Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Nick Terrell | 4300 | 100.00% | 1 | 100.00% |
Total | 4300 | 1 |
/* * FSE : Finite State Entropy encoder * Copyright (C) 2013-2015, Yann Collet. * * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following disclaimer * in the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * This program is free software; you can redistribute it and/or modify it under * the terms of the GNU General Public License version 2 as published by the * Free Software Foundation. This program is dual-licensed; you may select * either version 2 of the GNU General Public License ("GPL") or BSD license * ("BSD"). * * You can contact the author at : * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy */ /* ************************************************************** * Compiler specifics ****************************************************************/ #define FORCE_INLINE static __always_inline /* ************************************************************** * Includes ****************************************************************/ #include "bitstream.h" #include "fse.h" #include <linux/compiler.h> #include <linux/kernel.h> #include <linux/math64.h> #include <linux/string.h> /* memcpy, memset */ /* ************************************************************** * Error Management ****************************************************************/ #define FSE_STATIC_ASSERT(c) \ { \ enum { FSE_static_assert = 1 / (int)(!!(c)) }; \ } /* use only *after* variable declarations */ /* ************************************************************** * Templates ****************************************************************/ /* designed to be included for type-specific functions (template emulation in C) Objective is to write these functions only once, for improved maintenance */ /* safety checks */ #ifndef FSE_FUNCTION_EXTENSION #error "FSE_FUNCTION_EXTENSION must be defined" #endif #ifndef FSE_FUNCTION_TYPE #error "FSE_FUNCTION_TYPE must be defined" #endif /* Function names */ #define FSE_CAT(X, Y) X##Y #define FSE_FUNCTION_NAME(X, Y) FSE_CAT(X, Y) #define FSE_TYPE_NAME(X, Y) FSE_CAT(X, Y) /* Function templates */ /* FSE_buildCTable_wksp() : * Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`). * wkspSize should be sized to handle worst case situation, which is `1<<max_tableLog * sizeof(FSE_FUNCTION_TYPE)` * workSpace must also be properly aligned with FSE_FUNCTION_TYPE requirements */ size_t FSE_buildCTable_wksp(FSE_CTable *ct, const short *normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void *workspace, size_t workspaceSize) { U32 const tableSize = 1 << tableLog; U32 const tableMask = tableSize - 1; void *const ptr = ct; U16 *const tableU16 = ((U16 *)ptr) + 2; void *const FSCT = ((U32 *)ptr) + 1 /* header */ + (tableLog ? tableSize >> 1 : 1); FSE_symbolCompressionTransform *const symbolTT = (FSE_symbolCompressionTransform *)(FSCT); U32 const step = FSE_TABLESTEP(tableSize); U32 highThreshold = tableSize - 1; U32 *cumul; FSE_FUNCTION_TYPE *tableSymbol; size_t spaceUsed32 = 0; cumul = (U32 *)workspace + spaceUsed32; spaceUsed32 += FSE_MAX_SYMBOL_VALUE + 2; tableSymbol = (FSE_FUNCTION_TYPE *)((U32 *)workspace + spaceUsed32); spaceUsed32 += ALIGN(sizeof(FSE_FUNCTION_TYPE) * ((size_t)1 << tableLog), sizeof(U32)) >> 2; if ((spaceUsed32 << 2) > workspaceSize) return ERROR(tableLog_tooLarge); workspace = (U32 *)workspace + spaceUsed32; workspaceSize -= (spaceUsed32 << 2); /* CTable header */ tableU16[-2] = (U16)tableLog; tableU16[-1] = (U16)maxSymbolValue; /* For explanations on how to distribute symbol values over the table : * http://fastcompression.blogspot.fr/2014/02/fse-distributing-symbol-values.html */ /* symbol start positions */ { U32 u; cumul[0] = 0; for (u = 1; u <= maxSymbolValue + 1; u++) { if (normalizedCounter[u - 1] == -1) { /* Low proba symbol */ cumul[u] = cumul[u - 1] + 1; tableSymbol[highThreshold--] = (FSE_FUNCTION_TYPE)(u - 1); } else { cumul[u] = cumul[u - 1] + normalizedCounter[u - 1]; } } cumul[maxSymbolValue + 1] = tableSize + 1; } /* Spread symbols */ { U32 position = 0; U32 symbol; for (symbol = 0; symbol <= maxSymbolValue; symbol++) { int nbOccurences; for (nbOccurences = 0; nbOccurences < normalizedCounter[symbol]; nbOccurences++) { tableSymbol[position] = (FSE_FUNCTION_TYPE)symbol; position = (position + step) & tableMask; while (position > highThreshold) position = (position + step) & tableMask; /* Low proba area */ } } if (position != 0) return ERROR(GENERIC); /* Must have gone through all positions */ } /* Build table */ { U32 u; for (u = 0; u < tableSize; u++) { FSE_FUNCTION_TYPE s = tableSymbol[u]; /* note : static analyzer may not understand tableSymbol is properly initialized */ tableU16[cumul[s]++] = (U16)(tableSize + u); /* TableU16 : sorted by symbol order; gives next state value */ } } /* Build Symbol Transformation Table */ { unsigned total = 0; unsigned s; for (s = 0; s <= maxSymbolValue; s++) { switch (normalizedCounter[s]) { case 0: break; case -1: case 1: symbolTT[s].deltaNbBits = (tableLog << 16) - (1 << tableLog); symbolTT[s].deltaFindState = total - 1; total++; break; default: { U32 const maxBitsOut = tableLog - BIT_highbit32(normalizedCounter[s] - 1); U32 const minStatePlus = normalizedCounter[s] << maxBitsOut; symbolTT[s].deltaNbBits = (maxBitsOut << 16) - minStatePlus; symbolTT[s].deltaFindState = total - normalizedCounter[s]; total += normalizedCounter[s]; } } } } return 0; } /*-************************************************************** * FSE NCount encoding-decoding ****************************************************************/ size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog) { size_t const maxHeaderSize = (((maxSymbolValue + 1) * tableLog) >> 3) + 3; return maxSymbolValue ? maxHeaderSize : FSE_NCOUNTBOUND; /* maxSymbolValue==0 ? use default */ } static size_t FSE_writeNCount_generic(void *header, size_t headerBufferSize, const short *normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, unsigned writeIsSafe) { BYTE *const ostart = (BYTE *)header; BYTE *out = ostart; BYTE *const oend = ostart + headerBufferSize; int nbBits; const int tableSize = 1 << tableLog; int remaining; int threshold; U32 bitStream; int bitCount; unsigned charnum = 0; int previous0 = 0; bitStream = 0; bitCount = 0; /* Table Size */ bitStream += (tableLog - FSE_MIN_TABLELOG) << bitCount; bitCount += 4; /* Init */ remaining = tableSize + 1; /* +1 for extra accuracy */ threshold = tableSize; nbBits = tableLog + 1; while (remaining > 1) { /* stops at 1 */ if (previous0) { unsigned start = charnum; while (!normalizedCounter[charnum]) charnum++; while (charnum >= start + 24) { start += 24; bitStream += 0xFFFFU << bitCount; if ((!writeIsSafe) && (out > oend - 2)) return ERROR(dstSize_tooSmall); /* Buffer overflow */ out[0] = (BYTE)bitStream; out[1] = (BYTE)(bitStream >> 8); out += 2; bitStream >>= 16; } while (charnum >= start + 3) { start += 3; bitStream += 3 << bitCount; bitCount += 2; } bitStream += (charnum - start) << bitCount; bitCount += 2; if (bitCount > 16) { if ((!writeIsSafe) && (out > oend - 2)) return ERROR(dstSize_tooSmall); /* Buffer overflow */ out[0] = (BYTE)bitStream; out[1] = (BYTE)(bitStream >> 8); out += 2; bitStream >>= 16; bitCount -= 16; } } { int count = normalizedCounter[charnum++]; int const max = (2 * threshold - 1) - remaining; remaining -= count < 0 ? -count : count; count++; /* +1 for extra accuracy */ if (count >= threshold) count += max; /* [0..max[ [max..threshold[ (...) [threshold+max 2*threshold[ */ bitStream += count << bitCount; bitCount += nbBits; bitCount -= (count < max); previous0 = (count == 1); if (remaining < 1) return ERROR(GENERIC); while (remaining < threshold) nbBits--, threshold >>= 1; } if (bitCount > 16) { if ((!writeIsSafe) && (out > oend - 2)) return ERROR(dstSize_tooSmall); /* Buffer overflow */ out[0] = (BYTE)bitStream; out[1] = (BYTE)(bitStream >> 8); out += 2; bitStream >>= 16; bitCount -= 16; } } /* flush remaining bitStream */ if ((!writeIsSafe) && (out > oend - 2)) return ERROR(dstSize_tooSmall); /* Buffer overflow */ out[0] = (BYTE)bitStream; out[1] = (BYTE)(bitStream >> 8); out += (bitCount + 7) / 8; if (charnum > maxSymbolValue + 1) return ERROR(GENERIC); return (out - ostart); } size_t FSE_writeNCount(void *buffer, size_t bufferSize, const short *normalizedCounter, unsigned maxSymbolValue, unsigned tableLog) { if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge); /* Unsupported */ if (tableLog < FSE_MIN_TABLELOG) return ERROR(GENERIC); /* Unsupported */ if (bufferSize < FSE_NCountWriteBound(maxSymbolValue, tableLog)) return FSE_writeNCount_generic(buffer, bufferSize, normalizedCounter, maxSymbolValue, tableLog, 0); return FSE_writeNCount_generic(buffer, bufferSize, normalizedCounter, maxSymbolValue, tableLog, 1); } /*-************************************************************** * Counting histogram ****************************************************************/ /*! FSE_count_simple This function counts byte values within `src`, and store the histogram into table `count`. It doesn't use any additional memory. But this function is unsafe : it doesn't check that all values within `src` can fit into `count`. For this reason, prefer using a table `count` with 256 elements. @return : count of most numerous element */ size_t FSE_count_simple(unsigned *count, unsigned *maxSymbolValuePtr, const void *src, size_t srcSize) { const BYTE *ip = (const BYTE *)src; const BYTE *const end = ip + srcSize; unsigned maxSymbolValue = *maxSymbolValuePtr; unsigned max = 0; memset(count, 0, (maxSymbolValue + 1) * sizeof(*count)); if (srcSize == 0) { *maxSymbolValuePtr = 0; return 0; } while (ip < end) count[*ip++]++; while (!count[maxSymbolValue]) maxSymbolValue--; *maxSymbolValuePtr = maxSymbolValue; { U32 s; for (s = 0; s <= maxSymbolValue; s++) if (count[s] > max) max = count[s]; } return (size_t)max; } /* FSE_count_parallel_wksp() : * Same as FSE_count_parallel(), but using an externally provided scratch buffer. * `workSpace` size must be a minimum of `1024 * sizeof(unsigned)`` */ static size_t FSE_count_parallel_wksp(unsigned *count, unsigned *maxSymbolValuePtr, const void *source, size_t sourceSize, unsigned checkMax, unsigned *const workSpace) { const BYTE *ip = (const BYTE *)source; const BYTE *const iend = ip + sourceSize; unsigned maxSymbolValue = *maxSymbolValuePtr; unsigned max = 0; U32 *const Counting1 = workSpace; U32 *const Counting2 = Counting1 + 256; U32 *const Counting3 = Counting2 + 256; U32 *const Counting4 = Counting3 + 256; memset(Counting1, 0, 4 * 256 * sizeof(unsigned)); /* safety checks */ if (!sourceSize) { memset(count, 0, maxSymbolValue + 1); *maxSymbolValuePtr = 0; return 0; } if (!maxSymbolValue) maxSymbolValue = 255; /* 0 == default */ /* by stripes of 16 bytes */ { U32 cached = ZSTD_read32(ip); ip += 4; while (ip < iend - 15) { U32 c = cached; cached = ZSTD_read32(ip); ip += 4; Counting1[(BYTE)c]++; Counting2[(BYTE)(c >> 8)]++; Counting3[(BYTE)(c >> 16)]++; Counting4[c >> 24]++; c = cached; cached = ZSTD_read32(ip); ip += 4; Counting1[(BYTE)c]++; Counting2[(BYTE)(c >> 8)]++; Counting3[(BYTE)(c >> 16)]++; Counting4[c >> 24]++; c = cached; cached = ZSTD_read32(ip); ip += 4; Counting1[(BYTE)c]++; Counting2[(BYTE)(c >> 8)]++; Counting3[(BYTE)(c >> 16)]++; Counting4[c >> 24]++; c = cached; cached = ZSTD_read32(ip); ip += 4; Counting1[(BYTE)c]++; Counting2[(BYTE)(c >> 8)]++; Counting3[(BYTE)(c >> 16)]++; Counting4[c >> 24]++; } ip -= 4; } /* finish last symbols */ while (ip < iend) Counting1[*ip++]++; if (checkMax) { /* verify stats will fit into destination table */ U32 s; for (s = 255; s > maxSymbolValue; s--) { Counting1[s] += Counting2[s] + Counting3[s] + Counting4[s]; if (Counting1[s]) return ERROR(maxSymbolValue_tooSmall); } } { U32 s; for (s = 0; s <= maxSymbolValue; s++) { count[s] = Counting1[s] + Counting2[s] + Counting3[s] + Counting4[s]; if (count[s] > max) max = count[s]; } } while (!count[maxSymbolValue]) maxSymbolValue--; *maxSymbolValuePtr = maxSymbolValue; return (size_t)max; } /* FSE_countFast_wksp() : * Same as FSE_countFast(), but using an externally provided scratch buffer. * `workSpace` size must be table of >= `1024` unsigned */ size_t FSE_countFast_wksp(unsigned *count, unsigned *maxSymbolValuePtr, const void *source, size_t sourceSize, unsigned *workSpace) { if (sourceSize < 1500) return FSE_count_simple(count, maxSymbolValuePtr, source, sourceSize); return FSE_count_parallel_wksp(count, maxSymbolValuePtr, source, sourceSize, 0, workSpace); } /* FSE_count_wksp() : * Same as FSE_count(), but using an externally provided scratch buffer. * `workSpace` size must be table of >= `1024` unsigned */ size_t FSE_count_wksp(unsigned *count, unsigned *maxSymbolValuePtr, const void *source, size_t sourceSize, unsigned *workSpace) { if (*maxSymbolValuePtr < 255) return FSE_count_parallel_wksp(count, maxSymbolValuePtr, source, sourceSize, 1, workSpace); *maxSymbolValuePtr = 255; return FSE_countFast_wksp(count, maxSymbolValuePtr, source, sourceSize, workSpace); } /*-************************************************************** * FSE Compression Code ****************************************************************/ /*! FSE_sizeof_CTable() : FSE_CTable is a variable size structure which contains : `U16 tableLog;` `U16 maxSymbolValue;` `U16 nextStateNumber[1 << tableLog];` // This size is variable `FSE_symbolCompressionTransform symbolTT[maxSymbolValue+1];` // This size is variable Allocation is manual (C standard does not support variable-size structures). */ size_t FSE_sizeof_CTable(unsigned maxSymbolValue, unsigned tableLog) { if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge); return FSE_CTABLE_SIZE_U32(tableLog, maxSymbolValue) * sizeof(U32); } /* provides the minimum logSize to safely represent a distribution */ static unsigned FSE_minTableLog(size_t srcSize, unsigned maxSymbolValue) { U32 minBitsSrc = BIT_highbit32((U32)(srcSize - 1)) + 1; U32 minBitsSymbols = BIT_highbit32(maxSymbolValue) + 2; U32 minBits = minBitsSrc < minBitsSymbols ? minBitsSrc : minBitsSymbols; return minBits; } unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus) { U32 maxBitsSrc = BIT_highbit32((U32)(srcSize - 1)) - minus; U32 tableLog = maxTableLog; U32 minBits = FSE_minTableLog(srcSize, maxSymbolValue); if (tableLog == 0) tableLog = FSE_DEFAULT_TABLELOG; if (maxBitsSrc < tableLog) tableLog = maxBitsSrc; /* Accuracy can be reduced */ if (minBits > tableLog) tableLog = minBits; /* Need a minimum to safely represent all symbol values */ if (tableLog < FSE_MIN_TABLELOG) tableLog = FSE_MIN_TABLELOG; if (tableLog > FSE_MAX_TABLELOG) tableLog = FSE_MAX_TABLELOG; return tableLog; } unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue) { return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 2); } /* Secondary normalization method. To be used when primary method fails. */ static size_t FSE_normalizeM2(short *norm, U32 tableLog, const unsigned *count, size_t total, U32 maxSymbolValue) { short const NOT_YET_ASSIGNED = -2; U32 s; U32 distributed = 0; U32 ToDistribute; /* Init */ U32 const lowThreshold = (U32)(total >> tableLog); U32 lowOne = (U32)((total * 3) >> (tableLog + 1)); for (s = 0; s <= maxSymbolValue; s++) { if (count[s] == 0) { norm[s] = 0; continue; } if (count[s] <= lowThreshold) { norm[s] = -1; distributed++; total -= count[s]; continue; } if (count[s] <= lowOne) { norm[s] = 1; distributed++; total -= count[s]; continue; } norm[s] = NOT_YET_ASSIGNED; } ToDistribute = (1 << tableLog) - distributed; if ((total / ToDistribute) > lowOne) { /* risk of rounding to zero */ lowOne = (U32)((total * 3) / (ToDistribute * 2)); for (s = 0; s <= maxSymbolValue; s++) { if ((norm[s] == NOT_YET_ASSIGNED) && (count[s] <= lowOne)) { norm[s] = 1; distributed++; total -= count[s]; continue; } } ToDistribute = (1 << tableLog) - distributed; } if (distributed == maxSymbolValue + 1) { /* all values are pretty poor; probably incompressible data (should have already been detected); find max, then give all remaining points to max */ U32 maxV = 0, maxC = 0; for (s = 0; s <= maxSymbolValue; s++) if (count[s] > maxC) maxV = s, maxC = count[s]; norm[maxV] += (short)ToDistribute; return 0; } if (total == 0) { /* all of the symbols were low enough for the lowOne or lowThreshold */ for (s = 0; ToDistribute > 0; s = (s + 1) % (maxSymbolValue + 1)) if (norm[s] > 0) ToDistribute--, norm[s]++; return 0; } { U64 const vStepLog = 62 - tableLog; U64 const mid = (1ULL << (vStepLog - 1)) - 1; U64 const rStep = div_u64((((U64)1 << vStepLog) * ToDistribute) + mid, (U32)total); /* scale on remaining */ U64 tmpTotal = mid; for (s = 0; s <= maxSymbolValue; s++) { if (norm[s] == NOT_YET_ASSIGNED) { U64 const end = tmpTotal + (count[s] * rStep); U32 const sStart = (U32)(tmpTotal >> vStepLog); U32 const sEnd = (U32)(end >> vStepLog); U32 const weight = sEnd - sStart; if (weight < 1) return ERROR(GENERIC); norm[s] = (short)weight; tmpTotal = end; } } } return 0; } size_t FSE_normalizeCount(short *normalizedCounter, unsigned tableLog, const unsigned *count, size_t total, unsigned maxSymbolValue) { /* Sanity checks */ if (tableLog == 0) tableLog = FSE_DEFAULT_TABLELOG; if (tableLog < FSE_MIN_TABLELOG) return ERROR(GENERIC); /* Unsupported size */ if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge); /* Unsupported size */ if (tableLog < FSE_minTableLog(total, maxSymbolValue)) return ERROR(GENERIC); /* Too small tableLog, compression potentially impossible */ { U32 const rtbTable[] = {0, 473195, 504333, 520860, 550000, 700000, 750000, 830000}; U64 const scale = 62 - tableLog; U64 const step = div_u64((U64)1 << 62, (U32)total); /* <== here, one division ! */ U64 const vStep = 1ULL << (scale - 20); int stillToDistribute = 1 << tableLog; unsigned s; unsigned largest = 0; short largestP = 0; U32 lowThreshold = (U32)(total >> tableLog); for (s = 0; s <= maxSymbolValue; s++) { if (count[s] == total) return 0; /* rle special case */ if (count[s] == 0) { normalizedCounter[s] = 0; continue; } if (count[s] <= lowThreshold) { normalizedCounter[s] = -1; stillToDistribute--; } else { short proba = (short)((count[s] * step) >> scale); if (proba < 8) { U64 restToBeat = vStep * rtbTable[proba]; proba += (count[s] * step) - ((U64)proba << scale) > restToBeat; } if (proba > largestP) largestP = proba, largest = s; normalizedCounter[s] = proba; stillToDistribute -= proba; } } if (-stillToDistribute >= (normalizedCounter[largest] >> 1)) { /* corner case, need another normalization method */ size_t const errorCode = FSE_normalizeM2(normalizedCounter, tableLog, count, total, maxSymbolValue); if (FSE_isError(errorCode)) return errorCode; } else normalizedCounter[largest] += (short)stillToDistribute; } return tableLog; } /* fake FSE_CTable, for raw (uncompressed) input */ size_t FSE_buildCTable_raw(FSE_CTable *ct, unsigned nbBits) { const unsigned tableSize = 1 << nbBits; const unsigned tableMask = tableSize - 1; const unsigned maxSymbolValue = tableMask; void *const ptr = ct; U16 *const tableU16 = ((U16 *)ptr) + 2; void *const FSCT = ((U32 *)ptr) + 1 /* header */ + (tableSize >> 1); /* assumption : tableLog >= 1 */ FSE_symbolCompressionTransform *const symbolTT = (FSE_symbolCompressionTransform *)(FSCT); unsigned s; /* Sanity checks */ if (nbBits < 1) return ERROR(GENERIC); /* min size */ /* header */ tableU16[-2] = (U16)nbBits; tableU16[-1] = (U16)maxSymbolValue; /* Build table */ for (s = 0; s < tableSize; s++) tableU16[s] = (U16)(tableSize + s); /* Build Symbol Transformation Table */ { const U32 deltaNbBits = (nbBits << 16) - (1 << nbBits); for (s = 0; s <= maxSymbolValue; s++) { symbolTT[s].deltaNbBits = deltaNbBits; symbolTT[s].deltaFindState = s - 1; } } return 0; } /* fake FSE_CTable, for rle input (always same symbol) */ size_t FSE_buildCTable_rle(FSE_CTable *ct, BYTE symbolValue) { void *ptr = ct; U16 *tableU16 = ((U16 *)ptr) + 2; void *FSCTptr = (U32 *)ptr + 2; FSE_symbolCompressionTransform *symbolTT = (FSE_symbolCompressionTransform *)FSCTptr; /* header */ tableU16[-2] = (U16)0; tableU16[-1] = (U16)symbolValue; /* Build table */ tableU16[0] = 0; tableU16[1] = 0; /* just in case */ /* Build Symbol Transformation Table */ symbolTT[symbolValue].deltaNbBits = 0; symbolTT[symbolValue].deltaFindState = 0; return 0; } static size_t FSE_compress_usingCTable_generic(void *dst, size_t dstSize, const void *src, size_t srcSize, const FSE_CTable *ct, const unsigned fast) { const BYTE *const istart = (const BYTE *)src; const BYTE *const iend = istart + srcSize; const BYTE *ip = iend; BIT_CStream_t bitC; FSE_CState_t CState1, CState2; /* init */ if (srcSize <= 2) return 0; { size_t const initError = BIT_initCStream(&bitC, dst, dstSize); if (FSE_isError(initError)) return 0; /* not enough space available to write a bitstream */ } #define FSE_FLUSHBITS(s) (fast ? BIT_flushBitsFast(s) : BIT_flushBits(s)) if (srcSize & 1) { FSE_initCState2(&CState1, ct, *--ip); FSE_initCState2(&CState2, ct, *--ip); FSE_encodeSymbol(&bitC, &CState1, *--ip); FSE_FLUSHBITS(&bitC); } else { FSE_initCState2(&CState2, ct, *--ip); FSE_initCState2(&CState1, ct, *--ip); } /* join to mod 4 */ srcSize -= 2; if ((sizeof(bitC.bitContainer) * 8 > FSE_MAX_TABLELOG * 4 + 7) && (srcSize & 2)) { /* test bit 2 */ FSE_encodeSymbol(&bitC, &CState2, *--ip); FSE_encodeSymbol(&bitC, &CState1, *--ip); FSE_FLUSHBITS(&bitC); } /* 2 or 4 encoding per loop */ while (ip > istart) { FSE_encodeSymbol(&bitC, &CState2, *--ip); if (sizeof(bitC.bitContainer) * 8 < FSE_MAX_TABLELOG * 2 + 7) /* this test must be static */ FSE_FLUSHBITS(&bitC); FSE_encodeSymbol(&bitC, &CState1, *--ip); if (sizeof(bitC.bitContainer) * 8 > FSE_MAX_TABLELOG * 4 + 7) { /* this test must be static */ FSE_encodeSymbol(&bitC, &CState2, *--ip); FSE_encodeSymbol(&bitC, &CState1, *--ip); } FSE_FLUSHBITS(&bitC); } FSE_flushCState(&bitC, &CState2); FSE_flushCState(&bitC, &CState1); return BIT_closeCStream(&bitC); } size_t FSE_compress_usingCTable(void *dst, size_t dstSize, const void *src, size_t srcSize, const FSE_CTable *ct) { unsigned const fast = (dstSize >= FSE_BLOCKBOUND(srcSize)); if (fast) return FSE_compress_usingCTable_generic(dst, dstSize, src, srcSize, ct, 1); else return FSE_compress_usingCTable_generic(dst, dstSize, src, srcSize, ct, 0); } size_t FSE_compressBound(size_t size) { return FSE_COMPRESSBOUND(size); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1