Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Paul Walmsley | 3082 | 79.07% | 5 | 16.13% |
Tony Lindgren | 618 | 15.85% | 7 | 22.58% |
Russell King | 83 | 2.13% | 7 | 22.58% |
Imre Deak | 59 | 1.51% | 1 | 3.23% |
Janusz Krzysztofik | 25 | 0.64% | 2 | 6.45% |
Brian Swetland | 14 | 0.36% | 1 | 3.23% |
Yangtao Li | 4 | 0.10% | 1 | 3.23% |
Greg Kroah-Hartman | 2 | 0.05% | 1 | 3.23% |
Jean-Christophe Plagniol-Villard | 2 | 0.05% | 1 | 3.23% |
Andrzej Zaborowski | 2 | 0.05% | 1 | 3.23% |
Thomas Gleixner | 2 | 0.05% | 1 | 3.23% |
Alistair Buxton | 2 | 0.05% | 1 | 3.23% |
Geert Uytterhoeven | 2 | 0.05% | 1 | 3.23% |
Dirk Behme | 1 | 0.03% | 1 | 3.23% |
Total | 3898 | 31 |
// SPDX-License-Identifier: GPL-2.0-only /* * linux/arch/arm/mach-omap1/clock.c * * Copyright (C) 2004 - 2005, 2009-2010 Nokia Corporation * Written by Tuukka Tikkanen <tuukka.tikkanen@elektrobit.com> * * Modified to use omap shared clock framework by * Tony Lindgren <tony@atomide.com> */ #include <linux/kernel.h> #include <linux/export.h> #include <linux/list.h> #include <linux/errno.h> #include <linux/err.h> #include <linux/io.h> #include <linux/clk.h> #include <linux/clkdev.h> #include <asm/mach-types.h> #include <mach/hardware.h> #include "soc.h" #include "iomap.h" #include "clock.h" #include "opp.h" #include "sram.h" __u32 arm_idlect1_mask; struct clk *api_ck_p, *ck_dpll1_p, *ck_ref_p; static LIST_HEAD(clocks); static DEFINE_MUTEX(clocks_mutex); static DEFINE_SPINLOCK(clockfw_lock); /* * Omap1 specific clock functions */ unsigned long omap1_uart_recalc(struct clk *clk) { unsigned int val = __raw_readl(clk->enable_reg); return val & clk->enable_bit ? 48000000 : 12000000; } unsigned long omap1_sossi_recalc(struct clk *clk) { u32 div = omap_readl(MOD_CONF_CTRL_1); div = (div >> 17) & 0x7; div++; return clk->parent->rate / div; } static void omap1_clk_allow_idle(struct clk *clk) { struct arm_idlect1_clk * iclk = (struct arm_idlect1_clk *)clk; if (!(clk->flags & CLOCK_IDLE_CONTROL)) return; if (iclk->no_idle_count > 0 && !(--iclk->no_idle_count)) arm_idlect1_mask |= 1 << iclk->idlect_shift; } static void omap1_clk_deny_idle(struct clk *clk) { struct arm_idlect1_clk * iclk = (struct arm_idlect1_clk *)clk; if (!(clk->flags & CLOCK_IDLE_CONTROL)) return; if (iclk->no_idle_count++ == 0) arm_idlect1_mask &= ~(1 << iclk->idlect_shift); } static __u16 verify_ckctl_value(__u16 newval) { /* This function checks for following limitations set * by the hardware (all conditions must be true): * DSPMMU_CK == DSP_CK or DSPMMU_CK == DSP_CK/2 * ARM_CK >= TC_CK * DSP_CK >= TC_CK * DSPMMU_CK >= TC_CK * * In addition following rules are enforced: * LCD_CK <= TC_CK * ARMPER_CK <= TC_CK * * However, maximum frequencies are not checked for! */ __u8 per_exp; __u8 lcd_exp; __u8 arm_exp; __u8 dsp_exp; __u8 tc_exp; __u8 dspmmu_exp; per_exp = (newval >> CKCTL_PERDIV_OFFSET) & 3; lcd_exp = (newval >> CKCTL_LCDDIV_OFFSET) & 3; arm_exp = (newval >> CKCTL_ARMDIV_OFFSET) & 3; dsp_exp = (newval >> CKCTL_DSPDIV_OFFSET) & 3; tc_exp = (newval >> CKCTL_TCDIV_OFFSET) & 3; dspmmu_exp = (newval >> CKCTL_DSPMMUDIV_OFFSET) & 3; if (dspmmu_exp < dsp_exp) dspmmu_exp = dsp_exp; if (dspmmu_exp > dsp_exp+1) dspmmu_exp = dsp_exp+1; if (tc_exp < arm_exp) tc_exp = arm_exp; if (tc_exp < dspmmu_exp) tc_exp = dspmmu_exp; if (tc_exp > lcd_exp) lcd_exp = tc_exp; if (tc_exp > per_exp) per_exp = tc_exp; newval &= 0xf000; newval |= per_exp << CKCTL_PERDIV_OFFSET; newval |= lcd_exp << CKCTL_LCDDIV_OFFSET; newval |= arm_exp << CKCTL_ARMDIV_OFFSET; newval |= dsp_exp << CKCTL_DSPDIV_OFFSET; newval |= tc_exp << CKCTL_TCDIV_OFFSET; newval |= dspmmu_exp << CKCTL_DSPMMUDIV_OFFSET; return newval; } static int calc_dsor_exp(struct clk *clk, unsigned long rate) { /* Note: If target frequency is too low, this function will return 4, * which is invalid value. Caller must check for this value and act * accordingly. * * Note: This function does not check for following limitations set * by the hardware (all conditions must be true): * DSPMMU_CK == DSP_CK or DSPMMU_CK == DSP_CK/2 * ARM_CK >= TC_CK * DSP_CK >= TC_CK * DSPMMU_CK >= TC_CK */ unsigned long realrate; struct clk * parent; unsigned dsor_exp; parent = clk->parent; if (unlikely(parent == NULL)) return -EIO; realrate = parent->rate; for (dsor_exp=0; dsor_exp<4; dsor_exp++) { if (realrate <= rate) break; realrate /= 2; } return dsor_exp; } unsigned long omap1_ckctl_recalc(struct clk *clk) { /* Calculate divisor encoded as 2-bit exponent */ int dsor = 1 << (3 & (omap_readw(ARM_CKCTL) >> clk->rate_offset)); return clk->parent->rate / dsor; } unsigned long omap1_ckctl_recalc_dsp_domain(struct clk *clk) { int dsor; /* Calculate divisor encoded as 2-bit exponent * * The clock control bits are in DSP domain, * so api_ck is needed for access. * Note that DSP_CKCTL virt addr = phys addr, so * we must use __raw_readw() instead of omap_readw(). */ omap1_clk_enable(api_ck_p); dsor = 1 << (3 & (__raw_readw(DSP_CKCTL) >> clk->rate_offset)); omap1_clk_disable(api_ck_p); return clk->parent->rate / dsor; } /* MPU virtual clock functions */ int omap1_select_table_rate(struct clk *clk, unsigned long rate) { /* Find the highest supported frequency <= rate and switch to it */ struct mpu_rate * ptr; unsigned long ref_rate; ref_rate = ck_ref_p->rate; for (ptr = omap1_rate_table; ptr->rate; ptr++) { if (!(ptr->flags & cpu_mask)) continue; if (ptr->xtal != ref_rate) continue; /* Can check only after xtal frequency check */ if (ptr->rate <= rate) break; } if (!ptr->rate) return -EINVAL; /* * In most cases we should not need to reprogram DPLL. * Reprogramming the DPLL is tricky, it must be done from SRAM. */ omap_sram_reprogram_clock(ptr->dpllctl_val, ptr->ckctl_val); /* XXX Do we need to recalculate the tree below DPLL1 at this point? */ ck_dpll1_p->rate = ptr->pll_rate; return 0; } int omap1_clk_set_rate_dsp_domain(struct clk *clk, unsigned long rate) { int dsor_exp; u16 regval; dsor_exp = calc_dsor_exp(clk, rate); if (dsor_exp > 3) dsor_exp = -EINVAL; if (dsor_exp < 0) return dsor_exp; regval = __raw_readw(DSP_CKCTL); regval &= ~(3 << clk->rate_offset); regval |= dsor_exp << clk->rate_offset; __raw_writew(regval, DSP_CKCTL); clk->rate = clk->parent->rate / (1 << dsor_exp); return 0; } long omap1_clk_round_rate_ckctl_arm(struct clk *clk, unsigned long rate) { int dsor_exp = calc_dsor_exp(clk, rate); if (dsor_exp < 0) return dsor_exp; if (dsor_exp > 3) dsor_exp = 3; return clk->parent->rate / (1 << dsor_exp); } int omap1_clk_set_rate_ckctl_arm(struct clk *clk, unsigned long rate) { int dsor_exp; u16 regval; dsor_exp = calc_dsor_exp(clk, rate); if (dsor_exp > 3) dsor_exp = -EINVAL; if (dsor_exp < 0) return dsor_exp; regval = omap_readw(ARM_CKCTL); regval &= ~(3 << clk->rate_offset); regval |= dsor_exp << clk->rate_offset; regval = verify_ckctl_value(regval); omap_writew(regval, ARM_CKCTL); clk->rate = clk->parent->rate / (1 << dsor_exp); return 0; } long omap1_round_to_table_rate(struct clk *clk, unsigned long rate) { /* Find the highest supported frequency <= rate */ struct mpu_rate * ptr; long highest_rate; unsigned long ref_rate; ref_rate = ck_ref_p->rate; highest_rate = -EINVAL; for (ptr = omap1_rate_table; ptr->rate; ptr++) { if (!(ptr->flags & cpu_mask)) continue; if (ptr->xtal != ref_rate) continue; highest_rate = ptr->rate; /* Can check only after xtal frequency check */ if (ptr->rate <= rate) break; } return highest_rate; } static unsigned calc_ext_dsor(unsigned long rate) { unsigned dsor; /* MCLK and BCLK divisor selection is not linear: * freq = 96MHz / dsor * * RATIO_SEL range: dsor <-> RATIO_SEL * 0..6: (RATIO_SEL+2) <-> (dsor-2) * 6..48: (8+(RATIO_SEL-6)*2) <-> ((dsor-8)/2+6) * Minimum dsor is 2 and maximum is 96. Odd divisors starting from 9 * can not be used. */ for (dsor = 2; dsor < 96; ++dsor) { if ((dsor & 1) && dsor > 8) continue; if (rate >= 96000000 / dsor) break; } return dsor; } /* XXX Only needed on 1510 */ int omap1_set_uart_rate(struct clk *clk, unsigned long rate) { unsigned int val; val = __raw_readl(clk->enable_reg); if (rate == 12000000) val &= ~(1 << clk->enable_bit); else if (rate == 48000000) val |= (1 << clk->enable_bit); else return -EINVAL; __raw_writel(val, clk->enable_reg); clk->rate = rate; return 0; } /* External clock (MCLK & BCLK) functions */ int omap1_set_ext_clk_rate(struct clk *clk, unsigned long rate) { unsigned dsor; __u16 ratio_bits; dsor = calc_ext_dsor(rate); clk->rate = 96000000 / dsor; if (dsor > 8) ratio_bits = ((dsor - 8) / 2 + 6) << 2; else ratio_bits = (dsor - 2) << 2; ratio_bits |= __raw_readw(clk->enable_reg) & ~0xfd; __raw_writew(ratio_bits, clk->enable_reg); return 0; } int omap1_set_sossi_rate(struct clk *clk, unsigned long rate) { u32 l; int div; unsigned long p_rate; p_rate = clk->parent->rate; /* Round towards slower frequency */ div = (p_rate + rate - 1) / rate; div--; if (div < 0 || div > 7) return -EINVAL; l = omap_readl(MOD_CONF_CTRL_1); l &= ~(7 << 17); l |= div << 17; omap_writel(l, MOD_CONF_CTRL_1); clk->rate = p_rate / (div + 1); return 0; } long omap1_round_ext_clk_rate(struct clk *clk, unsigned long rate) { return 96000000 / calc_ext_dsor(rate); } void omap1_init_ext_clk(struct clk *clk) { unsigned dsor; __u16 ratio_bits; /* Determine current rate and ensure clock is based on 96MHz APLL */ ratio_bits = __raw_readw(clk->enable_reg) & ~1; __raw_writew(ratio_bits, clk->enable_reg); ratio_bits = (ratio_bits & 0xfc) >> 2; if (ratio_bits > 6) dsor = (ratio_bits - 6) * 2 + 8; else dsor = ratio_bits + 2; clk-> rate = 96000000 / dsor; } int omap1_clk_enable(struct clk *clk) { int ret = 0; if (clk->usecount++ == 0) { if (clk->parent) { ret = omap1_clk_enable(clk->parent); if (ret) goto err; if (clk->flags & CLOCK_NO_IDLE_PARENT) omap1_clk_deny_idle(clk->parent); } ret = clk->ops->enable(clk); if (ret) { if (clk->parent) omap1_clk_disable(clk->parent); goto err; } } return ret; err: clk->usecount--; return ret; } void omap1_clk_disable(struct clk *clk) { if (clk->usecount > 0 && !(--clk->usecount)) { clk->ops->disable(clk); if (likely(clk->parent)) { omap1_clk_disable(clk->parent); if (clk->flags & CLOCK_NO_IDLE_PARENT) omap1_clk_allow_idle(clk->parent); } } } static int omap1_clk_enable_generic(struct clk *clk) { __u16 regval16; __u32 regval32; if (unlikely(clk->enable_reg == NULL)) { printk(KERN_ERR "clock.c: Enable for %s without enable code\n", clk->name); return -EINVAL; } if (clk->flags & ENABLE_REG_32BIT) { regval32 = __raw_readl(clk->enable_reg); regval32 |= (1 << clk->enable_bit); __raw_writel(regval32, clk->enable_reg); } else { regval16 = __raw_readw(clk->enable_reg); regval16 |= (1 << clk->enable_bit); __raw_writew(regval16, clk->enable_reg); } return 0; } static void omap1_clk_disable_generic(struct clk *clk) { __u16 regval16; __u32 regval32; if (clk->enable_reg == NULL) return; if (clk->flags & ENABLE_REG_32BIT) { regval32 = __raw_readl(clk->enable_reg); regval32 &= ~(1 << clk->enable_bit); __raw_writel(regval32, clk->enable_reg); } else { regval16 = __raw_readw(clk->enable_reg); regval16 &= ~(1 << clk->enable_bit); __raw_writew(regval16, clk->enable_reg); } } const struct clkops clkops_generic = { .enable = omap1_clk_enable_generic, .disable = omap1_clk_disable_generic, }; static int omap1_clk_enable_dsp_domain(struct clk *clk) { int retval; retval = omap1_clk_enable(api_ck_p); if (!retval) { retval = omap1_clk_enable_generic(clk); omap1_clk_disable(api_ck_p); } return retval; } static void omap1_clk_disable_dsp_domain(struct clk *clk) { if (omap1_clk_enable(api_ck_p) == 0) { omap1_clk_disable_generic(clk); omap1_clk_disable(api_ck_p); } } const struct clkops clkops_dspck = { .enable = omap1_clk_enable_dsp_domain, .disable = omap1_clk_disable_dsp_domain, }; /* XXX SYSC register handling does not belong in the clock framework */ static int omap1_clk_enable_uart_functional_16xx(struct clk *clk) { int ret; struct uart_clk *uclk; ret = omap1_clk_enable_generic(clk); if (ret == 0) { /* Set smart idle acknowledgement mode */ uclk = (struct uart_clk *)clk; omap_writeb((omap_readb(uclk->sysc_addr) & ~0x10) | 8, uclk->sysc_addr); } return ret; } /* XXX SYSC register handling does not belong in the clock framework */ static void omap1_clk_disable_uart_functional_16xx(struct clk *clk) { struct uart_clk *uclk; /* Set force idle acknowledgement mode */ uclk = (struct uart_clk *)clk; omap_writeb((omap_readb(uclk->sysc_addr) & ~0x18), uclk->sysc_addr); omap1_clk_disable_generic(clk); } /* XXX SYSC register handling does not belong in the clock framework */ const struct clkops clkops_uart_16xx = { .enable = omap1_clk_enable_uart_functional_16xx, .disable = omap1_clk_disable_uart_functional_16xx, }; long omap1_clk_round_rate(struct clk *clk, unsigned long rate) { if (clk->round_rate != NULL) return clk->round_rate(clk, rate); return clk->rate; } int omap1_clk_set_rate(struct clk *clk, unsigned long rate) { int ret = -EINVAL; if (clk->set_rate) ret = clk->set_rate(clk, rate); return ret; } /* * Omap1 clock reset and init functions */ #ifdef CONFIG_OMAP_RESET_CLOCKS void omap1_clk_disable_unused(struct clk *clk) { __u32 regval32; /* Clocks in the DSP domain need api_ck. Just assume bootloader * has not enabled any DSP clocks */ if (clk->enable_reg == DSP_IDLECT2) { pr_info("Skipping reset check for DSP domain clock \"%s\"\n", clk->name); return; } /* Is the clock already disabled? */ if (clk->flags & ENABLE_REG_32BIT) regval32 = __raw_readl(clk->enable_reg); else regval32 = __raw_readw(clk->enable_reg); if ((regval32 & (1 << clk->enable_bit)) == 0) return; printk(KERN_INFO "Disabling unused clock \"%s\"... ", clk->name); clk->ops->disable(clk); printk(" done\n"); } #endif int clk_enable(struct clk *clk) { unsigned long flags; int ret; if (clk == NULL || IS_ERR(clk)) return -EINVAL; spin_lock_irqsave(&clockfw_lock, flags); ret = omap1_clk_enable(clk); spin_unlock_irqrestore(&clockfw_lock, flags); return ret; } EXPORT_SYMBOL(clk_enable); void clk_disable(struct clk *clk) { unsigned long flags; if (clk == NULL || IS_ERR(clk)) return; spin_lock_irqsave(&clockfw_lock, flags); if (clk->usecount == 0) { pr_err("Trying disable clock %s with 0 usecount\n", clk->name); WARN_ON(1); goto out; } omap1_clk_disable(clk); out: spin_unlock_irqrestore(&clockfw_lock, flags); } EXPORT_SYMBOL(clk_disable); unsigned long clk_get_rate(struct clk *clk) { unsigned long flags; unsigned long ret; if (clk == NULL || IS_ERR(clk)) return 0; spin_lock_irqsave(&clockfw_lock, flags); ret = clk->rate; spin_unlock_irqrestore(&clockfw_lock, flags); return ret; } EXPORT_SYMBOL(clk_get_rate); /* * Optional clock functions defined in include/linux/clk.h */ long clk_round_rate(struct clk *clk, unsigned long rate) { unsigned long flags; long ret; if (clk == NULL || IS_ERR(clk)) return 0; spin_lock_irqsave(&clockfw_lock, flags); ret = omap1_clk_round_rate(clk, rate); spin_unlock_irqrestore(&clockfw_lock, flags); return ret; } EXPORT_SYMBOL(clk_round_rate); int clk_set_rate(struct clk *clk, unsigned long rate) { unsigned long flags; int ret = -EINVAL; if (clk == NULL || IS_ERR(clk)) return ret; spin_lock_irqsave(&clockfw_lock, flags); ret = omap1_clk_set_rate(clk, rate); if (ret == 0) propagate_rate(clk); spin_unlock_irqrestore(&clockfw_lock, flags); return ret; } EXPORT_SYMBOL(clk_set_rate); int clk_set_parent(struct clk *clk, struct clk *parent) { WARN_ONCE(1, "clk_set_parent() not implemented for OMAP1\n"); return -EINVAL; } EXPORT_SYMBOL(clk_set_parent); struct clk *clk_get_parent(struct clk *clk) { return clk->parent; } EXPORT_SYMBOL(clk_get_parent); /* * OMAP specific clock functions shared between omap1 and omap2 */ /* Used for clocks that always have same value as the parent clock */ unsigned long followparent_recalc(struct clk *clk) { return clk->parent->rate; } /* * Used for clocks that have the same value as the parent clock, * divided by some factor */ unsigned long omap_fixed_divisor_recalc(struct clk *clk) { WARN_ON(!clk->fixed_div); return clk->parent->rate / clk->fixed_div; } void clk_reparent(struct clk *child, struct clk *parent) { list_del_init(&child->sibling); if (parent) list_add(&child->sibling, &parent->children); child->parent = parent; /* now do the debugfs renaming to reattach the child to the proper parent */ } /* Propagate rate to children */ void propagate_rate(struct clk *tclk) { struct clk *clkp; list_for_each_entry(clkp, &tclk->children, sibling) { if (clkp->recalc) clkp->rate = clkp->recalc(clkp); propagate_rate(clkp); } } static LIST_HEAD(root_clks); /** * recalculate_root_clocks - recalculate and propagate all root clocks * * Recalculates all root clocks (clocks with no parent), which if the * clock's .recalc is set correctly, should also propagate their rates. * Called at init. */ void recalculate_root_clocks(void) { struct clk *clkp; list_for_each_entry(clkp, &root_clks, sibling) { if (clkp->recalc) clkp->rate = clkp->recalc(clkp); propagate_rate(clkp); } } /** * clk_preinit - initialize any fields in the struct clk before clk init * @clk: struct clk * to initialize * * Initialize any struct clk fields needed before normal clk initialization * can run. No return value. */ void clk_preinit(struct clk *clk) { INIT_LIST_HEAD(&clk->children); } int clk_register(struct clk *clk) { if (clk == NULL || IS_ERR(clk)) return -EINVAL; /* * trap out already registered clocks */ if (clk->node.next || clk->node.prev) return 0; mutex_lock(&clocks_mutex); if (clk->parent) list_add(&clk->sibling, &clk->parent->children); else list_add(&clk->sibling, &root_clks); list_add(&clk->node, &clocks); if (clk->init) clk->init(clk); mutex_unlock(&clocks_mutex); return 0; } EXPORT_SYMBOL(clk_register); void clk_unregister(struct clk *clk) { if (clk == NULL || IS_ERR(clk)) return; mutex_lock(&clocks_mutex); list_del(&clk->sibling); list_del(&clk->node); mutex_unlock(&clocks_mutex); } EXPORT_SYMBOL(clk_unregister); void clk_enable_init_clocks(void) { struct clk *clkp; list_for_each_entry(clkp, &clocks, node) if (clkp->flags & ENABLE_ON_INIT) clk_enable(clkp); } /** * omap_clk_get_by_name - locate OMAP struct clk by its name * @name: name of the struct clk to locate * * Locate an OMAP struct clk by its name. Assumes that struct clk * names are unique. Returns NULL if not found or a pointer to the * struct clk if found. */ struct clk *omap_clk_get_by_name(const char *name) { struct clk *c; struct clk *ret = NULL; mutex_lock(&clocks_mutex); list_for_each_entry(c, &clocks, node) { if (!strcmp(c->name, name)) { ret = c; break; } } mutex_unlock(&clocks_mutex); return ret; } int omap_clk_enable_autoidle_all(void) { struct clk *c; unsigned long flags; spin_lock_irqsave(&clockfw_lock, flags); list_for_each_entry(c, &clocks, node) if (c->ops->allow_idle) c->ops->allow_idle(c); spin_unlock_irqrestore(&clockfw_lock, flags); return 0; } int omap_clk_disable_autoidle_all(void) { struct clk *c; unsigned long flags; spin_lock_irqsave(&clockfw_lock, flags); list_for_each_entry(c, &clocks, node) if (c->ops->deny_idle) c->ops->deny_idle(c); spin_unlock_irqrestore(&clockfw_lock, flags); return 0; } /* * Low level helpers */ static int clkll_enable_null(struct clk *clk) { return 0; } static void clkll_disable_null(struct clk *clk) { } const struct clkops clkops_null = { .enable = clkll_enable_null, .disable = clkll_disable_null, }; /* * Dummy clock * * Used for clock aliases that are needed on some OMAPs, but not others */ struct clk dummy_ck = { .name = "dummy", .ops = &clkops_null, }; /* * */ #ifdef CONFIG_OMAP_RESET_CLOCKS /* * Disable any unused clocks left on by the bootloader */ static int __init clk_disable_unused(void) { struct clk *ck; unsigned long flags; pr_info("clock: disabling unused clocks to save power\n"); spin_lock_irqsave(&clockfw_lock, flags); list_for_each_entry(ck, &clocks, node) { if (ck->ops == &clkops_null) continue; if (ck->usecount > 0 || !ck->enable_reg) continue; omap1_clk_disable_unused(ck); } spin_unlock_irqrestore(&clockfw_lock, flags); return 0; } late_initcall(clk_disable_unused); late_initcall(omap_clk_enable_autoidle_all); #endif #if defined(CONFIG_PM_DEBUG) && defined(CONFIG_DEBUG_FS) /* * debugfs support to trace clock tree hierarchy and attributes */ #include <linux/debugfs.h> #include <linux/seq_file.h> static struct dentry *clk_debugfs_root; static int debug_clock_show(struct seq_file *s, void *unused) { struct clk *c; struct clk *pa; mutex_lock(&clocks_mutex); seq_printf(s, "%-30s %-30s %-10s %s\n", "clock-name", "parent-name", "rate", "use-count"); list_for_each_entry(c, &clocks, node) { pa = c->parent; seq_printf(s, "%-30s %-30s %-10lu %d\n", c->name, pa ? pa->name : "none", c->rate, c->usecount); } mutex_unlock(&clocks_mutex); return 0; } DEFINE_SHOW_ATTRIBUTE(debug_clock); static void clk_debugfs_register_one(struct clk *c) { struct dentry *d; struct clk *pa = c->parent; d = debugfs_create_dir(c->name, pa ? pa->dent : clk_debugfs_root); c->dent = d; debugfs_create_u8("usecount", S_IRUGO, c->dent, &c->usecount); debugfs_create_ulong("rate", S_IRUGO, c->dent, &c->rate); debugfs_create_x8("flags", S_IRUGO, c->dent, &c->flags); } static void clk_debugfs_register(struct clk *c) { struct clk *pa = c->parent; if (pa && !pa->dent) clk_debugfs_register(pa); if (!c->dent) clk_debugfs_register_one(c); } static int __init clk_debugfs_init(void) { struct clk *c; struct dentry *d; d = debugfs_create_dir("clock", NULL); clk_debugfs_root = d; list_for_each_entry(c, &clocks, node) clk_debugfs_register(c); debugfs_create_file("summary", S_IRUGO, d, NULL, &debug_clock_fops); return 0; } late_initcall(clk_debugfs_init); #endif /* defined(CONFIG_PM_DEBUG) && defined(CONFIG_DEBUG_FS) */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1