Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Nick Terrell | 6020 | 100.00% | 1 | 100.00% |
Total | 6020 | 1 |
/* * Huffman decoder, part of New Generation Entropy library * Copyright (C) 2013-2016, Yann Collet. * * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following disclaimer * in the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * This program is free software; you can redistribute it and/or modify it under * the terms of the GNU General Public License version 2 as published by the * Free Software Foundation. This program is dual-licensed; you may select * either version 2 of the GNU General Public License ("GPL") or BSD license * ("BSD"). * * You can contact the author at : * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy */ /* ************************************************************** * Compiler specifics ****************************************************************/ #define FORCE_INLINE static __always_inline /* ************************************************************** * Dependencies ****************************************************************/ #include "bitstream.h" /* BIT_* */ #include "fse.h" /* header compression */ #include "huf.h" #include <linux/compiler.h> #include <linux/kernel.h> #include <linux/string.h> /* memcpy, memset */ /* ************************************************************** * Error Management ****************************************************************/ #define HUF_STATIC_ASSERT(c) \ { \ enum { HUF_static_assert = 1 / (int)(!!(c)) }; \ } /* use only *after* variable declarations */ /*-***************************/ /* generic DTableDesc */ /*-***************************/ typedef struct { BYTE maxTableLog; BYTE tableType; BYTE tableLog; BYTE reserved; } DTableDesc; static DTableDesc HUF_getDTableDesc(const HUF_DTable *table) { DTableDesc dtd; memcpy(&dtd, table, sizeof(dtd)); return dtd; } /*-***************************/ /* single-symbol decoding */ /*-***************************/ typedef struct { BYTE byte; BYTE nbBits; } HUF_DEltX2; /* single-symbol decoding */ size_t HUF_readDTableX2_wksp(HUF_DTable *DTable, const void *src, size_t srcSize, void *workspace, size_t workspaceSize) { U32 tableLog = 0; U32 nbSymbols = 0; size_t iSize; void *const dtPtr = DTable + 1; HUF_DEltX2 *const dt = (HUF_DEltX2 *)dtPtr; U32 *rankVal; BYTE *huffWeight; size_t spaceUsed32 = 0; rankVal = (U32 *)workspace + spaceUsed32; spaceUsed32 += HUF_TABLELOG_ABSOLUTEMAX + 1; huffWeight = (BYTE *)((U32 *)workspace + spaceUsed32); spaceUsed32 += ALIGN(HUF_SYMBOLVALUE_MAX + 1, sizeof(U32)) >> 2; if ((spaceUsed32 << 2) > workspaceSize) return ERROR(tableLog_tooLarge); workspace = (U32 *)workspace + spaceUsed32; workspaceSize -= (spaceUsed32 << 2); HUF_STATIC_ASSERT(sizeof(DTableDesc) == sizeof(HUF_DTable)); /* memset(huffWeight, 0, sizeof(huffWeight)); */ /* is not necessary, even though some analyzer complain ... */ iSize = HUF_readStats_wksp(huffWeight, HUF_SYMBOLVALUE_MAX + 1, rankVal, &nbSymbols, &tableLog, src, srcSize, workspace, workspaceSize); if (HUF_isError(iSize)) return iSize; /* Table header */ { DTableDesc dtd = HUF_getDTableDesc(DTable); if (tableLog > (U32)(dtd.maxTableLog + 1)) return ERROR(tableLog_tooLarge); /* DTable too small, Huffman tree cannot fit in */ dtd.tableType = 0; dtd.tableLog = (BYTE)tableLog; memcpy(DTable, &dtd, sizeof(dtd)); } /* Calculate starting value for each rank */ { U32 n, nextRankStart = 0; for (n = 1; n < tableLog + 1; n++) { U32 const curr = nextRankStart; nextRankStart += (rankVal[n] << (n - 1)); rankVal[n] = curr; } } /* fill DTable */ { U32 n; for (n = 0; n < nbSymbols; n++) { U32 const w = huffWeight[n]; U32 const length = (1 << w) >> 1; U32 u; HUF_DEltX2 D; D.byte = (BYTE)n; D.nbBits = (BYTE)(tableLog + 1 - w); for (u = rankVal[w]; u < rankVal[w] + length; u++) dt[u] = D; rankVal[w] += length; } } return iSize; } static BYTE HUF_decodeSymbolX2(BIT_DStream_t *Dstream, const HUF_DEltX2 *dt, const U32 dtLog) { size_t const val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */ BYTE const c = dt[val].byte; BIT_skipBits(Dstream, dt[val].nbBits); return c; } #define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) *ptr++ = HUF_decodeSymbolX2(DStreamPtr, dt, dtLog) #define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \ if (ZSTD_64bits() || (HUF_TABLELOG_MAX <= 12)) \ HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) #define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \ if (ZSTD_64bits()) \ HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) FORCE_INLINE size_t HUF_decodeStreamX2(BYTE *p, BIT_DStream_t *const bitDPtr, BYTE *const pEnd, const HUF_DEltX2 *const dt, const U32 dtLog) { BYTE *const pStart = p; /* up to 4 symbols at a time */ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd - 4)) { HUF_DECODE_SYMBOLX2_2(p, bitDPtr); HUF_DECODE_SYMBOLX2_1(p, bitDPtr); HUF_DECODE_SYMBOLX2_2(p, bitDPtr); HUF_DECODE_SYMBOLX2_0(p, bitDPtr); } /* closer to the end */ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd)) HUF_DECODE_SYMBOLX2_0(p, bitDPtr); /* no more data to retrieve from bitstream, hence no need to reload */ while (p < pEnd) HUF_DECODE_SYMBOLX2_0(p, bitDPtr); return pEnd - pStart; } static size_t HUF_decompress1X2_usingDTable_internal(void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, const HUF_DTable *DTable) { BYTE *op = (BYTE *)dst; BYTE *const oend = op + dstSize; const void *dtPtr = DTable + 1; const HUF_DEltX2 *const dt = (const HUF_DEltX2 *)dtPtr; BIT_DStream_t bitD; DTableDesc const dtd = HUF_getDTableDesc(DTable); U32 const dtLog = dtd.tableLog; { size_t const errorCode = BIT_initDStream(&bitD, cSrc, cSrcSize); if (HUF_isError(errorCode)) return errorCode; } HUF_decodeStreamX2(op, &bitD, oend, dt, dtLog); /* check */ if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected); return dstSize; } size_t HUF_decompress1X2_usingDTable(void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, const HUF_DTable *DTable) { DTableDesc dtd = HUF_getDTableDesc(DTable); if (dtd.tableType != 0) return ERROR(GENERIC); return HUF_decompress1X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable); } size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable *DCtx, void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, void *workspace, size_t workspaceSize) { const BYTE *ip = (const BYTE *)cSrc; size_t const hSize = HUF_readDTableX2_wksp(DCtx, cSrc, cSrcSize, workspace, workspaceSize); if (HUF_isError(hSize)) return hSize; if (hSize >= cSrcSize) return ERROR(srcSize_wrong); ip += hSize; cSrcSize -= hSize; return HUF_decompress1X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx); } static size_t HUF_decompress4X2_usingDTable_internal(void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, const HUF_DTable *DTable) { /* Check */ if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */ { const BYTE *const istart = (const BYTE *)cSrc; BYTE *const ostart = (BYTE *)dst; BYTE *const oend = ostart + dstSize; const void *const dtPtr = DTable + 1; const HUF_DEltX2 *const dt = (const HUF_DEltX2 *)dtPtr; /* Init */ BIT_DStream_t bitD1; BIT_DStream_t bitD2; BIT_DStream_t bitD3; BIT_DStream_t bitD4; size_t const length1 = ZSTD_readLE16(istart); size_t const length2 = ZSTD_readLE16(istart + 2); size_t const length3 = ZSTD_readLE16(istart + 4); size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6); const BYTE *const istart1 = istart + 6; /* jumpTable */ const BYTE *const istart2 = istart1 + length1; const BYTE *const istart3 = istart2 + length2; const BYTE *const istart4 = istart3 + length3; const size_t segmentSize = (dstSize + 3) / 4; BYTE *const opStart2 = ostart + segmentSize; BYTE *const opStart3 = opStart2 + segmentSize; BYTE *const opStart4 = opStart3 + segmentSize; BYTE *op1 = ostart; BYTE *op2 = opStart2; BYTE *op3 = opStart3; BYTE *op4 = opStart4; U32 endSignal; DTableDesc const dtd = HUF_getDTableDesc(DTable); U32 const dtLog = dtd.tableLog; if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */ { size_t const errorCode = BIT_initDStream(&bitD1, istart1, length1); if (HUF_isError(errorCode)) return errorCode; } { size_t const errorCode = BIT_initDStream(&bitD2, istart2, length2); if (HUF_isError(errorCode)) return errorCode; } { size_t const errorCode = BIT_initDStream(&bitD3, istart3, length3); if (HUF_isError(errorCode)) return errorCode; } { size_t const errorCode = BIT_initDStream(&bitD4, istart4, length4); if (HUF_isError(errorCode)) return errorCode; } /* 16-32 symbols per loop (4-8 symbols per stream) */ endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4); for (; (endSignal == BIT_DStream_unfinished) && (op4 < (oend - 7));) { HUF_DECODE_SYMBOLX2_2(op1, &bitD1); HUF_DECODE_SYMBOLX2_2(op2, &bitD2); HUF_DECODE_SYMBOLX2_2(op3, &bitD3); HUF_DECODE_SYMBOLX2_2(op4, &bitD4); HUF_DECODE_SYMBOLX2_1(op1, &bitD1); HUF_DECODE_SYMBOLX2_1(op2, &bitD2); HUF_DECODE_SYMBOLX2_1(op3, &bitD3); HUF_DECODE_SYMBOLX2_1(op4, &bitD4); HUF_DECODE_SYMBOLX2_2(op1, &bitD1); HUF_DECODE_SYMBOLX2_2(op2, &bitD2); HUF_DECODE_SYMBOLX2_2(op3, &bitD3); HUF_DECODE_SYMBOLX2_2(op4, &bitD4); HUF_DECODE_SYMBOLX2_0(op1, &bitD1); HUF_DECODE_SYMBOLX2_0(op2, &bitD2); HUF_DECODE_SYMBOLX2_0(op3, &bitD3); HUF_DECODE_SYMBOLX2_0(op4, &bitD4); endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4); } /* check corruption */ if (op1 > opStart2) return ERROR(corruption_detected); if (op2 > opStart3) return ERROR(corruption_detected); if (op3 > opStart4) return ERROR(corruption_detected); /* note : op4 supposed already verified within main loop */ /* finish bitStreams one by one */ HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog); HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog); HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog); HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog); /* check */ endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4); if (!endSignal) return ERROR(corruption_detected); /* decoded size */ return dstSize; } } size_t HUF_decompress4X2_usingDTable(void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, const HUF_DTable *DTable) { DTableDesc dtd = HUF_getDTableDesc(DTable); if (dtd.tableType != 0) return ERROR(GENERIC); return HUF_decompress4X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable); } size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable *dctx, void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, void *workspace, size_t workspaceSize) { const BYTE *ip = (const BYTE *)cSrc; size_t const hSize = HUF_readDTableX2_wksp(dctx, cSrc, cSrcSize, workspace, workspaceSize); if (HUF_isError(hSize)) return hSize; if (hSize >= cSrcSize) return ERROR(srcSize_wrong); ip += hSize; cSrcSize -= hSize; return HUF_decompress4X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx); } /* *************************/ /* double-symbols decoding */ /* *************************/ typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX4; /* double-symbols decoding */ typedef struct { BYTE symbol; BYTE weight; } sortedSymbol_t; /* HUF_fillDTableX4Level2() : * `rankValOrigin` must be a table of at least (HUF_TABLELOG_MAX + 1) U32 */ static void HUF_fillDTableX4Level2(HUF_DEltX4 *DTable, U32 sizeLog, const U32 consumed, const U32 *rankValOrigin, const int minWeight, const sortedSymbol_t *sortedSymbols, const U32 sortedListSize, U32 nbBitsBaseline, U16 baseSeq) { HUF_DEltX4 DElt; U32 rankVal[HUF_TABLELOG_MAX + 1]; /* get pre-calculated rankVal */ memcpy(rankVal, rankValOrigin, sizeof(rankVal)); /* fill skipped values */ if (minWeight > 1) { U32 i, skipSize = rankVal[minWeight]; ZSTD_writeLE16(&(DElt.sequence), baseSeq); DElt.nbBits = (BYTE)(consumed); DElt.length = 1; for (i = 0; i < skipSize; i++) DTable[i] = DElt; } /* fill DTable */ { U32 s; for (s = 0; s < sortedListSize; s++) { /* note : sortedSymbols already skipped */ const U32 symbol = sortedSymbols[s].symbol; const U32 weight = sortedSymbols[s].weight; const U32 nbBits = nbBitsBaseline - weight; const U32 length = 1 << (sizeLog - nbBits); const U32 start = rankVal[weight]; U32 i = start; const U32 end = start + length; ZSTD_writeLE16(&(DElt.sequence), (U16)(baseSeq + (symbol << 8))); DElt.nbBits = (BYTE)(nbBits + consumed); DElt.length = 2; do { DTable[i++] = DElt; } while (i < end); /* since length >= 1 */ rankVal[weight] += length; } } } typedef U32 rankVal_t[HUF_TABLELOG_MAX][HUF_TABLELOG_MAX + 1]; typedef U32 rankValCol_t[HUF_TABLELOG_MAX + 1]; static void HUF_fillDTableX4(HUF_DEltX4 *DTable, const U32 targetLog, const sortedSymbol_t *sortedList, const U32 sortedListSize, const U32 *rankStart, rankVal_t rankValOrigin, const U32 maxWeight, const U32 nbBitsBaseline) { U32 rankVal[HUF_TABLELOG_MAX + 1]; const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */ const U32 minBits = nbBitsBaseline - maxWeight; U32 s; memcpy(rankVal, rankValOrigin, sizeof(rankVal)); /* fill DTable */ for (s = 0; s < sortedListSize; s++) { const U16 symbol = sortedList[s].symbol; const U32 weight = sortedList[s].weight; const U32 nbBits = nbBitsBaseline - weight; const U32 start = rankVal[weight]; const U32 length = 1 << (targetLog - nbBits); if (targetLog - nbBits >= minBits) { /* enough room for a second symbol */ U32 sortedRank; int minWeight = nbBits + scaleLog; if (minWeight < 1) minWeight = 1; sortedRank = rankStart[minWeight]; HUF_fillDTableX4Level2(DTable + start, targetLog - nbBits, nbBits, rankValOrigin[nbBits], minWeight, sortedList + sortedRank, sortedListSize - sortedRank, nbBitsBaseline, symbol); } else { HUF_DEltX4 DElt; ZSTD_writeLE16(&(DElt.sequence), symbol); DElt.nbBits = (BYTE)(nbBits); DElt.length = 1; { U32 const end = start + length; U32 u; for (u = start; u < end; u++) DTable[u] = DElt; } } rankVal[weight] += length; } } size_t HUF_readDTableX4_wksp(HUF_DTable *DTable, const void *src, size_t srcSize, void *workspace, size_t workspaceSize) { U32 tableLog, maxW, sizeOfSort, nbSymbols; DTableDesc dtd = HUF_getDTableDesc(DTable); U32 const maxTableLog = dtd.maxTableLog; size_t iSize; void *dtPtr = DTable + 1; /* force compiler to avoid strict-aliasing */ HUF_DEltX4 *const dt = (HUF_DEltX4 *)dtPtr; U32 *rankStart; rankValCol_t *rankVal; U32 *rankStats; U32 *rankStart0; sortedSymbol_t *sortedSymbol; BYTE *weightList; size_t spaceUsed32 = 0; HUF_STATIC_ASSERT((sizeof(rankValCol_t) & 3) == 0); rankVal = (rankValCol_t *)((U32 *)workspace + spaceUsed32); spaceUsed32 += (sizeof(rankValCol_t) * HUF_TABLELOG_MAX) >> 2; rankStats = (U32 *)workspace + spaceUsed32; spaceUsed32 += HUF_TABLELOG_MAX + 1; rankStart0 = (U32 *)workspace + spaceUsed32; spaceUsed32 += HUF_TABLELOG_MAX + 2; sortedSymbol = (sortedSymbol_t *)((U32 *)workspace + spaceUsed32); spaceUsed32 += ALIGN(sizeof(sortedSymbol_t) * (HUF_SYMBOLVALUE_MAX + 1), sizeof(U32)) >> 2; weightList = (BYTE *)((U32 *)workspace + spaceUsed32); spaceUsed32 += ALIGN(HUF_SYMBOLVALUE_MAX + 1, sizeof(U32)) >> 2; if ((spaceUsed32 << 2) > workspaceSize) return ERROR(tableLog_tooLarge); workspace = (U32 *)workspace + spaceUsed32; workspaceSize -= (spaceUsed32 << 2); rankStart = rankStart0 + 1; memset(rankStats, 0, sizeof(U32) * (2 * HUF_TABLELOG_MAX + 2 + 1)); HUF_STATIC_ASSERT(sizeof(HUF_DEltX4) == sizeof(HUF_DTable)); /* if compiler fails here, assertion is wrong */ if (maxTableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge); /* memset(weightList, 0, sizeof(weightList)); */ /* is not necessary, even though some analyzer complain ... */ iSize = HUF_readStats_wksp(weightList, HUF_SYMBOLVALUE_MAX + 1, rankStats, &nbSymbols, &tableLog, src, srcSize, workspace, workspaceSize); if (HUF_isError(iSize)) return iSize; /* check result */ if (tableLog > maxTableLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */ /* find maxWeight */ for (maxW = tableLog; rankStats[maxW] == 0; maxW--) { } /* necessarily finds a solution before 0 */ /* Get start index of each weight */ { U32 w, nextRankStart = 0; for (w = 1; w < maxW + 1; w++) { U32 curr = nextRankStart; nextRankStart += rankStats[w]; rankStart[w] = curr; } rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/ sizeOfSort = nextRankStart; } /* sort symbols by weight */ { U32 s; for (s = 0; s < nbSymbols; s++) { U32 const w = weightList[s]; U32 const r = rankStart[w]++; sortedSymbol[r].symbol = (BYTE)s; sortedSymbol[r].weight = (BYTE)w; } rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */ } /* Build rankVal */ { U32 *const rankVal0 = rankVal[0]; { int const rescale = (maxTableLog - tableLog) - 1; /* tableLog <= maxTableLog */ U32 nextRankVal = 0; U32 w; for (w = 1; w < maxW + 1; w++) { U32 curr = nextRankVal; nextRankVal += rankStats[w] << (w + rescale); rankVal0[w] = curr; } } { U32 const minBits = tableLog + 1 - maxW; U32 consumed; for (consumed = minBits; consumed < maxTableLog - minBits + 1; consumed++) { U32 *const rankValPtr = rankVal[consumed]; U32 w; for (w = 1; w < maxW + 1; w++) { rankValPtr[w] = rankVal0[w] >> consumed; } } } } HUF_fillDTableX4(dt, maxTableLog, sortedSymbol, sizeOfSort, rankStart0, rankVal, maxW, tableLog + 1); dtd.tableLog = (BYTE)maxTableLog; dtd.tableType = 1; memcpy(DTable, &dtd, sizeof(dtd)); return iSize; } static U32 HUF_decodeSymbolX4(void *op, BIT_DStream_t *DStream, const HUF_DEltX4 *dt, const U32 dtLog) { size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */ memcpy(op, dt + val, 2); BIT_skipBits(DStream, dt[val].nbBits); return dt[val].length; } static U32 HUF_decodeLastSymbolX4(void *op, BIT_DStream_t *DStream, const HUF_DEltX4 *dt, const U32 dtLog) { size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */ memcpy(op, dt + val, 1); if (dt[val].length == 1) BIT_skipBits(DStream, dt[val].nbBits); else { if (DStream->bitsConsumed < (sizeof(DStream->bitContainer) * 8)) { BIT_skipBits(DStream, dt[val].nbBits); if (DStream->bitsConsumed > (sizeof(DStream->bitContainer) * 8)) /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */ DStream->bitsConsumed = (sizeof(DStream->bitContainer) * 8); } } return 1; } #define HUF_DECODE_SYMBOLX4_0(ptr, DStreamPtr) ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog) #define HUF_DECODE_SYMBOLX4_1(ptr, DStreamPtr) \ if (ZSTD_64bits() || (HUF_TABLELOG_MAX <= 12)) \ ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog) #define HUF_DECODE_SYMBOLX4_2(ptr, DStreamPtr) \ if (ZSTD_64bits()) \ ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog) FORCE_INLINE size_t HUF_decodeStreamX4(BYTE *p, BIT_DStream_t *bitDPtr, BYTE *const pEnd, const HUF_DEltX4 *const dt, const U32 dtLog) { BYTE *const pStart = p; /* up to 8 symbols at a time */ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd - (sizeof(bitDPtr->bitContainer) - 1))) { HUF_DECODE_SYMBOLX4_2(p, bitDPtr); HUF_DECODE_SYMBOLX4_1(p, bitDPtr); HUF_DECODE_SYMBOLX4_2(p, bitDPtr); HUF_DECODE_SYMBOLX4_0(p, bitDPtr); } /* closer to end : up to 2 symbols at a time */ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p <= pEnd - 2)) HUF_DECODE_SYMBOLX4_0(p, bitDPtr); while (p <= pEnd - 2) HUF_DECODE_SYMBOLX4_0(p, bitDPtr); /* no need to reload : reached the end of DStream */ if (p < pEnd) p += HUF_decodeLastSymbolX4(p, bitDPtr, dt, dtLog); return p - pStart; } static size_t HUF_decompress1X4_usingDTable_internal(void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, const HUF_DTable *DTable) { BIT_DStream_t bitD; /* Init */ { size_t const errorCode = BIT_initDStream(&bitD, cSrc, cSrcSize); if (HUF_isError(errorCode)) return errorCode; } /* decode */ { BYTE *const ostart = (BYTE *)dst; BYTE *const oend = ostart + dstSize; const void *const dtPtr = DTable + 1; /* force compiler to not use strict-aliasing */ const HUF_DEltX4 *const dt = (const HUF_DEltX4 *)dtPtr; DTableDesc const dtd = HUF_getDTableDesc(DTable); HUF_decodeStreamX4(ostart, &bitD, oend, dt, dtd.tableLog); } /* check */ if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected); /* decoded size */ return dstSize; } size_t HUF_decompress1X4_usingDTable(void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, const HUF_DTable *DTable) { DTableDesc dtd = HUF_getDTableDesc(DTable); if (dtd.tableType != 1) return ERROR(GENERIC); return HUF_decompress1X4_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable); } size_t HUF_decompress1X4_DCtx_wksp(HUF_DTable *DCtx, void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, void *workspace, size_t workspaceSize) { const BYTE *ip = (const BYTE *)cSrc; size_t const hSize = HUF_readDTableX4_wksp(DCtx, cSrc, cSrcSize, workspace, workspaceSize); if (HUF_isError(hSize)) return hSize; if (hSize >= cSrcSize) return ERROR(srcSize_wrong); ip += hSize; cSrcSize -= hSize; return HUF_decompress1X4_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx); } static size_t HUF_decompress4X4_usingDTable_internal(void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, const HUF_DTable *DTable) { if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */ { const BYTE *const istart = (const BYTE *)cSrc; BYTE *const ostart = (BYTE *)dst; BYTE *const oend = ostart + dstSize; const void *const dtPtr = DTable + 1; const HUF_DEltX4 *const dt = (const HUF_DEltX4 *)dtPtr; /* Init */ BIT_DStream_t bitD1; BIT_DStream_t bitD2; BIT_DStream_t bitD3; BIT_DStream_t bitD4; size_t const length1 = ZSTD_readLE16(istart); size_t const length2 = ZSTD_readLE16(istart + 2); size_t const length3 = ZSTD_readLE16(istart + 4); size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6); const BYTE *const istart1 = istart + 6; /* jumpTable */ const BYTE *const istart2 = istart1 + length1; const BYTE *const istart3 = istart2 + length2; const BYTE *const istart4 = istart3 + length3; size_t const segmentSize = (dstSize + 3) / 4; BYTE *const opStart2 = ostart + segmentSize; BYTE *const opStart3 = opStart2 + segmentSize; BYTE *const opStart4 = opStart3 + segmentSize; BYTE *op1 = ostart; BYTE *op2 = opStart2; BYTE *op3 = opStart3; BYTE *op4 = opStart4; U32 endSignal; DTableDesc const dtd = HUF_getDTableDesc(DTable); U32 const dtLog = dtd.tableLog; if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */ { size_t const errorCode = BIT_initDStream(&bitD1, istart1, length1); if (HUF_isError(errorCode)) return errorCode; } { size_t const errorCode = BIT_initDStream(&bitD2, istart2, length2); if (HUF_isError(errorCode)) return errorCode; } { size_t const errorCode = BIT_initDStream(&bitD3, istart3, length3); if (HUF_isError(errorCode)) return errorCode; } { size_t const errorCode = BIT_initDStream(&bitD4, istart4, length4); if (HUF_isError(errorCode)) return errorCode; } /* 16-32 symbols per loop (4-8 symbols per stream) */ endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4); for (; (endSignal == BIT_DStream_unfinished) & (op4 < (oend - (sizeof(bitD4.bitContainer) - 1)));) { HUF_DECODE_SYMBOLX4_2(op1, &bitD1); HUF_DECODE_SYMBOLX4_2(op2, &bitD2); HUF_DECODE_SYMBOLX4_2(op3, &bitD3); HUF_DECODE_SYMBOLX4_2(op4, &bitD4); HUF_DECODE_SYMBOLX4_1(op1, &bitD1); HUF_DECODE_SYMBOLX4_1(op2, &bitD2); HUF_DECODE_SYMBOLX4_1(op3, &bitD3); HUF_DECODE_SYMBOLX4_1(op4, &bitD4); HUF_DECODE_SYMBOLX4_2(op1, &bitD1); HUF_DECODE_SYMBOLX4_2(op2, &bitD2); HUF_DECODE_SYMBOLX4_2(op3, &bitD3); HUF_DECODE_SYMBOLX4_2(op4, &bitD4); HUF_DECODE_SYMBOLX4_0(op1, &bitD1); HUF_DECODE_SYMBOLX4_0(op2, &bitD2); HUF_DECODE_SYMBOLX4_0(op3, &bitD3); HUF_DECODE_SYMBOLX4_0(op4, &bitD4); endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4); } /* check corruption */ if (op1 > opStart2) return ERROR(corruption_detected); if (op2 > opStart3) return ERROR(corruption_detected); if (op3 > opStart4) return ERROR(corruption_detected); /* note : op4 already verified within main loop */ /* finish bitStreams one by one */ HUF_decodeStreamX4(op1, &bitD1, opStart2, dt, dtLog); HUF_decodeStreamX4(op2, &bitD2, opStart3, dt, dtLog); HUF_decodeStreamX4(op3, &bitD3, opStart4, dt, dtLog); HUF_decodeStreamX4(op4, &bitD4, oend, dt, dtLog); /* check */ { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4); if (!endCheck) return ERROR(corruption_detected); } /* decoded size */ return dstSize; } } size_t HUF_decompress4X4_usingDTable(void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, const HUF_DTable *DTable) { DTableDesc dtd = HUF_getDTableDesc(DTable); if (dtd.tableType != 1) return ERROR(GENERIC); return HUF_decompress4X4_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable); } size_t HUF_decompress4X4_DCtx_wksp(HUF_DTable *dctx, void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, void *workspace, size_t workspaceSize) { const BYTE *ip = (const BYTE *)cSrc; size_t hSize = HUF_readDTableX4_wksp(dctx, cSrc, cSrcSize, workspace, workspaceSize); if (HUF_isError(hSize)) return hSize; if (hSize >= cSrcSize) return ERROR(srcSize_wrong); ip += hSize; cSrcSize -= hSize; return HUF_decompress4X4_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx); } /* ********************************/ /* Generic decompression selector */ /* ********************************/ size_t HUF_decompress1X_usingDTable(void *dst, size_t maxDstSize, const void *cSrc, size_t cSrcSize, const HUF_DTable *DTable) { DTableDesc const dtd = HUF_getDTableDesc(DTable); return dtd.tableType ? HUF_decompress1X4_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable) : HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable); } size_t HUF_decompress4X_usingDTable(void *dst, size_t maxDstSize, const void *cSrc, size_t cSrcSize, const HUF_DTable *DTable) { DTableDesc const dtd = HUF_getDTableDesc(DTable); return dtd.tableType ? HUF_decompress4X4_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable) : HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable); } typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t; static const algo_time_t algoTime[16 /* Quantization */][3 /* single, double, quad */] = { /* single, double, quad */ {{0, 0}, {1, 1}, {2, 2}}, /* Q==0 : impossible */ {{0, 0}, {1, 1}, {2, 2}}, /* Q==1 : impossible */ {{38, 130}, {1313, 74}, {2151, 38}}, /* Q == 2 : 12-18% */ {{448, 128}, {1353, 74}, {2238, 41}}, /* Q == 3 : 18-25% */ {{556, 128}, {1353, 74}, {2238, 47}}, /* Q == 4 : 25-32% */ {{714, 128}, {1418, 74}, {2436, 53}}, /* Q == 5 : 32-38% */ {{883, 128}, {1437, 74}, {2464, 61}}, /* Q == 6 : 38-44% */ {{897, 128}, {1515, 75}, {2622, 68}}, /* Q == 7 : 44-50% */ {{926, 128}, {1613, 75}, {2730, 75}}, /* Q == 8 : 50-56% */ {{947, 128}, {1729, 77}, {3359, 77}}, /* Q == 9 : 56-62% */ {{1107, 128}, {2083, 81}, {4006, 84}}, /* Q ==10 : 62-69% */ {{1177, 128}, {2379, 87}, {4785, 88}}, /* Q ==11 : 69-75% */ {{1242, 128}, {2415, 93}, {5155, 84}}, /* Q ==12 : 75-81% */ {{1349, 128}, {2644, 106}, {5260, 106}}, /* Q ==13 : 81-87% */ {{1455, 128}, {2422, 124}, {4174, 124}}, /* Q ==14 : 87-93% */ {{722, 128}, {1891, 145}, {1936, 146}}, /* Q ==15 : 93-99% */ }; /** HUF_selectDecoder() : * Tells which decoder is likely to decode faster, * based on a set of pre-determined metrics. * @return : 0==HUF_decompress4X2, 1==HUF_decompress4X4 . * Assumption : 0 < cSrcSize < dstSize <= 128 KB */ U32 HUF_selectDecoder(size_t dstSize, size_t cSrcSize) { /* decoder timing evaluation */ U32 const Q = (U32)(cSrcSize * 16 / dstSize); /* Q < 16 since dstSize > cSrcSize */ U32 const D256 = (U32)(dstSize >> 8); U32 const DTime0 = algoTime[Q][0].tableTime + (algoTime[Q][0].decode256Time * D256); U32 DTime1 = algoTime[Q][1].tableTime + (algoTime[Q][1].decode256Time * D256); DTime1 += DTime1 >> 3; /* advantage to algorithm using less memory, for cache eviction */ return DTime1 < DTime0; } typedef size_t (*decompressionAlgo)(void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize); size_t HUF_decompress4X_DCtx_wksp(HUF_DTable *dctx, void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, void *workspace, size_t workspaceSize) { /* validation checks */ if (dstSize == 0) return ERROR(dstSize_tooSmall); if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */ if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */ if (cSrcSize == 1) { memset(dst, *(const BYTE *)cSrc, dstSize); return dstSize; } /* RLE */ { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize); return algoNb ? HUF_decompress4X4_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workspace, workspaceSize) : HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workspace, workspaceSize); } } size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable *dctx, void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, void *workspace, size_t workspaceSize) { /* validation checks */ if (dstSize == 0) return ERROR(dstSize_tooSmall); if ((cSrcSize >= dstSize) || (cSrcSize <= 1)) return ERROR(corruption_detected); /* invalid */ { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize); return algoNb ? HUF_decompress4X4_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workspace, workspaceSize) : HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workspace, workspaceSize); } } size_t HUF_decompress1X_DCtx_wksp(HUF_DTable *dctx, void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, void *workspace, size_t workspaceSize) { /* validation checks */ if (dstSize == 0) return ERROR(dstSize_tooSmall); if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */ if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */ if (cSrcSize == 1) { memset(dst, *(const BYTE *)cSrc, dstSize); return dstSize; } /* RLE */ { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize); return algoNb ? HUF_decompress1X4_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workspace, workspaceSize) : HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workspace, workspaceSize); } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1