Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Deepak Saxena | 1815 | 67.20% | 3 | 11.54% |
Krzysztof Hałasa | 249 | 9.22% | 6 | 23.08% |
David Vrabel | 219 | 8.11% | 2 | 7.69% |
Arnd Bergmann | 212 | 7.85% | 6 | 23.08% |
John Bowler | 135 | 5.00% | 2 | 7.69% |
Thierry Reding | 48 | 1.78% | 1 | 3.85% |
Pavel Roskin | 14 | 0.52% | 1 | 3.85% |
Rod Whitby | 3 | 0.11% | 1 | 3.85% |
Rob Herring | 2 | 0.07% | 1 | 3.85% |
Thomas Gleixner | 2 | 0.07% | 1 | 3.85% |
Russell King | 2 | 0.07% | 2 | 7.69% |
Total | 2701 | 26 |
/* SPDX-License-Identifier: GPL-2.0-only */ /* * arch/arm/mach-ixp4xx/include/mach/io.h * * Author: Deepak Saxena <dsaxena@plexity.net> * * Copyright (C) 2002-2005 MontaVista Software, Inc. */ #ifndef __ASM_ARM_ARCH_IO_H #define __ASM_ARM_ARCH_IO_H #include <linux/bitops.h> #include <mach/hardware.h> extern int (*ixp4xx_pci_read)(u32 addr, u32 cmd, u32* data); extern int ixp4xx_pci_write(u32 addr, u32 cmd, u32 data); /* * IXP4xx provides two methods of accessing PCI memory space: * * 1) A direct mapped window from 0x48000000 to 0x4BFFFFFF (64MB). * To access PCI via this space, we simply ioremap() the BAR * into the kernel and we can use the standard read[bwl]/write[bwl] * macros. This is the preffered method due to speed but it * limits the system to just 64MB of PCI memory. This can be * problematic if using video cards and other memory-heavy targets. * * 2) If > 64MB of memory space is required, the IXP4xx can use indirect * registers to access the whole 4 GB of PCI memory space (as we do below * for I/O transactions). This allows currently for up to 1 GB (0x10000000 * to 0x4FFFFFFF) of memory on the bus. The disadvantage of this is that * every PCI access requires three local register accesses plus a spinlock, * but in some cases the performance hit is acceptable. In addition, you * cannot mmap() PCI devices in this case. */ #ifdef CONFIG_IXP4XX_INDIRECT_PCI /* * In the case of using indirect PCI, we simply return the actual PCI * address and our read/write implementation use that to drive the * access registers. If something outside of PCI is ioremap'd, we * fallback to the default. */ extern unsigned long pcibios_min_mem; static inline int is_pci_memory(u32 addr) { return (addr >= pcibios_min_mem) && (addr <= 0x4FFFFFFF); } #define writeb(v, p) __indirect_writeb(v, p) #define writew(v, p) __indirect_writew(v, p) #define writel(v, p) __indirect_writel(v, p) #define writeb_relaxed(v, p) __indirect_writeb(v, p) #define writew_relaxed(v, p) __indirect_writew(v, p) #define writel_relaxed(v, p) __indirect_writel(v, p) #define writesb(p, v, l) __indirect_writesb(p, v, l) #define writesw(p, v, l) __indirect_writesw(p, v, l) #define writesl(p, v, l) __indirect_writesl(p, v, l) #define readb(p) __indirect_readb(p) #define readw(p) __indirect_readw(p) #define readl(p) __indirect_readl(p) #define readb_relaxed(p) __indirect_readb(p) #define readw_relaxed(p) __indirect_readw(p) #define readl_relaxed(p) __indirect_readl(p) #define readsb(p, v, l) __indirect_readsb(p, v, l) #define readsw(p, v, l) __indirect_readsw(p, v, l) #define readsl(p, v, l) __indirect_readsl(p, v, l) static inline void __indirect_writeb(u8 value, volatile void __iomem *p) { u32 addr = (u32)p; u32 n, byte_enables, data; if (!is_pci_memory(addr)) { __raw_writeb(value, p); return; } n = addr % 4; byte_enables = (0xf & ~BIT(n)) << IXP4XX_PCI_NP_CBE_BESL; data = value << (8*n); ixp4xx_pci_write(addr, byte_enables | NP_CMD_MEMWRITE, data); } static inline void __indirect_writesb(volatile void __iomem *bus_addr, const void *p, int count) { const u8 *vaddr = p; while (count--) writeb(*vaddr++, bus_addr); } static inline void __indirect_writew(u16 value, volatile void __iomem *p) { u32 addr = (u32)p; u32 n, byte_enables, data; if (!is_pci_memory(addr)) { __raw_writew(value, p); return; } n = addr % 4; byte_enables = (0xf & ~(BIT(n) | BIT(n+1))) << IXP4XX_PCI_NP_CBE_BESL; data = value << (8*n); ixp4xx_pci_write(addr, byte_enables | NP_CMD_MEMWRITE, data); } static inline void __indirect_writesw(volatile void __iomem *bus_addr, const void *p, int count) { const u16 *vaddr = p; while (count--) writew(*vaddr++, bus_addr); } static inline void __indirect_writel(u32 value, volatile void __iomem *p) { u32 addr = (__force u32)p; if (!is_pci_memory(addr)) { __raw_writel(value, p); return; } ixp4xx_pci_write(addr, NP_CMD_MEMWRITE, value); } static inline void __indirect_writesl(volatile void __iomem *bus_addr, const void *p, int count) { const u32 *vaddr = p; while (count--) writel(*vaddr++, bus_addr); } static inline u8 __indirect_readb(const volatile void __iomem *p) { u32 addr = (u32)p; u32 n, byte_enables, data; if (!is_pci_memory(addr)) return __raw_readb(p); n = addr % 4; byte_enables = (0xf & ~BIT(n)) << IXP4XX_PCI_NP_CBE_BESL; if (ixp4xx_pci_read(addr, byte_enables | NP_CMD_MEMREAD, &data)) return 0xff; return data >> (8*n); } static inline void __indirect_readsb(const volatile void __iomem *bus_addr, void *p, u32 count) { u8 *vaddr = p; while (count--) *vaddr++ = readb(bus_addr); } static inline u16 __indirect_readw(const volatile void __iomem *p) { u32 addr = (u32)p; u32 n, byte_enables, data; if (!is_pci_memory(addr)) return __raw_readw(p); n = addr % 4; byte_enables = (0xf & ~(BIT(n) | BIT(n+1))) << IXP4XX_PCI_NP_CBE_BESL; if (ixp4xx_pci_read(addr, byte_enables | NP_CMD_MEMREAD, &data)) return 0xffff; return data>>(8*n); } static inline void __indirect_readsw(const volatile void __iomem *bus_addr, void *p, u32 count) { u16 *vaddr = p; while (count--) *vaddr++ = readw(bus_addr); } static inline u32 __indirect_readl(const volatile void __iomem *p) { u32 addr = (__force u32)p; u32 data; if (!is_pci_memory(addr)) return __raw_readl(p); if (ixp4xx_pci_read(addr, NP_CMD_MEMREAD, &data)) return 0xffffffff; return data; } static inline void __indirect_readsl(const volatile void __iomem *bus_addr, void *p, u32 count) { u32 *vaddr = p; while (count--) *vaddr++ = readl(bus_addr); } /* * We can use the built-in functions b/c they end up calling writeb/readb */ #define memset_io(c,v,l) _memset_io((c),(v),(l)) #define memcpy_fromio(a,c,l) _memcpy_fromio((a),(c),(l)) #define memcpy_toio(c,a,l) _memcpy_toio((c),(a),(l)) #endif /* CONFIG_IXP4XX_INDIRECT_PCI */ #ifndef CONFIG_PCI #define __io(v) __typesafe_io(v) #else /* * IXP4xx does not have a transparent cpu -> PCI I/O translation * window. Instead, it has a set of registers that must be tweaked * with the proper byte lanes, command types, and address for the * transaction. This means that we need to override the default * I/O functions. */ #define outb outb static inline void outb(u8 value, u32 addr) { u32 n, byte_enables, data; n = addr % 4; byte_enables = (0xf & ~BIT(n)) << IXP4XX_PCI_NP_CBE_BESL; data = value << (8*n); ixp4xx_pci_write(addr, byte_enables | NP_CMD_IOWRITE, data); } #define outsb outsb static inline void outsb(u32 io_addr, const void *p, u32 count) { const u8 *vaddr = p; while (count--) outb(*vaddr++, io_addr); } #define outw outw static inline void outw(u16 value, u32 addr) { u32 n, byte_enables, data; n = addr % 4; byte_enables = (0xf & ~(BIT(n) | BIT(n+1))) << IXP4XX_PCI_NP_CBE_BESL; data = value << (8*n); ixp4xx_pci_write(addr, byte_enables | NP_CMD_IOWRITE, data); } #define outsw outsw static inline void outsw(u32 io_addr, const void *p, u32 count) { const u16 *vaddr = p; while (count--) outw(cpu_to_le16(*vaddr++), io_addr); } #define outl outl static inline void outl(u32 value, u32 addr) { ixp4xx_pci_write(addr, NP_CMD_IOWRITE, value); } #define outsl outsl static inline void outsl(u32 io_addr, const void *p, u32 count) { const u32 *vaddr = p; while (count--) outl(cpu_to_le32(*vaddr++), io_addr); } #define inb inb static inline u8 inb(u32 addr) { u32 n, byte_enables, data; n = addr % 4; byte_enables = (0xf & ~BIT(n)) << IXP4XX_PCI_NP_CBE_BESL; if (ixp4xx_pci_read(addr, byte_enables | NP_CMD_IOREAD, &data)) return 0xff; return data >> (8*n); } #define insb insb static inline void insb(u32 io_addr, void *p, u32 count) { u8 *vaddr = p; while (count--) *vaddr++ = inb(io_addr); } #define inw inw static inline u16 inw(u32 addr) { u32 n, byte_enables, data; n = addr % 4; byte_enables = (0xf & ~(BIT(n) | BIT(n+1))) << IXP4XX_PCI_NP_CBE_BESL; if (ixp4xx_pci_read(addr, byte_enables | NP_CMD_IOREAD, &data)) return 0xffff; return data>>(8*n); } #define insw insw static inline void insw(u32 io_addr, void *p, u32 count) { u16 *vaddr = p; while (count--) *vaddr++ = le16_to_cpu(inw(io_addr)); } #define inl inl static inline u32 inl(u32 addr) { u32 data; if (ixp4xx_pci_read(addr, NP_CMD_IOREAD, &data)) return 0xffffffff; return data; } #define insl insl static inline void insl(u32 io_addr, void *p, u32 count) { u32 *vaddr = p; while (count--) *vaddr++ = le32_to_cpu(inl(io_addr)); } #define PIO_OFFSET 0x10000UL #define PIO_MASK 0x0ffffUL #define __is_io_address(p) (((unsigned long)p >= PIO_OFFSET) && \ ((unsigned long)p <= (PIO_MASK + PIO_OFFSET))) #define ioread8(p) ioread8(p) static inline u8 ioread8(const void __iomem *addr) { unsigned long port = (unsigned long __force)addr; if (__is_io_address(port)) return (unsigned int)inb(port & PIO_MASK); else #ifndef CONFIG_IXP4XX_INDIRECT_PCI return (unsigned int)__raw_readb(addr); #else return (unsigned int)__indirect_readb(addr); #endif } #define ioread8_rep(p, v, c) ioread8_rep(p, v, c) static inline void ioread8_rep(const void __iomem *addr, void *vaddr, u32 count) { unsigned long port = (unsigned long __force)addr; if (__is_io_address(port)) insb(port & PIO_MASK, vaddr, count); else #ifndef CONFIG_IXP4XX_INDIRECT_PCI __raw_readsb(addr, vaddr, count); #else __indirect_readsb(addr, vaddr, count); #endif } #define ioread16(p) ioread16(p) static inline u16 ioread16(const void __iomem *addr) { unsigned long port = (unsigned long __force)addr; if (__is_io_address(port)) return (unsigned int)inw(port & PIO_MASK); else #ifndef CONFIG_IXP4XX_INDIRECT_PCI return le16_to_cpu((__force __le16)__raw_readw(addr)); #else return (unsigned int)__indirect_readw(addr); #endif } #define ioread16_rep(p, v, c) ioread16_rep(p, v, c) static inline void ioread16_rep(const void __iomem *addr, void *vaddr, u32 count) { unsigned long port = (unsigned long __force)addr; if (__is_io_address(port)) insw(port & PIO_MASK, vaddr, count); else #ifndef CONFIG_IXP4XX_INDIRECT_PCI __raw_readsw(addr, vaddr, count); #else __indirect_readsw(addr, vaddr, count); #endif } #define ioread32(p) ioread32(p) static inline u32 ioread32(const void __iomem *addr) { unsigned long port = (unsigned long __force)addr; if (__is_io_address(port)) return (unsigned int)inl(port & PIO_MASK); else { #ifndef CONFIG_IXP4XX_INDIRECT_PCI return le32_to_cpu((__force __le32)__raw_readl(addr)); #else return (unsigned int)__indirect_readl(addr); #endif } } #define ioread32_rep(p, v, c) ioread32_rep(p, v, c) static inline void ioread32_rep(const void __iomem *addr, void *vaddr, u32 count) { unsigned long port = (unsigned long __force)addr; if (__is_io_address(port)) insl(port & PIO_MASK, vaddr, count); else #ifndef CONFIG_IXP4XX_INDIRECT_PCI __raw_readsl(addr, vaddr, count); #else __indirect_readsl(addr, vaddr, count); #endif } #define iowrite8(v, p) iowrite8(v, p) static inline void iowrite8(u8 value, void __iomem *addr) { unsigned long port = (unsigned long __force)addr; if (__is_io_address(port)) outb(value, port & PIO_MASK); else #ifndef CONFIG_IXP4XX_INDIRECT_PCI __raw_writeb(value, addr); #else __indirect_writeb(value, addr); #endif } #define iowrite8_rep(p, v, c) iowrite8_rep(p, v, c) static inline void iowrite8_rep(void __iomem *addr, const void *vaddr, u32 count) { unsigned long port = (unsigned long __force)addr; if (__is_io_address(port)) outsb(port & PIO_MASK, vaddr, count); else #ifndef CONFIG_IXP4XX_INDIRECT_PCI __raw_writesb(addr, vaddr, count); #else __indirect_writesb(addr, vaddr, count); #endif } #define iowrite16(v, p) iowrite16(v, p) static inline void iowrite16(u16 value, void __iomem *addr) { unsigned long port = (unsigned long __force)addr; if (__is_io_address(port)) outw(value, port & PIO_MASK); else #ifndef CONFIG_IXP4XX_INDIRECT_PCI __raw_writew(cpu_to_le16(value), addr); #else __indirect_writew(value, addr); #endif } #define iowrite16_rep(p, v, c) iowrite16_rep(p, v, c) static inline void iowrite16_rep(void __iomem *addr, const void *vaddr, u32 count) { unsigned long port = (unsigned long __force)addr; if (__is_io_address(port)) outsw(port & PIO_MASK, vaddr, count); else #ifndef CONFIG_IXP4XX_INDIRECT_PCI __raw_writesw(addr, vaddr, count); #else __indirect_writesw(addr, vaddr, count); #endif } #define iowrite32(v, p) iowrite32(v, p) static inline void iowrite32(u32 value, void __iomem *addr) { unsigned long port = (unsigned long __force)addr; if (__is_io_address(port)) outl(value, port & PIO_MASK); else #ifndef CONFIG_IXP4XX_INDIRECT_PCI __raw_writel((u32 __force)cpu_to_le32(value), addr); #else __indirect_writel(value, addr); #endif } #define iowrite32_rep(p, v, c) iowrite32_rep(p, v, c) static inline void iowrite32_rep(void __iomem *addr, const void *vaddr, u32 count) { unsigned long port = (unsigned long __force)addr; if (__is_io_address(port)) outsl(port & PIO_MASK, vaddr, count); else #ifndef CONFIG_IXP4XX_INDIRECT_PCI __raw_writesl(addr, vaddr, count); #else __indirect_writesl(addr, vaddr, count); #endif } #define ioport_map(port, nr) ioport_map(port, nr) static inline void __iomem *ioport_map(unsigned long port, unsigned int nr) { return ((void __iomem*)((port) + PIO_OFFSET)); } #define ioport_unmap(addr) ioport_unmap(addr) static inline void ioport_unmap(void __iomem *addr) { } #endif /* CONFIG_PCI */ #endif /* __ASM_ARM_ARCH_IO_H */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1