate = fallback_rate1[tx_rate][retry]; if (info->band == NL80211_BAND_5GHZ) idx = tx_rate - RATE_6M; else idx = tx_rate; } ieee80211_tx_info_clear_status(info); info->status.rates[0].count = tx_retry; if (!(tsr1 & TSR1_TERR)) { info->status.rates[0].idx = idx; if (info->flags & IEEE80211_TX_CTL_NO_ACK) info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED; else info->flags |= IEEE80211_TX_STAT_ACK; } return 0; } static int device_tx_srv(struct vnt_private *priv, unsigned int idx) { struct vnt_tx_desc *desc; int works = 0; unsigned char byTsr0; unsigned char byTsr1; for (desc = priv->apTailTD[idx]; priv->iTDUsed[idx] > 0; desc = desc->next) { if (desc->td0.owner == OWNED_BY_NIC) break; if (works++ > 15) break; byTsr0 = desc->td0.tsr0; byTsr1 = desc->td0.tsr1; /* Only the status of first TD in the chain is correct */ if (desc->td1.tcr & TCR_STP) { if ((desc->td_info->flags & TD_FLAGS_NETIF_SKB) != 0) { if (!(byTsr1 & TSR1_TERR)) { if (byTsr0 != 0) { pr_debug(" Tx[%d] OK but has error. tsr1[%02X] tsr0[%02X]\n", (int)idx, byTsr1, byTsr0); } } else { pr_debug(" Tx[%d] dropped & tsr1[%02X] tsr0[%02X]\n", (int)idx, byTsr1, byTsr0); } } if (byTsr1 & TSR1_TERR) { if ((desc->td_info->flags & TD_FLAGS_PRIV_SKB) != 0) { pr_debug(" Tx[%d] fail has error. tsr1[%02X] tsr0[%02X]\n", (int)idx, byTsr1, byTsr0); } } vnt_int_report_rate(priv, desc->td_info, byTsr0, byTsr1); device_free_tx_buf(priv, desc); priv->iTDUsed[idx]--; } } priv->apTailTD[idx] = desc; return works; } static void device_error(struct vnt_private *priv, unsigned short status) { if (status & ISR_FETALERR) { dev_err(&priv->pcid->dev, "Hardware fatal error\n"); MACbShutdown(priv); return; } } static void device_free_tx_buf(struct vnt_private *priv, struct vnt_tx_desc *desc) { struct vnt_td_info *td_info = desc->td_info; struct sk_buff *skb = td_info->skb; if (skb) ieee80211_tx_status_irqsafe(priv->hw, skb); td_info->skb = NULL; td_info->flags = 0; } static void vnt_check_bb_vga(struct vnt_private *priv) { long dbm; int i; if (!priv->bUpdateBBVGA) return; if (priv->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL) return; if (!(priv->vif->bss_conf.assoc && priv->uCurrRSSI)) return; RFvRSSITodBm(priv, (u8)priv->uCurrRSSI, &dbm); for (i = 0; i < BB_VGA_LEVEL; i++) { if (dbm < priv->ldBmThreshold[i]) { priv->byBBVGANew = priv->abyBBVGA[i]; break; } } if (priv->byBBVGANew == priv->byBBVGACurrent) { priv->uBBVGADiffCount = 1; return; } priv->uBBVGADiffCount++; if (priv->uBBVGADiffCount == 1) { /* first VGA diff gain */ bb_set_vga_gain_offset(priv, priv->byBBVGANew); dev_dbg(&priv->pcid->dev, "First RSSI[%d] NewGain[%d] OldGain[%d] Count[%d]\n", (int)dbm, priv->byBBVGANew, priv->byBBVGACurrent, (int)priv->uBBVGADiffCount); } if (priv->uBBVGADiffCount >= BB_VGA_CHANGE_THRESHOLD) { dev_dbg(&priv->pcid->dev, "RSSI[%d] NewGain[%d] OldGain[%d] Count[%d]\n", (int)dbm, priv->byBBVGANew, priv->byBBVGACurrent, (int)priv->uBBVGADiffCount); bb_set_vga_gain_offset(priv, priv->byBBVGANew); } } static void vnt_interrupt_process(struct vnt_private *priv) { struct ieee80211_low_level_stats *low_stats = &priv->low_stats; int max_count = 0; u32 mib_counter; u32 isr; unsigned long flags; MACvReadISR(priv->PortOffset, &isr); if (isr == 0) return; if (isr == 0xffffffff) { pr_debug("isr = 0xffff\n"); return; } spin_lock_irqsave(&priv->lock, flags); /* Read low level stats */ MACvReadMIBCounter(priv->PortOffset, &mib_counter); low_stats->dot11RTSSuccessCount += mib_counter & 0xff; low_stats->dot11RTSFailureCount += (mib_counter >> 8) & 0xff; low_stats->dot11ACKFailureCount += (mib_counter >> 16) & 0xff; low_stats->dot11FCSErrorCount += (mib_counter >> 24) & 0xff; /* * TBD.... * Must do this after doing rx/tx, cause ISR bit is slow * than RD/TD write back * update ISR counter */ while (isr && priv->vif) { MACvWriteISR(priv->PortOffset, isr); if (isr & ISR_FETALERR) { pr_debug(" ISR_FETALERR\n"); VNSvOutPortB(priv->PortOffset + MAC_REG_SOFTPWRCTL, 0); VNSvOutPortW(priv->PortOffset + MAC_REG_SOFTPWRCTL, SOFTPWRCTL_SWPECTI); device_error(priv, isr); } if (isr & ISR_TBTT) { if (priv->op_mode != NL80211_IFTYPE_ADHOC) vnt_check_bb_vga(priv); priv->bBeaconSent = false; if (priv->bEnablePSMode) PSbIsNextTBTTWakeUp((void *)priv); if ((priv->op_mode == NL80211_IFTYPE_AP || priv->op_mode == NL80211_IFTYPE_ADHOC) && priv->vif->bss_conf.enable_beacon) { MACvOneShotTimer1MicroSec(priv, (priv->vif->bss_conf.beacon_int - MAKE_BEACON_RESERVED) << 10); } /* TODO: adhoc PS mode */ } if (isr & ISR_BNTX) { if (priv->op_mode == NL80211_IFTYPE_ADHOC) { priv->bIsBeaconBufReadySet = false; priv->cbBeaconBufReadySetCnt = 0; } priv->bBeaconSent = true; } if (isr & ISR_RXDMA0) max_count += device_rx_srv(priv, TYPE_RXDMA0); if (isr & ISR_RXDMA1) max_count += device_rx_srv(priv, TYPE_RXDMA1); if (isr & ISR_TXDMA0) max_count += device_tx_srv(priv, TYPE_TXDMA0); if (isr & ISR_AC0DMA) max_count += device_tx_srv(priv, TYPE_AC0DMA); if (isr & ISR_SOFTTIMER1) { if (priv->vif->bss_conf.enable_beacon) vnt_beacon_make(priv, priv->vif); } /* If both buffers available wake the queue */ if (AVAIL_TD(priv, TYPE_TXDMA0) && AVAIL_TD(priv, TYPE_AC0DMA) && ieee80211_queue_stopped(priv->hw, 0)) ieee80211_wake_queues(priv->hw); MACvReadISR(priv->PortOffset, &isr); MACvReceive0(priv->PortOffset); MACvReceive1(priv->PortOffset); if (max_count > priv->opts.int_works) break; } spin_unlock_irqrestore(&priv->lock, flags); } static void vnt_interrupt_work(struct work_struct *work) { struct vnt_private *priv = container_of(work, struct vnt_private, interrupt_work); if (priv->vif) vnt_interrupt_process(priv); MACvIntEnable(priv->PortOffset, IMR_MASK_VALUE); } static irqreturn_t vnt_interrupt(int irq, void *arg) { struct vnt_private *priv = arg; schedule_work(&priv->interrupt_work); MACvIntDisable(priv->PortOffset); return IRQ_HANDLED; } static int vnt_tx_packet(struct vnt_private *priv, struct sk_buff *skb) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; struct vnt_tx_desc *head_td; u32 dma_idx; unsigned long flags; spin_lock_irqsave(&priv->lock, flags); if (ieee80211_is_data(hdr->frame_control)) dma_idx = TYPE_AC0DMA; else dma_idx = TYPE_TXDMA0; if (AVAIL_TD(priv, dma_idx) < 1) { spin_unlock_irqrestore(&priv->lock, flags); ieee80211_stop_queues(priv->hw); return -ENOMEM; } head_td = priv->apCurrTD[dma_idx]; head_td->td1.tcr = 0; head_td->td_info->skb = skb; if (dma_idx == TYPE_AC0DMA) head_td->td_info->flags = TD_FLAGS_NETIF_SKB; priv->apCurrTD[dma_idx] = head_td->next; spin_unlock_irqrestore(&priv->lock, flags); vnt_generate_fifo_header(priv, dma_idx, head_td, skb); spin_lock_irqsave(&priv->lock, flags); priv->bPWBitOn = false; /* Set TSR1 & ReqCount in TxDescHead */ head_td->td1.tcr |= (TCR_STP | TCR_EDP | EDMSDU); head_td->td1.req_count = cpu_to_le16(head_td->td_info->req_count); head_td->buff_addr = cpu_to_le32(head_td->td_info->buf_dma); /* Poll Transmit the adapter */ wmb(); head_td->td0.owner = OWNED_BY_NIC; wmb(); /* second memory barrier */ if (head_td->td_info->flags & TD_FLAGS_NETIF_SKB) MACvTransmitAC0(priv->PortOffset); else MACvTransmit0(priv->PortOffset); priv->iTDUsed[dma_idx]++; spin_unlock_irqrestore(&priv->lock, flags); return 0; } static void vnt_tx_80211(struct ieee80211_hw *hw, struct ieee80211_tx_control *control, struct sk_buff *skb) { struct vnt_private *priv = hw->priv; if (vnt_tx_packet(priv, skb)) ieee80211_free_txskb(hw, skb); } static int vnt_start(struct ieee80211_hw *hw) { struct vnt_private *priv = hw->priv; int ret; priv->rx_buf_sz = PKT_BUF_SZ; if (!device_init_rings(priv)) return -ENOMEM; ret = request_irq(priv->pcid->irq, vnt_interrupt, IRQF_SHARED, "vt6655", priv); if (ret) { dev_dbg(&priv->pcid->dev, "failed to start irq\n"); goto err_free_rings; } dev_dbg(&priv->pcid->dev, "call device init rd0 ring\n"); ret = device_init_rd0_ring(priv); if (ret) goto err_free_irq; ret = device_init_rd1_ring(priv); if (ret) goto err_free_rd0_ring; ret = device_init_td0_ring(priv); if (ret) goto err_free_rd1_ring; ret = device_init_td1_ring(priv); if (ret) goto err_free_td0_ring; device_init_registers(priv); dev_dbg(&priv->pcid->dev, "call MACvIntEnable\n"); MACvIntEnable(priv->PortOffset, IMR_MASK_VALUE); ieee80211_wake_queues(hw); return 0; err_free_td0_ring: device_free_td0_ring(priv); err_free_rd1_ring: device_free_rd1_ring(priv); err_free_rd0_ring: device_free_rd0_ring(priv); err_free_irq: free_irq(priv->pcid->irq, priv); err_free_rings: device_free_rings(priv); return ret; } static void vnt_stop(struct ieee80211_hw *hw) { struct vnt_private *priv = hw->priv; ieee80211_stop_queues(hw); cancel_work_sync(&priv->interrupt_work); MACbShutdown(priv); MACbSoftwareReset(priv); CARDbRadioPowerOff(priv); device_free_td0_ring(priv); device_free_td1_ring(priv); device_free_rd0_ring(priv); device_free_rd1_ring(priv); device_free_rings(priv); free_irq(priv->pcid->irq, priv); } static int vnt_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct vnt_private *priv = hw->priv; priv->vif = vif; switch (vif->type) { case NL80211_IFTYPE_STATION: break; case NL80211_IFTYPE_ADHOC: MACvRegBitsOff(priv->PortOffset, MAC_REG_RCR, RCR_UNICAST); MACvRegBitsOn(priv->PortOffset, MAC_REG_HOSTCR, HOSTCR_ADHOC); break; case NL80211_IFTYPE_AP: MACvRegBitsOff(priv->PortOffset, MAC_REG_RCR, RCR_UNICAST); MACvRegBitsOn(priv->PortOffset, MAC_REG_HOSTCR, HOSTCR_AP); break; default: return -EOPNOTSUPP; } priv->op_mode = vif->type; return 0; } static void vnt_remove_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct vnt_private *priv = hw->priv; switch (vif->type) { case NL80211_IFTYPE_STATION: break; case NL80211_IFTYPE_ADHOC: MACvRegBitsOff(priv->PortOffset, MAC_REG_TCR, TCR_AUTOBCNTX); MACvRegBitsOff(priv->PortOffset, MAC_REG_TFTCTL, TFTCTL_TSFCNTREN); MACvRegBitsOff(priv->PortOffset, MAC_REG_HOSTCR, HOSTCR_ADHOC); break; case NL80211_IFTYPE_AP: MACvRegBitsOff(priv->PortOffset, MAC_REG_TCR, TCR_AUTOBCNTX); MACvRegBitsOff(priv->PortOffset, MAC_REG_TFTCTL, TFTCTL_TSFCNTREN); MACvRegBitsOff(priv->PortOffset, MAC_REG_HOSTCR, HOSTCR_AP); break; default: break; } priv->op_mode = NL80211_IFTYPE_UNSPECIFIED; } static int vnt_config(struct ieee80211_hw *hw, u32 changed) { struct vnt_private *priv = hw->priv; struct ieee80211_conf *conf = &hw->conf; u8 bb_type; if (changed & IEEE80211_CONF_CHANGE_PS) { if (conf->flags & IEEE80211_CONF_PS) PSvEnablePowerSaving(priv, conf->listen_interval); else PSvDisablePowerSaving(priv); } if ((changed & IEEE80211_CONF_CHANGE_CHANNEL) || (conf->flags & IEEE80211_CONF_OFFCHANNEL)) { set_channel(priv, conf->chandef.chan); if (conf->chandef.chan->band == NL80211_BAND_5GHZ) bb_type = BB_TYPE_11A; else bb_type = BB_TYPE_11G; if (priv->byBBType != bb_type) { priv->byBBType = bb_type; CARDbSetPhyParameter(priv, priv->byBBType); } } if (changed & IEEE80211_CONF_CHANGE_POWER) { if (priv->byBBType == BB_TYPE_11B) priv->wCurrentRate = RATE_1M; else priv->wCurrentRate = RATE_54M; RFbSetPower(priv, priv->wCurrentRate, conf->chandef.chan->hw_value); } return 0; } static void vnt_bss_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *conf, u32 changed) { struct vnt_private *priv = hw->priv; priv->current_aid = conf->aid; if (changed & BSS_CHANGED_BSSID && conf->bssid) { unsigned long flags; spin_lock_irqsave(&priv->lock, flags); MACvWriteBSSIDAddress(priv->PortOffset, (u8 *)conf->bssid); spin_unlock_irqrestore(&priv->lock, flags); } if (changed & BSS_CHANGED_BASIC_RATES) { priv->basic_rates = conf->basic_rates; CARDvUpdateBasicTopRate(priv); dev_dbg(&priv->pcid->dev, "basic rates %x\n", conf->basic_rates); } if (changed & BSS_CHANGED_ERP_PREAMBLE) { if (conf->use_short_preamble) { MACvEnableBarkerPreambleMd(priv->PortOffset); priv->byPreambleType = true; } else { MACvDisableBarkerPreambleMd(priv->PortOffset); priv->byPreambleType = false; } } if (changed & BSS_CHANGED_ERP_CTS_PROT) { if (conf->use_cts_prot) MACvEnableProtectMD(priv->PortOffset); else MACvDisableProtectMD(priv->PortOffset); } if (changed & BSS_CHANGED_ERP_SLOT) { if (conf->use_short_slot) priv->bShortSlotTime = true; else priv->bShortSlotTime = false; CARDbSetPhyParameter(priv, priv->byBBType); bb_set_vga_gain_offset(priv, priv->abyBBVGA[0]); } if (changed & BSS_CHANGED_TXPOWER) RFbSetPower(priv, priv->wCurrentRate, conf->chandef.chan->hw_value); if (changed & BSS_CHANGED_BEACON_ENABLED) { dev_dbg(&priv->pcid->dev, "Beacon enable %d\n", conf->enable_beacon); if (conf->enable_beacon) { vnt_beacon_enable(priv, vif, conf); MACvRegBitsOn(priv->PortOffset, MAC_REG_TCR, TCR_AUTOBCNTX); } else { MACvRegBitsOff(priv->PortOffset, MAC_REG_TCR, TCR_AUTOBCNTX); } } if (changed & (BSS_CHANGED_ASSOC | BSS_CHANGED_BEACON_INFO) && priv->op_mode != NL80211_IFTYPE_AP) { if (conf->assoc && conf->beacon_rate) { CARDbUpdateTSF(priv, conf->beacon_rate->hw_value, conf->sync_tsf); CARDbSetBeaconPeriod(priv, conf->beacon_int); CARDvSetFirstNextTBTT(priv, conf->beacon_int); } else { VNSvOutPortB(priv->PortOffset + MAC_REG_TFTCTL, TFTCTL_TSFCNTRST); VNSvOutPortB(priv->PortOffset + MAC_REG_TFTCTL, TFTCTL_TSFCNTREN); } } } static u64 vnt_prepare_multicast(struct ieee80211_hw *hw, struct netdev_hw_addr_list *mc_list) { struct vnt_private *priv = hw->priv; struct netdev_hw_addr *ha; u64 mc_filter = 0; u32 bit_nr = 0; netdev_hw_addr_list_for_each(ha, mc_list) { bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26; mc_filter |= 1ULL << (bit_nr & 0x3f); } priv->mc_list_count = mc_list->count; return mc_filter; } static void vnt_configure(struct ieee80211_hw *hw, unsigned int changed_flags, unsigned int *total_flags, u64 multicast) { struct vnt_private *priv = hw->priv; u8 rx_mode = 0; *total_flags &= FIF_ALLMULTI | FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC; VNSvInPortB(priv->PortOffset + MAC_REG_RCR, &rx_mode); dev_dbg(&priv->pcid->dev, "rx mode in = %x\n", rx_mode); if (changed_flags & FIF_ALLMULTI) { if (*total_flags & FIF_ALLMULTI) { unsigned long flags; spin_lock_irqsave(&priv->lock, flags); if (priv->mc_list_count > 2) { MACvSelectPage1(priv->PortOffset); VNSvOutPortD(priv->PortOffset + MAC_REG_MAR0, 0xffffffff); VNSvOutPortD(priv->PortOffset + MAC_REG_MAR0 + 4, 0xffffffff); MACvSelectPage0(priv->PortOffset); } else { MACvSelectPage1(priv->PortOffset); VNSvOutPortD(priv->PortOffset + MAC_REG_MAR0, (u32)multicast); VNSvOutPortD(priv->PortOffset + MAC_REG_MAR0 + 4, (u32)(multicast >> 32)); MACvSelectPage0(priv->PortOffset); } spin_unlock_irqrestore(&priv->lock, flags); rx_mode |= RCR_MULTICAST | RCR_BROADCAST; } else { rx_mode &= ~(RCR_MULTICAST | RCR_BROADCAST); } } if (changed_flags & (FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC)) { rx_mode |= RCR_MULTICAST | RCR_BROADCAST; if (*total_flags & (FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC)) rx_mode &= ~RCR_BSSID; else rx_mode |= RCR_BSSID; } VNSvOutPortB(priv->PortOffset + MAC_REG_RCR, rx_mode); dev_dbg(&priv->pcid->dev, "rx mode out= %x\n", rx_mode); } static int vnt_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ieee80211_key_conf *key) { struct vnt_private *priv = hw->priv; switch (cmd) { case SET_KEY: if (vnt_set_keys(hw, sta, vif, key)) return -EOPNOTSUPP; break; case DISABLE_KEY: if (test_bit(key->hw_key_idx, &priv->key_entry_inuse)) clear_bit(key->hw_key_idx, &priv->key_entry_inuse); default: break; } return 0; } static int vnt_get_stats(struct ieee80211_hw *hw, struct ieee80211_low_level_stats *stats) { struct vnt_private *priv = hw->priv; memcpy(stats, &priv->low_stats, sizeof(*stats)); return 0; } static u64 vnt_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct vnt_private *priv = hw->priv; u64 tsf; CARDbGetCurrentTSF(priv, &tsf); return tsf; } static void vnt_set_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u64 tsf) { struct vnt_private *priv = hw->priv; CARDvUpdateNextTBTT(priv, tsf, vif->bss_conf.beacon_int); } static void vnt_reset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct vnt_private *priv = hw->priv; /* reset TSF counter */ VNSvOutPortB(priv->PortOffset + MAC_REG_TFTCTL, TFTCTL_TSFCNTRST); } static const struct ieee80211_ops vnt_mac_ops = { .tx = vnt_tx_80211, .start = vnt_start, .stop = vnt_stop, .add_interface = vnt_add_interface, .remove_interface = vnt_remove_interface, .config = vnt_config, .bss_info_changed = vnt_bss_info_changed, .prepare_multicast = vnt_prepare_multicast, .configure_filter = vnt_configure, .set_key = vnt_set_key, .get_stats = vnt_get_stats, .get_tsf = vnt_get_tsf, .set_tsf = vnt_set_tsf, .reset_tsf = vnt_reset_tsf, }; static int vnt_init(struct vnt_private *priv) { SET_IEEE80211_PERM_ADDR(priv->hw, priv->abyCurrentNetAddr); vnt_init_bands(priv); if (ieee80211_register_hw(priv->hw)) return -ENODEV; priv->mac_hw = true; CARDbRadioPowerOff(priv); return 0; } static int vt6655_probe(struct pci_dev *pcid, const struct pci_device_id *ent) { struct vnt_private *priv; struct ieee80211_hw *hw; struct wiphy *wiphy; int rc; dev_notice(&pcid->dev, "%s Ver. %s\n", DEVICE_FULL_DRV_NAM, DEVICE_VERSION); dev_notice(&pcid->dev, "Copyright (c) 2003 VIA Networking Technologies, Inc.\n"); hw = ieee80211_alloc_hw(sizeof(*priv), &vnt_mac_ops); if (!hw) { dev_err(&pcid->dev, "could not register ieee80211_hw\n"); return -ENOMEM; } priv = hw->priv; priv->pcid = pcid; spin_lock_init(&priv->lock); priv->hw = hw; SET_IEEE80211_DEV(priv->hw, &pcid->dev); if (pci_enable_device(pcid)) { device_free_info(priv); return -ENODEV; } dev_dbg(&pcid->dev, "Before get pci_info memaddr is %x\n", priv->memaddr); pci_set_master(pcid); priv->memaddr = pci_resource_start(pcid, 0); priv->ioaddr = pci_resource_start(pcid, 1); priv->PortOffset = ioremap(priv->memaddr & PCI_BASE_ADDRESS_MEM_MASK, 256); if (!priv->PortOffset) { dev_err(&pcid->dev, ": Failed to IO remapping ..\n"); device_free_info(priv); return -ENODEV; } rc = pci_request_regions(pcid, DEVICE_NAME); if (rc) { dev_err(&pcid->dev, ": Failed to find PCI device\n"); device_free_info(priv); return -ENODEV; } if (dma_set_mask(&pcid->dev, DMA_BIT_MASK(32))) { dev_err(&pcid->dev, ": Failed to set dma 32 bit mask\n"); device_free_info(priv); return -ENODEV; } INIT_WORK(&priv->interrupt_work, vnt_interrupt_work); /* do reset */ if (!MACbSoftwareReset(priv)) { dev_err(&pcid->dev, ": Failed to access MAC hardware..\n"); device_free_info(priv); return -ENODEV; } /* initial to reload eeprom */ MACvInitialize(priv); MACvReadEtherAddress(priv->PortOffset, priv->abyCurrentNetAddr); /* Get RFType */ priv->byRFType = SROMbyReadEmbedded(priv->PortOffset, EEP_OFS_RFTYPE); priv->byRFType &= RF_MASK; dev_dbg(&pcid->dev, "RF Type = %x\n", priv->byRFType); device_get_options(priv); device_set_options(priv); wiphy = priv->hw->wiphy; wiphy->frag_threshold = FRAG_THRESH_DEF; wiphy->rts_threshold = RTS_THRESH_DEF; wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_ADHOC) | BIT(NL80211_IFTYPE_AP); ieee80211_hw_set(priv->hw, TIMING_BEACON_ONLY); ieee80211_hw_set(priv->hw, SIGNAL_DBM); ieee80211_hw_set(priv->hw, RX_INCLUDES_FCS); ieee80211_hw_set(priv->hw, REPORTS_TX_ACK_STATUS); ieee80211_hw_set(priv->hw, SUPPORTS_PS); priv->hw->max_signal = 100; if (vnt_init(priv)) { device_free_info(priv); return -ENODEV; } device_print_info(priv); pci_set_drvdata(pcid, priv); return 0; } /*------------------------------------------------------------------*/ #ifdef CONFIG_PM static int vt6655_suspend(struct pci_dev *pcid, pm_message_t state) { struct vnt_private *priv = pci_get_drvdata(pcid); unsigned long flags; spin_lock_irqsave(&priv->lock, flags); pci_save_state(pcid); MACbShutdown(priv); pci_disable_device(pcid); spin_unlock_irqrestore(&priv->lock, flags); pci_set_power_state(pcid, pci_choose_state(pcid, state)); return 0; } static int vt6655_resume(struct pci_dev *pcid) { pci_set_power_state(pcid, PCI_D0); pci_enable_wake(pcid, PCI_D0, 0); pci_restore_state(pcid); return 0; } #endif MODULE_DEVICE_TABLE(pci, vt6655_pci_id_table); static struct pci_driver device_driver = { .name = DEVICE_NAME, .id_table = vt6655_pci_id_table, .probe = vt6655_probe, .remove = vt6655_remove, #ifdef CONFIG_PM .suspend = vt6655_suspend, .resume = vt6655_resume, #endif }; module_pci_driver(device_driver);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1