Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Dmitry Kasatkin | 1955 | 99.90% | 1 | 50.00% |
Thomas Gleixner | 2 | 0.10% | 1 | 50.00% |
Total | 1957 | 2 |
// SPDX-License-Identifier: GPL-2.0-or-later /* mpihelp-mul.c - MPI helper functions * Copyright (C) 1994, 1996, 1998, 1999, * 2000 Free Software Foundation, Inc. * * This file is part of GnuPG. * * Note: This code is heavily based on the GNU MP Library. * Actually it's the same code with only minor changes in the * way the data is stored; this is to support the abstraction * of an optional secure memory allocation which may be used * to avoid revealing of sensitive data due to paging etc. * The GNU MP Library itself is published under the LGPL; * however I decided to publish this code under the plain GPL. */ #include <linux/string.h> #include "mpi-internal.h" #include "longlong.h" #define MPN_MUL_N_RECURSE(prodp, up, vp, size, tspace) \ do { \ if ((size) < KARATSUBA_THRESHOLD) \ mul_n_basecase(prodp, up, vp, size); \ else \ mul_n(prodp, up, vp, size, tspace); \ } while (0); #define MPN_SQR_N_RECURSE(prodp, up, size, tspace) \ do { \ if ((size) < KARATSUBA_THRESHOLD) \ mpih_sqr_n_basecase(prodp, up, size); \ else \ mpih_sqr_n(prodp, up, size, tspace); \ } while (0); /* Multiply the natural numbers u (pointed to by UP) and v (pointed to by VP), * both with SIZE limbs, and store the result at PRODP. 2 * SIZE limbs are * always stored. Return the most significant limb. * * Argument constraints: * 1. PRODP != UP and PRODP != VP, i.e. the destination * must be distinct from the multiplier and the multiplicand. * * * Handle simple cases with traditional multiplication. * * This is the most critical code of multiplication. All multiplies rely * on this, both small and huge. Small ones arrive here immediately. Huge * ones arrive here as this is the base case for Karatsuba's recursive * algorithm below. */ static mpi_limb_t mul_n_basecase(mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp, mpi_size_t size) { mpi_size_t i; mpi_limb_t cy; mpi_limb_t v_limb; /* Multiply by the first limb in V separately, as the result can be * stored (not added) to PROD. We also avoid a loop for zeroing. */ v_limb = vp[0]; if (v_limb <= 1) { if (v_limb == 1) MPN_COPY(prodp, up, size); else MPN_ZERO(prodp, size); cy = 0; } else cy = mpihelp_mul_1(prodp, up, size, v_limb); prodp[size] = cy; prodp++; /* For each iteration in the outer loop, multiply one limb from * U with one limb from V, and add it to PROD. */ for (i = 1; i < size; i++) { v_limb = vp[i]; if (v_limb <= 1) { cy = 0; if (v_limb == 1) cy = mpihelp_add_n(prodp, prodp, up, size); } else cy = mpihelp_addmul_1(prodp, up, size, v_limb); prodp[size] = cy; prodp++; } return cy; } static void mul_n(mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp, mpi_size_t size, mpi_ptr_t tspace) { if (size & 1) { /* The size is odd, and the code below doesn't handle that. * Multiply the least significant (size - 1) limbs with a recursive * call, and handle the most significant limb of S1 and S2 * separately. * A slightly faster way to do this would be to make the Karatsuba * code below behave as if the size were even, and let it check for * odd size in the end. I.e., in essence move this code to the end. * Doing so would save us a recursive call, and potentially make the * stack grow a lot less. */ mpi_size_t esize = size - 1; /* even size */ mpi_limb_t cy_limb; MPN_MUL_N_RECURSE(prodp, up, vp, esize, tspace); cy_limb = mpihelp_addmul_1(prodp + esize, up, esize, vp[esize]); prodp[esize + esize] = cy_limb; cy_limb = mpihelp_addmul_1(prodp + esize, vp, size, up[esize]); prodp[esize + size] = cy_limb; } else { /* Anatolij Alekseevich Karatsuba's divide-and-conquer algorithm. * * Split U in two pieces, U1 and U0, such that * U = U0 + U1*(B**n), * and V in V1 and V0, such that * V = V0 + V1*(B**n). * * UV is then computed recursively using the identity * * 2n n n n * UV = (B + B )U V + B (U -U )(V -V ) + (B + 1)U V * 1 1 1 0 0 1 0 0 * * Where B = 2**BITS_PER_MP_LIMB. */ mpi_size_t hsize = size >> 1; mpi_limb_t cy; int negflg; /* Product H. ________________ ________________ * |_____U1 x V1____||____U0 x V0_____| * Put result in upper part of PROD and pass low part of TSPACE * as new TSPACE. */ MPN_MUL_N_RECURSE(prodp + size, up + hsize, vp + hsize, hsize, tspace); /* Product M. ________________ * |_(U1-U0)(V0-V1)_| */ if (mpihelp_cmp(up + hsize, up, hsize) >= 0) { mpihelp_sub_n(prodp, up + hsize, up, hsize); negflg = 0; } else { mpihelp_sub_n(prodp, up, up + hsize, hsize); negflg = 1; } if (mpihelp_cmp(vp + hsize, vp, hsize) >= 0) { mpihelp_sub_n(prodp + hsize, vp + hsize, vp, hsize); negflg ^= 1; } else { mpihelp_sub_n(prodp + hsize, vp, vp + hsize, hsize); /* No change of NEGFLG. */ } /* Read temporary operands from low part of PROD. * Put result in low part of TSPACE using upper part of TSPACE * as new TSPACE. */ MPN_MUL_N_RECURSE(tspace, prodp, prodp + hsize, hsize, tspace + size); /* Add/copy product H. */ MPN_COPY(prodp + hsize, prodp + size, hsize); cy = mpihelp_add_n(prodp + size, prodp + size, prodp + size + hsize, hsize); /* Add product M (if NEGFLG M is a negative number) */ if (negflg) cy -= mpihelp_sub_n(prodp + hsize, prodp + hsize, tspace, size); else cy += mpihelp_add_n(prodp + hsize, prodp + hsize, tspace, size); /* Product L. ________________ ________________ * |________________||____U0 x V0_____| * Read temporary operands from low part of PROD. * Put result in low part of TSPACE using upper part of TSPACE * as new TSPACE. */ MPN_MUL_N_RECURSE(tspace, up, vp, hsize, tspace + size); /* Add/copy Product L (twice) */ cy += mpihelp_add_n(prodp + hsize, prodp + hsize, tspace, size); if (cy) mpihelp_add_1(prodp + hsize + size, prodp + hsize + size, hsize, cy); MPN_COPY(prodp, tspace, hsize); cy = mpihelp_add_n(prodp + hsize, prodp + hsize, tspace + hsize, hsize); if (cy) mpihelp_add_1(prodp + size, prodp + size, size, 1); } } void mpih_sqr_n_basecase(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size) { mpi_size_t i; mpi_limb_t cy_limb; mpi_limb_t v_limb; /* Multiply by the first limb in V separately, as the result can be * stored (not added) to PROD. We also avoid a loop for zeroing. */ v_limb = up[0]; if (v_limb <= 1) { if (v_limb == 1) MPN_COPY(prodp, up, size); else MPN_ZERO(prodp, size); cy_limb = 0; } else cy_limb = mpihelp_mul_1(prodp, up, size, v_limb); prodp[size] = cy_limb; prodp++; /* For each iteration in the outer loop, multiply one limb from * U with one limb from V, and add it to PROD. */ for (i = 1; i < size; i++) { v_limb = up[i]; if (v_limb <= 1) { cy_limb = 0; if (v_limb == 1) cy_limb = mpihelp_add_n(prodp, prodp, up, size); } else cy_limb = mpihelp_addmul_1(prodp, up, size, v_limb); prodp[size] = cy_limb; prodp++; } } void mpih_sqr_n(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size, mpi_ptr_t tspace) { if (size & 1) { /* The size is odd, and the code below doesn't handle that. * Multiply the least significant (size - 1) limbs with a recursive * call, and handle the most significant limb of S1 and S2 * separately. * A slightly faster way to do this would be to make the Karatsuba * code below behave as if the size were even, and let it check for * odd size in the end. I.e., in essence move this code to the end. * Doing so would save us a recursive call, and potentially make the * stack grow a lot less. */ mpi_size_t esize = size - 1; /* even size */ mpi_limb_t cy_limb; MPN_SQR_N_RECURSE(prodp, up, esize, tspace); cy_limb = mpihelp_addmul_1(prodp + esize, up, esize, up[esize]); prodp[esize + esize] = cy_limb; cy_limb = mpihelp_addmul_1(prodp + esize, up, size, up[esize]); prodp[esize + size] = cy_limb; } else { mpi_size_t hsize = size >> 1; mpi_limb_t cy; /* Product H. ________________ ________________ * |_____U1 x U1____||____U0 x U0_____| * Put result in upper part of PROD and pass low part of TSPACE * as new TSPACE. */ MPN_SQR_N_RECURSE(prodp + size, up + hsize, hsize, tspace); /* Product M. ________________ * |_(U1-U0)(U0-U1)_| */ if (mpihelp_cmp(up + hsize, up, hsize) >= 0) mpihelp_sub_n(prodp, up + hsize, up, hsize); else mpihelp_sub_n(prodp, up, up + hsize, hsize); /* Read temporary operands from low part of PROD. * Put result in low part of TSPACE using upper part of TSPACE * as new TSPACE. */ MPN_SQR_N_RECURSE(tspace, prodp, hsize, tspace + size); /* Add/copy product H */ MPN_COPY(prodp + hsize, prodp + size, hsize); cy = mpihelp_add_n(prodp + size, prodp + size, prodp + size + hsize, hsize); /* Add product M (if NEGFLG M is a negative number). */ cy -= mpihelp_sub_n(prodp + hsize, prodp + hsize, tspace, size); /* Product L. ________________ ________________ * |________________||____U0 x U0_____| * Read temporary operands from low part of PROD. * Put result in low part of TSPACE using upper part of TSPACE * as new TSPACE. */ MPN_SQR_N_RECURSE(tspace, up, hsize, tspace + size); /* Add/copy Product L (twice). */ cy += mpihelp_add_n(prodp + hsize, prodp + hsize, tspace, size); if (cy) mpihelp_add_1(prodp + hsize + size, prodp + hsize + size, hsize, cy); MPN_COPY(prodp, tspace, hsize); cy = mpihelp_add_n(prodp + hsize, prodp + hsize, tspace + hsize, hsize); if (cy) mpihelp_add_1(prodp + size, prodp + size, size, 1); } } int mpihelp_mul_karatsuba_case(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t usize, mpi_ptr_t vp, mpi_size_t vsize, struct karatsuba_ctx *ctx) { mpi_limb_t cy; if (!ctx->tspace || ctx->tspace_size < vsize) { if (ctx->tspace) mpi_free_limb_space(ctx->tspace); ctx->tspace = mpi_alloc_limb_space(2 * vsize); if (!ctx->tspace) return -ENOMEM; ctx->tspace_size = vsize; } MPN_MUL_N_RECURSE(prodp, up, vp, vsize, ctx->tspace); prodp += vsize; up += vsize; usize -= vsize; if (usize >= vsize) { if (!ctx->tp || ctx->tp_size < vsize) { if (ctx->tp) mpi_free_limb_space(ctx->tp); ctx->tp = mpi_alloc_limb_space(2 * vsize); if (!ctx->tp) { if (ctx->tspace) mpi_free_limb_space(ctx->tspace); ctx->tspace = NULL; return -ENOMEM; } ctx->tp_size = vsize; } do { MPN_MUL_N_RECURSE(ctx->tp, up, vp, vsize, ctx->tspace); cy = mpihelp_add_n(prodp, prodp, ctx->tp, vsize); mpihelp_add_1(prodp + vsize, ctx->tp + vsize, vsize, cy); prodp += vsize; up += vsize; usize -= vsize; } while (usize >= vsize); } if (usize) { if (usize < KARATSUBA_THRESHOLD) { mpi_limb_t tmp; if (mpihelp_mul(ctx->tspace, vp, vsize, up, usize, &tmp) < 0) return -ENOMEM; } else { if (!ctx->next) { ctx->next = kzalloc(sizeof *ctx, GFP_KERNEL); if (!ctx->next) return -ENOMEM; } if (mpihelp_mul_karatsuba_case(ctx->tspace, vp, vsize, up, usize, ctx->next) < 0) return -ENOMEM; } cy = mpihelp_add_n(prodp, prodp, ctx->tspace, vsize); mpihelp_add_1(prodp + vsize, ctx->tspace + vsize, usize, cy); } return 0; } void mpihelp_release_karatsuba_ctx(struct karatsuba_ctx *ctx) { struct karatsuba_ctx *ctx2; if (ctx->tp) mpi_free_limb_space(ctx->tp); if (ctx->tspace) mpi_free_limb_space(ctx->tspace); for (ctx = ctx->next; ctx; ctx = ctx2) { ctx2 = ctx->next; if (ctx->tp) mpi_free_limb_space(ctx->tp); if (ctx->tspace) mpi_free_limb_space(ctx->tspace); kfree(ctx); } } /* Multiply the natural numbers u (pointed to by UP, with USIZE limbs) * and v (pointed to by VP, with VSIZE limbs), and store the result at * PRODP. USIZE + VSIZE limbs are always stored, but if the input * operands are normalized. Return the most significant limb of the * result. * * NOTE: The space pointed to by PRODP is overwritten before finished * with U and V, so overlap is an error. * * Argument constraints: * 1. USIZE >= VSIZE. * 2. PRODP != UP and PRODP != VP, i.e. the destination * must be distinct from the multiplier and the multiplicand. */ int mpihelp_mul(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t usize, mpi_ptr_t vp, mpi_size_t vsize, mpi_limb_t *_result) { mpi_ptr_t prod_endp = prodp + usize + vsize - 1; mpi_limb_t cy; struct karatsuba_ctx ctx; if (vsize < KARATSUBA_THRESHOLD) { mpi_size_t i; mpi_limb_t v_limb; if (!vsize) { *_result = 0; return 0; } /* Multiply by the first limb in V separately, as the result can be * stored (not added) to PROD. We also avoid a loop for zeroing. */ v_limb = vp[0]; if (v_limb <= 1) { if (v_limb == 1) MPN_COPY(prodp, up, usize); else MPN_ZERO(prodp, usize); cy = 0; } else cy = mpihelp_mul_1(prodp, up, usize, v_limb); prodp[usize] = cy; prodp++; /* For each iteration in the outer loop, multiply one limb from * U with one limb from V, and add it to PROD. */ for (i = 1; i < vsize; i++) { v_limb = vp[i]; if (v_limb <= 1) { cy = 0; if (v_limb == 1) cy = mpihelp_add_n(prodp, prodp, up, usize); } else cy = mpihelp_addmul_1(prodp, up, usize, v_limb); prodp[usize] = cy; prodp++; } *_result = cy; return 0; } memset(&ctx, 0, sizeof ctx); if (mpihelp_mul_karatsuba_case(prodp, up, usize, vp, vsize, &ctx) < 0) return -ENOMEM; mpihelp_release_karatsuba_ctx(&ctx); *_result = *prod_endp; return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1