Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Chris Wilson | 1204 | 99.34% | 2 | 50.00% |
Christophe Jaillet | 7 | 0.58% | 1 | 25.00% |
Thomas Gleixner | 1 | 0.08% | 1 | 25.00% |
Total | 1212 | 4 |
// SPDX-License-Identifier: GPL-2.0-only #define pr_fmt(fmt) "prime numbers: " fmt #include <linux/module.h> #include <linux/mutex.h> #include <linux/prime_numbers.h> #include <linux/slab.h> #define bitmap_size(nbits) (BITS_TO_LONGS(nbits) * sizeof(unsigned long)) struct primes { struct rcu_head rcu; unsigned long last, sz; unsigned long primes[]; }; #if BITS_PER_LONG == 64 static const struct primes small_primes = { .last = 61, .sz = 64, .primes = { BIT(2) | BIT(3) | BIT(5) | BIT(7) | BIT(11) | BIT(13) | BIT(17) | BIT(19) | BIT(23) | BIT(29) | BIT(31) | BIT(37) | BIT(41) | BIT(43) | BIT(47) | BIT(53) | BIT(59) | BIT(61) } }; #elif BITS_PER_LONG == 32 static const struct primes small_primes = { .last = 31, .sz = 32, .primes = { BIT(2) | BIT(3) | BIT(5) | BIT(7) | BIT(11) | BIT(13) | BIT(17) | BIT(19) | BIT(23) | BIT(29) | BIT(31) } }; #else #error "unhandled BITS_PER_LONG" #endif static DEFINE_MUTEX(lock); static const struct primes __rcu *primes = RCU_INITIALIZER(&small_primes); static unsigned long selftest_max; static bool slow_is_prime_number(unsigned long x) { unsigned long y = int_sqrt(x); while (y > 1) { if ((x % y) == 0) break; y--; } return y == 1; } static unsigned long slow_next_prime_number(unsigned long x) { while (x < ULONG_MAX && !slow_is_prime_number(++x)) ; return x; } static unsigned long clear_multiples(unsigned long x, unsigned long *p, unsigned long start, unsigned long end) { unsigned long m; m = 2 * x; if (m < start) m = roundup(start, x); while (m < end) { __clear_bit(m, p); m += x; } return x; } static bool expand_to_next_prime(unsigned long x) { const struct primes *p; struct primes *new; unsigned long sz, y; /* Betrand's Postulate (or Chebyshev's theorem) states that if n > 3, * there is always at least one prime p between n and 2n - 2. * Equivalently, if n > 1, then there is always at least one prime p * such that n < p < 2n. * * http://mathworld.wolfram.com/BertrandsPostulate.html * https://en.wikipedia.org/wiki/Bertrand's_postulate */ sz = 2 * x; if (sz < x) return false; sz = round_up(sz, BITS_PER_LONG); new = kmalloc(sizeof(*new) + bitmap_size(sz), GFP_KERNEL | __GFP_NOWARN); if (!new) return false; mutex_lock(&lock); p = rcu_dereference_protected(primes, lockdep_is_held(&lock)); if (x < p->last) { kfree(new); goto unlock; } /* Where memory permits, track the primes using the * Sieve of Eratosthenes. The sieve is to remove all multiples of known * primes from the set, what remains in the set is therefore prime. */ bitmap_fill(new->primes, sz); bitmap_copy(new->primes, p->primes, p->sz); for (y = 2UL; y < sz; y = find_next_bit(new->primes, sz, y + 1)) new->last = clear_multiples(y, new->primes, p->sz, sz); new->sz = sz; BUG_ON(new->last <= x); rcu_assign_pointer(primes, new); if (p != &small_primes) kfree_rcu((struct primes *)p, rcu); unlock: mutex_unlock(&lock); return true; } static void free_primes(void) { const struct primes *p; mutex_lock(&lock); p = rcu_dereference_protected(primes, lockdep_is_held(&lock)); if (p != &small_primes) { rcu_assign_pointer(primes, &small_primes); kfree_rcu((struct primes *)p, rcu); } mutex_unlock(&lock); } /** * next_prime_number - return the next prime number * @x: the starting point for searching to test * * A prime number is an integer greater than 1 that is only divisible by * itself and 1. The set of prime numbers is computed using the Sieve of * Eratoshenes (on finding a prime, all multiples of that prime are removed * from the set) enabling a fast lookup of the next prime number larger than * @x. If the sieve fails (memory limitation), the search falls back to using * slow trial-divison, up to the value of ULONG_MAX (which is reported as the * final prime as a sentinel). * * Returns: the next prime number larger than @x */ unsigned long next_prime_number(unsigned long x) { const struct primes *p; rcu_read_lock(); p = rcu_dereference(primes); while (x >= p->last) { rcu_read_unlock(); if (!expand_to_next_prime(x)) return slow_next_prime_number(x); rcu_read_lock(); p = rcu_dereference(primes); } x = find_next_bit(p->primes, p->last, x + 1); rcu_read_unlock(); return x; } EXPORT_SYMBOL(next_prime_number); /** * is_prime_number - test whether the given number is prime * @x: the number to test * * A prime number is an integer greater than 1 that is only divisible by * itself and 1. Internally a cache of prime numbers is kept (to speed up * searching for sequential primes, see next_prime_number()), but if the number * falls outside of that cache, its primality is tested using trial-divison. * * Returns: true if @x is prime, false for composite numbers. */ bool is_prime_number(unsigned long x) { const struct primes *p; bool result; rcu_read_lock(); p = rcu_dereference(primes); while (x >= p->sz) { rcu_read_unlock(); if (!expand_to_next_prime(x)) return slow_is_prime_number(x); rcu_read_lock(); p = rcu_dereference(primes); } result = test_bit(x, p->primes); rcu_read_unlock(); return result; } EXPORT_SYMBOL(is_prime_number); static void dump_primes(void) { const struct primes *p; char *buf; buf = kmalloc(PAGE_SIZE, GFP_KERNEL); rcu_read_lock(); p = rcu_dereference(primes); if (buf) bitmap_print_to_pagebuf(true, buf, p->primes, p->sz); pr_info("primes.{last=%lu, .sz=%lu, .primes[]=...x%lx} = %s\n", p->last, p->sz, p->primes[BITS_TO_LONGS(p->sz) - 1], buf); rcu_read_unlock(); kfree(buf); } static int selftest(unsigned long max) { unsigned long x, last; if (!max) return 0; for (last = 0, x = 2; x < max; x++) { bool slow = slow_is_prime_number(x); bool fast = is_prime_number(x); if (slow != fast) { pr_err("inconsistent result for is-prime(%lu): slow=%s, fast=%s!\n", x, slow ? "yes" : "no", fast ? "yes" : "no"); goto err; } if (!slow) continue; if (next_prime_number(last) != x) { pr_err("incorrect result for next-prime(%lu): expected %lu, got %lu\n", last, x, next_prime_number(last)); goto err; } last = x; } pr_info("%s(%lu) passed, last prime was %lu\n", __func__, x, last); return 0; err: dump_primes(); return -EINVAL; } static int __init primes_init(void) { return selftest(selftest_max); } static void __exit primes_exit(void) { free_primes(); } module_init(primes_init); module_exit(primes_exit); module_param_named(selftest, selftest_max, ulong, 0400); MODULE_AUTHOR("Intel Corporation"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1