Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Paul Walmsley | 4280 | 32.66% | 53 | 23.98% |
Tony Lindgren | 3440 | 26.25% | 35 | 15.84% |
Tero Kristo | 1037 | 7.91% | 23 | 10.41% |
Benoît Cousson | 917 | 7.00% | 26 | 11.76% |
Kevin Hilman | 737 | 5.62% | 9 | 4.07% |
Rajendra Nayak | 703 | 5.36% | 19 | 8.60% |
Thara Gopinath | 264 | 2.01% | 3 | 1.36% |
Vaibhav Hiremath | 232 | 1.77% | 2 | 0.90% |
Lokesh Vutla | 217 | 1.66% | 5 | 2.26% |
Omar Ramirez Luna | 214 | 1.63% | 3 | 1.36% |
Peter Ujfalusi | 186 | 1.42% | 2 | 0.90% |
Roger Quadros | 168 | 1.28% | 3 | 1.36% |
Kishon Vijay Abraham I | 147 | 1.12% | 1 | 0.45% |
Tomi Valkeinen | 106 | 0.81% | 2 | 0.90% |
Santosh Shilimkar | 88 | 0.67% | 1 | 0.45% |
Suman Anna | 67 | 0.51% | 3 | 1.36% |
Hema Kalliguddi | 40 | 0.31% | 1 | 0.45% |
Illia Smyrnov | 34 | 0.26% | 1 | 0.45% |
ChenTao | 34 | 0.26% | 1 | 0.45% |
Grazvydas Ignotas | 25 | 0.19% | 1 | 0.45% |
Avinash H.M | 24 | 0.18% | 1 | 0.45% |
Andreas Kemnade | 20 | 0.15% | 1 | 0.45% |
Dave Gerlach | 18 | 0.14% | 1 | 0.45% |
Thomas Gleixner | 17 | 0.13% | 2 | 0.90% |
Fernando Guzman Lugo | 13 | 0.10% | 1 | 0.45% |
Pali Rohár | 12 | 0.09% | 1 | 0.45% |
Joe Perches | 8 | 0.06% | 1 | 0.45% |
Mike Rapoport | 7 | 0.05% | 3 | 1.36% |
Miguel Vadillo | 7 | 0.05% | 1 | 0.45% |
Russell King | 7 | 0.05% | 2 | 0.90% |
Maninder Singh | 5 | 0.04% | 1 | 0.45% |
Rob Herring | 5 | 0.04% | 2 | 0.90% |
Victor Kamensky | 4 | 0.03% | 1 | 0.45% |
Misael Lopez Cruz | 4 | 0.03% | 1 | 0.45% |
Vishwanath Sripathy | 3 | 0.02% | 1 | 0.45% |
Afzal Mohammed | 3 | 0.02% | 1 | 0.45% |
R Sricharan | 3 | 0.02% | 1 | 0.45% |
Stephen Boyd | 3 | 0.02% | 1 | 0.45% |
Nishanth Menon | 2 | 0.02% | 1 | 0.45% |
Govindraj Raja | 2 | 0.02% | 1 | 0.45% |
Arnd Bergmann | 2 | 0.02% | 1 | 0.45% |
Tarun Kanti DebBarma | 1 | 0.01% | 1 | 0.45% |
Total | 13106 | 221 |
// SPDX-License-Identifier: GPL-2.0-only /* * omap_hwmod implementation for OMAP2/3/4 * * Copyright (C) 2009-2011 Nokia Corporation * Copyright (C) 2011-2012 Texas Instruments, Inc. * * Paul Walmsley, Benoît Cousson, Kevin Hilman * * Created in collaboration with (alphabetical order): Thara Gopinath, * Tony Lindgren, Rajendra Nayak, Vikram Pandita, Sakari Poussa, Anand * Sawant, Santosh Shilimkar, Richard Woodruff * * Introduction * ------------ * One way to view an OMAP SoC is as a collection of largely unrelated * IP blocks connected by interconnects. The IP blocks include * devices such as ARM processors, audio serial interfaces, UARTs, * etc. Some of these devices, like the DSP, are created by TI; * others, like the SGX, largely originate from external vendors. In * TI's documentation, on-chip devices are referred to as "OMAP * modules." Some of these IP blocks are identical across several * OMAP versions. Others are revised frequently. * * These OMAP modules are tied together by various interconnects. * Most of the address and data flow between modules is via OCP-based * interconnects such as the L3 and L4 buses; but there are other * interconnects that distribute the hardware clock tree, handle idle * and reset signaling, supply power, and connect the modules to * various pads or balls on the OMAP package. * * OMAP hwmod provides a consistent way to describe the on-chip * hardware blocks and their integration into the rest of the chip. * This description can be automatically generated from the TI * hardware database. OMAP hwmod provides a standard, consistent API * to reset, enable, idle, and disable these hardware blocks. And * hwmod provides a way for other core code, such as the Linux device * code or the OMAP power management and address space mapping code, * to query the hardware database. * * Using hwmod * ----------- * Drivers won't call hwmod functions directly. That is done by the * omap_device code, and in rare occasions, by custom integration code * in arch/arm/ *omap*. The omap_device code includes functions to * build a struct platform_device using omap_hwmod data, and that is * currently how hwmod data is communicated to drivers and to the * Linux driver model. Most drivers will call omap_hwmod functions only * indirectly, via pm_runtime*() functions. * * From a layering perspective, here is where the OMAP hwmod code * fits into the kernel software stack: * * +-------------------------------+ * | Device driver code | * | (e.g., drivers/) | * +-------------------------------+ * | Linux driver model | * | (platform_device / | * | platform_driver data/code) | * +-------------------------------+ * | OMAP core-driver integration | * |(arch/arm/mach-omap2/devices.c)| * +-------------------------------+ * | omap_device code | * | (../plat-omap/omap_device.c) | * +-------------------------------+ * ----> | omap_hwmod code/data | <----- * | (../mach-omap2/omap_hwmod*) | * +-------------------------------+ * | OMAP clock/PRCM/register fns | * | ({read,write}l_relaxed, clk*) | * +-------------------------------+ * * Device drivers should not contain any OMAP-specific code or data in * them. They should only contain code to operate the IP block that * the driver is responsible for. This is because these IP blocks can * also appear in other SoCs, either from TI (such as DaVinci) or from * other manufacturers; and drivers should be reusable across other * platforms. * * The OMAP hwmod code also will attempt to reset and idle all on-chip * devices upon boot. The goal here is for the kernel to be * completely self-reliant and independent from bootloaders. This is * to ensure a repeatable configuration, both to ensure consistent * runtime behavior, and to make it easier for others to reproduce * bugs. * * OMAP module activity states * --------------------------- * The hwmod code considers modules to be in one of several activity * states. IP blocks start out in an UNKNOWN state, then once they * are registered via the hwmod code, proceed to the REGISTERED state. * Once their clock names are resolved to clock pointers, the module * enters the CLKS_INITED state; and finally, once the module has been * reset and the integration registers programmed, the INITIALIZED state * is entered. The hwmod code will then place the module into either * the IDLE state to save power, or in the case of a critical system * module, the ENABLED state. * * OMAP core integration code can then call omap_hwmod*() functions * directly to move the module between the IDLE, ENABLED, and DISABLED * states, as needed. This is done during both the PM idle loop, and * in the OMAP core integration code's implementation of the PM runtime * functions. * * References * ---------- * This is a partial list. * - OMAP2420 Multimedia Processor Silicon Revision 2.1.1, 2.2 (SWPU064) * - OMAP2430 Multimedia Device POP Silicon Revision 2.1 (SWPU090) * - OMAP34xx Multimedia Device Silicon Revision 3.1 (SWPU108) * - OMAP4430 Multimedia Device Silicon Revision 1.0 (SWPU140) * - Open Core Protocol Specification 2.2 * * To do: * - handle IO mapping * - bus throughput & module latency measurement code * * XXX add tests at the beginning of each function to ensure the hwmod is * in the appropriate state * XXX error return values should be checked to ensure that they are * appropriate */ #undef DEBUG #include <linux/kernel.h> #include <linux/errno.h> #include <linux/io.h> #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/list.h> #include <linux/mutex.h> #include <linux/spinlock.h> #include <linux/slab.h> #include <linux/cpu.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/memblock.h> #include <linux/platform_data/ti-sysc.h> #include <dt-bindings/bus/ti-sysc.h> #include <asm/system_misc.h> #include "clock.h" #include "omap_hwmod.h" #include "soc.h" #include "common.h" #include "clockdomain.h" #include "hdq1w.h" #include "mmc.h" #include "powerdomain.h" #include "cm2xxx.h" #include "cm3xxx.h" #include "cm33xx.h" #include "prm.h" #include "prm3xxx.h" #include "prm44xx.h" #include "prm33xx.h" #include "prminst44xx.h" #include "pm.h" #include "wd_timer.h" /* Name of the OMAP hwmod for the MPU */ #define MPU_INITIATOR_NAME "mpu" /* * Number of struct omap_hwmod_link records per struct * omap_hwmod_ocp_if record (master->slave and slave->master) */ #define LINKS_PER_OCP_IF 2 /* * Address offset (in bytes) between the reset control and the reset * status registers: 4 bytes on OMAP4 */ #define OMAP4_RST_CTRL_ST_OFFSET 4 /* * Maximum length for module clock handle names */ #define MOD_CLK_MAX_NAME_LEN 32 /** * struct clkctrl_provider - clkctrl provider mapping data * @num_addrs: number of base address ranges for the provider * @addr: base address(es) for the provider * @size: size(s) of the provider address space(s) * @node: device node associated with the provider * @link: list link */ struct clkctrl_provider { int num_addrs; u32 *addr; u32 *size; struct device_node *node; struct list_head link; }; static LIST_HEAD(clkctrl_providers); /** * struct omap_hwmod_reset - IP specific reset functions * @match: string to match against the module name * @len: number of characters to match * @reset: IP specific reset function * * Used only in cases where struct omap_hwmod is dynamically allocated. */ struct omap_hwmod_reset { const char *match; int len; int (*reset)(struct omap_hwmod *oh); }; /** * struct omap_hwmod_soc_ops - fn ptrs for some SoC-specific operations * @enable_module: function to enable a module (via MODULEMODE) * @disable_module: function to disable a module (via MODULEMODE) * * XXX Eventually this functionality will be hidden inside the PRM/CM * device drivers. Until then, this should avoid huge blocks of cpu_is_*() * conditionals in this code. */ struct omap_hwmod_soc_ops { void (*enable_module)(struct omap_hwmod *oh); int (*disable_module)(struct omap_hwmod *oh); int (*wait_target_ready)(struct omap_hwmod *oh); int (*assert_hardreset)(struct omap_hwmod *oh, struct omap_hwmod_rst_info *ohri); int (*deassert_hardreset)(struct omap_hwmod *oh, struct omap_hwmod_rst_info *ohri); int (*is_hardreset_asserted)(struct omap_hwmod *oh, struct omap_hwmod_rst_info *ohri); int (*init_clkdm)(struct omap_hwmod *oh); void (*update_context_lost)(struct omap_hwmod *oh); int (*get_context_lost)(struct omap_hwmod *oh); int (*disable_direct_prcm)(struct omap_hwmod *oh); u32 (*xlate_clkctrl)(struct omap_hwmod *oh); }; /* soc_ops: adapts the omap_hwmod code to the currently-booted SoC */ static struct omap_hwmod_soc_ops soc_ops; /* omap_hwmod_list contains all registered struct omap_hwmods */ static LIST_HEAD(omap_hwmod_list); static DEFINE_MUTEX(list_lock); /* mpu_oh: used to add/remove MPU initiator from sleepdep list */ static struct omap_hwmod *mpu_oh; /* inited: set to true once the hwmod code is initialized */ static bool inited; /* Private functions */ /** * _update_sysc_cache - return the module OCP_SYSCONFIG register, keep copy * @oh: struct omap_hwmod * * * Load the current value of the hwmod OCP_SYSCONFIG register into the * struct omap_hwmod for later use. Returns -EINVAL if the hwmod has no * OCP_SYSCONFIG register or 0 upon success. */ static int _update_sysc_cache(struct omap_hwmod *oh) { if (!oh->class->sysc) { WARN(1, "omap_hwmod: %s: cannot read OCP_SYSCONFIG: not defined on hwmod's class\n", oh->name); return -EINVAL; } /* XXX ensure module interface clock is up */ oh->_sysc_cache = omap_hwmod_read(oh, oh->class->sysc->sysc_offs); if (!(oh->class->sysc->sysc_flags & SYSC_NO_CACHE)) oh->_int_flags |= _HWMOD_SYSCONFIG_LOADED; return 0; } /** * _write_sysconfig - write a value to the module's OCP_SYSCONFIG register * @v: OCP_SYSCONFIG value to write * @oh: struct omap_hwmod * * * Write @v into the module class' OCP_SYSCONFIG register, if it has * one. No return value. */ static void _write_sysconfig(u32 v, struct omap_hwmod *oh) { if (!oh->class->sysc) { WARN(1, "omap_hwmod: %s: cannot write OCP_SYSCONFIG: not defined on hwmod's class\n", oh->name); return; } /* XXX ensure module interface clock is up */ /* Module might have lost context, always update cache and register */ oh->_sysc_cache = v; /* * Some IP blocks (such as RTC) require unlocking of IP before * accessing its registers. If a function pointer is present * to unlock, then call it before accessing sysconfig and * call lock after writing sysconfig. */ if (oh->class->unlock) oh->class->unlock(oh); omap_hwmod_write(v, oh, oh->class->sysc->sysc_offs); if (oh->class->lock) oh->class->lock(oh); } /** * _set_master_standbymode: set the OCP_SYSCONFIG MIDLEMODE field in @v * @oh: struct omap_hwmod * * @standbymode: MIDLEMODE field bits * @v: pointer to register contents to modify * * Update the master standby mode bits in @v to be @standbymode for * the @oh hwmod. Does not write to the hardware. Returns -EINVAL * upon error or 0 upon success. */ static int _set_master_standbymode(struct omap_hwmod *oh, u8 standbymode, u32 *v) { u32 mstandby_mask; u8 mstandby_shift; if (!oh->class->sysc || !(oh->class->sysc->sysc_flags & SYSC_HAS_MIDLEMODE)) return -EINVAL; if (!oh->class->sysc->sysc_fields) { WARN(1, "omap_hwmod: %s: offset struct for sysconfig not provided in class\n", oh->name); return -EINVAL; } mstandby_shift = oh->class->sysc->sysc_fields->midle_shift; mstandby_mask = (0x3 << mstandby_shift); *v &= ~mstandby_mask; *v |= __ffs(standbymode) << mstandby_shift; return 0; } /** * _set_slave_idlemode: set the OCP_SYSCONFIG SIDLEMODE field in @v * @oh: struct omap_hwmod * * @idlemode: SIDLEMODE field bits * @v: pointer to register contents to modify * * Update the slave idle mode bits in @v to be @idlemode for the @oh * hwmod. Does not write to the hardware. Returns -EINVAL upon error * or 0 upon success. */ static int _set_slave_idlemode(struct omap_hwmod *oh, u8 idlemode, u32 *v) { u32 sidle_mask; u8 sidle_shift; if (!oh->class->sysc || !(oh->class->sysc->sysc_flags & SYSC_HAS_SIDLEMODE)) return -EINVAL; if (!oh->class->sysc->sysc_fields) { WARN(1, "omap_hwmod: %s: offset struct for sysconfig not provided in class\n", oh->name); return -EINVAL; } sidle_shift = oh->class->sysc->sysc_fields->sidle_shift; sidle_mask = (0x3 << sidle_shift); *v &= ~sidle_mask; *v |= __ffs(idlemode) << sidle_shift; return 0; } /** * _set_clockactivity: set OCP_SYSCONFIG.CLOCKACTIVITY bits in @v * @oh: struct omap_hwmod * * @clockact: CLOCKACTIVITY field bits * @v: pointer to register contents to modify * * Update the clockactivity mode bits in @v to be @clockact for the * @oh hwmod. Used for additional powersaving on some modules. Does * not write to the hardware. Returns -EINVAL upon error or 0 upon * success. */ static int _set_clockactivity(struct omap_hwmod *oh, u8 clockact, u32 *v) { u32 clkact_mask; u8 clkact_shift; if (!oh->class->sysc || !(oh->class->sysc->sysc_flags & SYSC_HAS_CLOCKACTIVITY)) return -EINVAL; if (!oh->class->sysc->sysc_fields) { WARN(1, "omap_hwmod: %s: offset struct for sysconfig not provided in class\n", oh->name); return -EINVAL; } clkact_shift = oh->class->sysc->sysc_fields->clkact_shift; clkact_mask = (0x3 << clkact_shift); *v &= ~clkact_mask; *v |= clockact << clkact_shift; return 0; } /** * _set_softreset: set OCP_SYSCONFIG.SOFTRESET bit in @v * @oh: struct omap_hwmod * * @v: pointer to register contents to modify * * Set the SOFTRESET bit in @v for hwmod @oh. Returns -EINVAL upon * error or 0 upon success. */ static int _set_softreset(struct omap_hwmod *oh, u32 *v) { u32 softrst_mask; if (!oh->class->sysc || !(oh->class->sysc->sysc_flags & SYSC_HAS_SOFTRESET)) return -EINVAL; if (!oh->class->sysc->sysc_fields) { WARN(1, "omap_hwmod: %s: offset struct for sysconfig not provided in class\n", oh->name); return -EINVAL; } softrst_mask = (0x1 << oh->class->sysc->sysc_fields->srst_shift); *v |= softrst_mask; return 0; } /** * _clear_softreset: clear OCP_SYSCONFIG.SOFTRESET bit in @v * @oh: struct omap_hwmod * * @v: pointer to register contents to modify * * Clear the SOFTRESET bit in @v for hwmod @oh. Returns -EINVAL upon * error or 0 upon success. */ static int _clear_softreset(struct omap_hwmod *oh, u32 *v) { u32 softrst_mask; if (!oh->class->sysc || !(oh->class->sysc->sysc_flags & SYSC_HAS_SOFTRESET)) return -EINVAL; if (!oh->class->sysc->sysc_fields) { WARN(1, "omap_hwmod: %s: sysc_fields absent for sysconfig class\n", oh->name); return -EINVAL; } softrst_mask = (0x1 << oh->class->sysc->sysc_fields->srst_shift); *v &= ~softrst_mask; return 0; } /** * _wait_softreset_complete - wait for an OCP softreset to complete * @oh: struct omap_hwmod * to wait on * * Wait until the IP block represented by @oh reports that its OCP * softreset is complete. This can be triggered by software (see * _ocp_softreset()) or by hardware upon returning from off-mode (one * example is HSMMC). Waits for up to MAX_MODULE_SOFTRESET_WAIT * microseconds. Returns the number of microseconds waited. */ static int _wait_softreset_complete(struct omap_hwmod *oh) { struct omap_hwmod_class_sysconfig *sysc; u32 softrst_mask; int c = 0; sysc = oh->class->sysc; if (sysc->sysc_flags & SYSS_HAS_RESET_STATUS && sysc->syss_offs > 0) omap_test_timeout((omap_hwmod_read(oh, sysc->syss_offs) & SYSS_RESETDONE_MASK), MAX_MODULE_SOFTRESET_WAIT, c); else if (sysc->sysc_flags & SYSC_HAS_RESET_STATUS) { softrst_mask = (0x1 << sysc->sysc_fields->srst_shift); omap_test_timeout(!(omap_hwmod_read(oh, sysc->sysc_offs) & softrst_mask), MAX_MODULE_SOFTRESET_WAIT, c); } return c; } /** * _set_dmadisable: set OCP_SYSCONFIG.DMADISABLE bit in @v * @oh: struct omap_hwmod * * * The DMADISABLE bit is a semi-automatic bit present in sysconfig register * of some modules. When the DMA must perform read/write accesses, the * DMADISABLE bit is cleared by the hardware. But when the DMA must stop * for power management, software must set the DMADISABLE bit back to 1. * * Set the DMADISABLE bit in @v for hwmod @oh. Returns -EINVAL upon * error or 0 upon success. */ static int _set_dmadisable(struct omap_hwmod *oh) { u32 v; u32 dmadisable_mask; if (!oh->class->sysc || !(oh->class->sysc->sysc_flags & SYSC_HAS_DMADISABLE)) return -EINVAL; if (!oh->class->sysc->sysc_fields) { WARN(1, "omap_hwmod: %s: offset struct for sysconfig not provided in class\n", oh->name); return -EINVAL; } /* clocks must be on for this operation */ if (oh->_state != _HWMOD_STATE_ENABLED) { pr_warn("omap_hwmod: %s: dma can be disabled only from enabled state\n", oh->name); return -EINVAL; } pr_debug("omap_hwmod: %s: setting DMADISABLE\n", oh->name); v = oh->_sysc_cache; dmadisable_mask = (0x1 << oh->class->sysc->sysc_fields->dmadisable_shift); v |= dmadisable_mask; _write_sysconfig(v, oh); return 0; } /** * _set_module_autoidle: set the OCP_SYSCONFIG AUTOIDLE field in @v * @oh: struct omap_hwmod * * @autoidle: desired AUTOIDLE bitfield value (0 or 1) * @v: pointer to register contents to modify * * Update the module autoidle bit in @v to be @autoidle for the @oh * hwmod. The autoidle bit controls whether the module can gate * internal clocks automatically when it isn't doing anything; the * exact function of this bit varies on a per-module basis. This * function does not write to the hardware. Returns -EINVAL upon * error or 0 upon success. */ static int _set_module_autoidle(struct omap_hwmod *oh, u8 autoidle, u32 *v) { u32 autoidle_mask; u8 autoidle_shift; if (!oh->class->sysc || !(oh->class->sysc->sysc_flags & SYSC_HAS_AUTOIDLE)) return -EINVAL; if (!oh->class->sysc->sysc_fields) { WARN(1, "omap_hwmod: %s: offset struct for sysconfig not provided in class\n", oh->name); return -EINVAL; } autoidle_shift = oh->class->sysc->sysc_fields->autoidle_shift; autoidle_mask = (0x1 << autoidle_shift); *v &= ~autoidle_mask; *v |= autoidle << autoidle_shift; return 0; } /** * _enable_wakeup: set OCP_SYSCONFIG.ENAWAKEUP bit in the hardware * @oh: struct omap_hwmod * * * Allow the hardware module @oh to send wakeups. Returns -EINVAL * upon error or 0 upon success. */ static int _enable_wakeup(struct omap_hwmod *oh, u32 *v) { if (!oh->class->sysc || !((oh->class->sysc->sysc_flags & SYSC_HAS_ENAWAKEUP) || (oh->class->sysc->idlemodes & SIDLE_SMART_WKUP) || (oh->class->sysc->idlemodes & MSTANDBY_SMART_WKUP))) return -EINVAL; if (!oh->class->sysc->sysc_fields) { WARN(1, "omap_hwmod: %s: offset struct for sysconfig not provided in class\n", oh->name); return -EINVAL; } if (oh->class->sysc->sysc_flags & SYSC_HAS_ENAWAKEUP) *v |= 0x1 << oh->class->sysc->sysc_fields->enwkup_shift; if (oh->class->sysc->idlemodes & SIDLE_SMART_WKUP) _set_slave_idlemode(oh, HWMOD_IDLEMODE_SMART_WKUP, v); if (oh->class->sysc->idlemodes & MSTANDBY_SMART_WKUP) _set_master_standbymode(oh, HWMOD_IDLEMODE_SMART_WKUP, v); /* XXX test pwrdm_get_wken for this hwmod's subsystem */ return 0; } static struct clockdomain *_get_clkdm(struct omap_hwmod *oh) { struct clk_hw_omap *clk; if (oh->clkdm) { return oh->clkdm; } else if (oh->_clk) { if (!omap2_clk_is_hw_omap(__clk_get_hw(oh->_clk))) return NULL; clk = to_clk_hw_omap(__clk_get_hw(oh->_clk)); return clk->clkdm; } return NULL; } /** * _add_initiator_dep: prevent @oh from smart-idling while @init_oh is active * @oh: struct omap_hwmod * * * Prevent the hardware module @oh from entering idle while the * hardare module initiator @init_oh is active. Useful when a module * will be accessed by a particular initiator (e.g., if a module will * be accessed by the IVA, there should be a sleepdep between the IVA * initiator and the module). Only applies to modules in smart-idle * mode. If the clockdomain is marked as not needing autodeps, return * 0 without doing anything. Otherwise, returns -EINVAL upon error or * passes along clkdm_add_sleepdep() value upon success. */ static int _add_initiator_dep(struct omap_hwmod *oh, struct omap_hwmod *init_oh) { struct clockdomain *clkdm, *init_clkdm; clkdm = _get_clkdm(oh); init_clkdm = _get_clkdm(init_oh); if (!clkdm || !init_clkdm) return -EINVAL; if (clkdm && clkdm->flags & CLKDM_NO_AUTODEPS) return 0; return clkdm_add_sleepdep(clkdm, init_clkdm); } /** * _del_initiator_dep: allow @oh to smart-idle even if @init_oh is active * @oh: struct omap_hwmod * * * Allow the hardware module @oh to enter idle while the hardare * module initiator @init_oh is active. Useful when a module will not * be accessed by a particular initiator (e.g., if a module will not * be accessed by the IVA, there should be no sleepdep between the IVA * initiator and the module). Only applies to modules in smart-idle * mode. If the clockdomain is marked as not needing autodeps, return * 0 without doing anything. Returns -EINVAL upon error or passes * along clkdm_del_sleepdep() value upon success. */ static int _del_initiator_dep(struct omap_hwmod *oh, struct omap_hwmod *init_oh) { struct clockdomain *clkdm, *init_clkdm; clkdm = _get_clkdm(oh); init_clkdm = _get_clkdm(init_oh); if (!clkdm || !init_clkdm) return -EINVAL; if (clkdm && clkdm->flags & CLKDM_NO_AUTODEPS) return 0; return clkdm_del_sleepdep(clkdm, init_clkdm); } static const struct of_device_id ti_clkctrl_match_table[] __initconst = { { .compatible = "ti,clkctrl" }, { } }; static int __init _setup_clkctrl_provider(struct device_node *np) { const __be32 *addrp; struct clkctrl_provider *provider; u64 size; int i; provider = memblock_alloc(sizeof(*provider), SMP_CACHE_BYTES); if (!provider) return -ENOMEM; provider->node = np; provider->num_addrs = of_property_count_elems_of_size(np, "reg", sizeof(u32)) / 2; provider->addr = memblock_alloc(sizeof(void *) * provider->num_addrs, SMP_CACHE_BYTES); if (!provider->addr) return -ENOMEM; provider->size = memblock_alloc(sizeof(u32) * provider->num_addrs, SMP_CACHE_BYTES); if (!provider->size) return -ENOMEM; for (i = 0; i < provider->num_addrs; i++) { addrp = of_get_address(np, i, &size, NULL); provider->addr[i] = (u32)of_translate_address(np, addrp); provider->size[i] = size; pr_debug("%s: %pOF: %x...%x\n", __func__, np, provider->addr[i], provider->addr[i] + provider->size[i]); } list_add(&provider->link, &clkctrl_providers); return 0; } static int __init _init_clkctrl_providers(void) { struct device_node *np; int ret = 0; for_each_matching_node(np, ti_clkctrl_match_table) { ret = _setup_clkctrl_provider(np); if (ret) break; } return ret; } static u32 _omap4_xlate_clkctrl(struct omap_hwmod *oh) { if (!oh->prcm.omap4.modulemode) return 0; return omap_cm_xlate_clkctrl(oh->clkdm->prcm_partition, oh->clkdm->cm_inst, oh->prcm.omap4.clkctrl_offs); } static struct clk *_lookup_clkctrl_clk(struct omap_hwmod *oh) { struct clkctrl_provider *provider; struct clk *clk; u32 addr; if (!soc_ops.xlate_clkctrl) return NULL; addr = soc_ops.xlate_clkctrl(oh); if (!addr) return NULL; pr_debug("%s: %s: addr=%x\n", __func__, oh->name, addr); list_for_each_entry(provider, &clkctrl_providers, link) { int i; for (i = 0; i < provider->num_addrs; i++) { if (provider->addr[i] <= addr && provider->addr[i] + provider->size[i] > addr) { struct of_phandle_args clkspec; clkspec.np = provider->node; clkspec.args_count = 2; clkspec.args[0] = addr - provider->addr[0]; clkspec.args[1] = 0; clk = of_clk_get_from_provider(&clkspec); pr_debug("%s: %s got %p (offset=%x, provider=%pOF)\n", __func__, oh->name, clk, clkspec.args[0], provider->node); return clk; } } } return NULL; } /** * _init_main_clk - get a struct clk * for the the hwmod's main functional clk * @oh: struct omap_hwmod * * * Called from _init_clocks(). Populates the @oh _clk (main * functional clock pointer) if a clock matching the hwmod name is found, * or a main_clk is present. Returns 0 on success or -EINVAL on error. */ static int _init_main_clk(struct omap_hwmod *oh) { int ret = 0; struct clk *clk = NULL; clk = _lookup_clkctrl_clk(oh); if (!IS_ERR_OR_NULL(clk)) { pr_debug("%s: mapped main_clk %s for %s\n", __func__, __clk_get_name(clk), oh->name); oh->main_clk = __clk_get_name(clk); oh->_clk = clk; soc_ops.disable_direct_prcm(oh); } else { if (!oh->main_clk) return 0; oh->_clk = clk_get(NULL, oh->main_clk); } if (IS_ERR(oh->_clk)) { pr_warn("omap_hwmod: %s: cannot clk_get main_clk %s\n", oh->name, oh->main_clk); return -EINVAL; } /* * HACK: This needs a re-visit once clk_prepare() is implemented * to do something meaningful. Today its just a no-op. * If clk_prepare() is used at some point to do things like * voltage scaling etc, then this would have to be moved to * some point where subsystems like i2c and pmic become * available. */ clk_prepare(oh->_clk); if (!_get_clkdm(oh)) pr_debug("omap_hwmod: %s: missing clockdomain for %s.\n", oh->name, oh->main_clk); return ret; } /** * _init_interface_clks - get a struct clk * for the the hwmod's interface clks * @oh: struct omap_hwmod * * * Called from _init_clocks(). Populates the @oh OCP slave interface * clock pointers. Returns 0 on success or -EINVAL on error. */ static int _init_interface_clks(struct omap_hwmod *oh) { struct omap_hwmod_ocp_if *os; struct clk *c; int ret = 0; list_for_each_entry(os, &oh->slave_ports, node) { if (!os->clk) continue; c = clk_get(NULL, os->clk); if (IS_ERR(c)) { pr_warn("omap_hwmod: %s: cannot clk_get interface_clk %s\n", oh->name, os->clk); ret = -EINVAL; continue; } os->_clk = c; /* * HACK: This needs a re-visit once clk_prepare() is implemented * to do something meaningful. Today its just a no-op. * If clk_prepare() is used at some point to do things like * voltage scaling etc, then this would have to be moved to * some point where subsystems like i2c and pmic become * available. */ clk_prepare(os->_clk); } return ret; } /** * _init_opt_clk - get a struct clk * for the the hwmod's optional clocks * @oh: struct omap_hwmod * * * Called from _init_clocks(). Populates the @oh omap_hwmod_opt_clk * clock pointers. Returns 0 on success or -EINVAL on error. */ static int _init_opt_clks(struct omap_hwmod *oh) { struct omap_hwmod_opt_clk *oc; struct clk *c; int i; int ret = 0; for (i = oh->opt_clks_cnt, oc = oh->opt_clks; i > 0; i--, oc++) { c = clk_get(NULL, oc->clk); if (IS_ERR(c)) { pr_warn("omap_hwmod: %s: cannot clk_get opt_clk %s\n", oh->name, oc->clk); ret = -EINVAL; continue; } oc->_clk = c; /* * HACK: This needs a re-visit once clk_prepare() is implemented * to do something meaningful. Today its just a no-op. * If clk_prepare() is used at some point to do things like * voltage scaling etc, then this would have to be moved to * some point where subsystems like i2c and pmic become * available. */ clk_prepare(oc->_clk); } return ret; } static void _enable_optional_clocks(struct omap_hwmod *oh) { struct omap_hwmod_opt_clk *oc; int i; pr_debug("omap_hwmod: %s: enabling optional clocks\n", oh->name); for (i = oh->opt_clks_cnt, oc = oh->opt_clks; i > 0; i--, oc++) if (oc->_clk) { pr_debug("omap_hwmod: enable %s:%s\n", oc->role, __clk_get_name(oc->_clk)); clk_enable(oc->_clk); } } static void _disable_optional_clocks(struct omap_hwmod *oh) { struct omap_hwmod_opt_clk *oc; int i; pr_debug("omap_hwmod: %s: disabling optional clocks\n", oh->name); for (i = oh->opt_clks_cnt, oc = oh->opt_clks; i > 0; i--, oc++) if (oc->_clk) { pr_debug("omap_hwmod: disable %s:%s\n", oc->role, __clk_get_name(oc->_clk)); clk_disable(oc->_clk); } } /** * _enable_clocks - enable hwmod main clock and interface clocks * @oh: struct omap_hwmod * * * Enables all clocks necessary for register reads and writes to succeed * on the hwmod @oh. Returns 0. */ static int _enable_clocks(struct omap_hwmod *oh) { struct omap_hwmod_ocp_if *os; pr_debug("omap_hwmod: %s: enabling clocks\n", oh->name); if (oh->flags & HWMOD_OPT_CLKS_NEEDED) _enable_optional_clocks(oh); if (oh->_clk) clk_enable(oh->_clk); list_for_each_entry(os, &oh->slave_ports, node) { if (os->_clk && (os->flags & OCPIF_SWSUP_IDLE)) { omap2_clk_deny_idle(os->_clk); clk_enable(os->_clk); } } /* The opt clocks are controlled by the device driver. */ return 0; } /** * _omap4_clkctrl_managed_by_clkfwk - true if clkctrl managed by clock framework * @oh: struct omap_hwmod * */ static bool _omap4_clkctrl_managed_by_clkfwk(struct omap_hwmod *oh) { if (oh->prcm.omap4.flags & HWMOD_OMAP4_CLKFWK_CLKCTR_CLOCK) return true; return false; } /** * _omap4_has_clkctrl_clock - returns true if a module has clkctrl clock * @oh: struct omap_hwmod * */ static bool _omap4_has_clkctrl_clock(struct omap_hwmod *oh) { if (oh->prcm.omap4.clkctrl_offs) return true; if (!oh->prcm.omap4.clkctrl_offs && oh->prcm.omap4.flags & HWMOD_OMAP4_ZERO_CLKCTRL_OFFSET) return true; return false; } /** * _disable_clocks - disable hwmod main clock and interface clocks * @oh: struct omap_hwmod * * * Disables the hwmod @oh main functional and interface clocks. Returns 0. */ static int _disable_clocks(struct omap_hwmod *oh) { struct omap_hwmod_ocp_if *os; pr_debug("omap_hwmod: %s: disabling clocks\n", oh->name); if (oh->_clk) clk_disable(oh->_clk); list_for_each_entry(os, &oh->slave_ports, node) { if (os->_clk && (os->flags & OCPIF_SWSUP_IDLE)) { clk_disable(os->_clk); omap2_clk_allow_idle(os->_clk); } } if (oh->flags & HWMOD_OPT_CLKS_NEEDED) _disable_optional_clocks(oh); /* The opt clocks are controlled by the device driver. */ return 0; } /** * _omap4_enable_module - enable CLKCTRL modulemode on OMAP4 * @oh: struct omap_hwmod * * * Enables the PRCM module mode related to the hwmod @oh. * No return value. */ static void _omap4_enable_module(struct omap_hwmod *oh) { if (!oh->clkdm || !oh->prcm.omap4.modulemode || _omap4_clkctrl_managed_by_clkfwk(oh)) return; pr_debug("omap_hwmod: %s: %s: %d\n", oh->name, __func__, oh->prcm.omap4.modulemode); omap_cm_module_enable(oh->prcm.omap4.modulemode, oh->clkdm->prcm_partition, oh->clkdm->cm_inst, oh->prcm.omap4.clkctrl_offs); } /** * _omap4_wait_target_disable - wait for a module to be disabled on OMAP4 * @oh: struct omap_hwmod * * * Wait for a module @oh to enter slave idle. Returns 0 if the module * does not have an IDLEST bit or if the module successfully enters * slave idle; otherwise, pass along the return value of the * appropriate *_cm*_wait_module_idle() function. */ static int _omap4_wait_target_disable(struct omap_hwmod *oh) { if (!oh) return -EINVAL; if (oh->_int_flags & _HWMOD_NO_MPU_PORT || !oh->clkdm) return 0; if (oh->flags & HWMOD_NO_IDLEST) return 0; if (_omap4_clkctrl_managed_by_clkfwk(oh)) return 0; if (!_omap4_has_clkctrl_clock(oh)) return 0; return omap_cm_wait_module_idle(oh->clkdm->prcm_partition, oh->clkdm->cm_inst, oh->prcm.omap4.clkctrl_offs, 0); } /** * _save_mpu_port_index - find and save the index to @oh's MPU port * @oh: struct omap_hwmod * * * Determines the array index of the OCP slave port that the MPU uses * to address the device, and saves it into the struct omap_hwmod. * Intended to be called during hwmod registration only. No return * value. */ static void __init _save_mpu_port_index(struct omap_hwmod *oh) { struct omap_hwmod_ocp_if *os = NULL; if (!oh) return; oh->_int_flags |= _HWMOD_NO_MPU_PORT; list_for_each_entry(os, &oh->slave_ports, node) { if (os->user & OCP_USER_MPU) { oh->_mpu_port = os; oh->_int_flags &= ~_HWMOD_NO_MPU_PORT; break; } } return; } /** * _find_mpu_rt_port - return omap_hwmod_ocp_if accessible by the MPU * @oh: struct omap_hwmod * * * Given a pointer to a struct omap_hwmod record @oh, return a pointer * to the struct omap_hwmod_ocp_if record that is used by the MPU to * communicate with the IP block. This interface need not be directly * connected to the MPU (and almost certainly is not), but is directly * connected to the IP block represented by @oh. Returns a pointer * to the struct omap_hwmod_ocp_if * upon success, or returns NULL upon * error or if there does not appear to be a path from the MPU to this * IP block. */ static struct omap_hwmod_ocp_if *_find_mpu_rt_port(struct omap_hwmod *oh) { if (!oh || oh->_int_flags & _HWMOD_NO_MPU_PORT || oh->slaves_cnt == 0) return NULL; return oh->_mpu_port; }; /** * _enable_sysc - try to bring a module out of idle via OCP_SYSCONFIG * @oh: struct omap_hwmod * * * Ensure that the OCP_SYSCONFIG register for the IP block represented * by @oh is set to indicate to the PRCM that the IP block is active. * Usually this means placing the module into smart-idle mode and * smart-standby, but if there is a bug in the automatic idle handling * for the IP block, it may need to be placed into the force-idle or * no-idle variants of these modes. No return value. */ static void _enable_sysc(struct omap_hwmod *oh) { u8 idlemode, sf; u32 v; bool clkdm_act; struct clockdomain *clkdm; if (!oh->class->sysc) return; /* * Wait until reset has completed, this is needed as the IP * block is reset automatically by hardware in some cases * (off-mode for example), and the drivers require the * IP to be ready when they access it */ if (oh->flags & HWMOD_CONTROL_OPT_CLKS_IN_RESET) _enable_optional_clocks(oh); _wait_softreset_complete(oh); if (oh->flags & HWMOD_CONTROL_OPT_CLKS_IN_RESET) _disable_optional_clocks(oh); v = oh->_sysc_cache; sf = oh->class->sysc->sysc_flags; clkdm = _get_clkdm(oh); if (sf & SYSC_HAS_SIDLEMODE) { if (oh->flags & HWMOD_SWSUP_SIDLE || oh->flags & HWMOD_SWSUP_SIDLE_ACT) { idlemode = HWMOD_IDLEMODE_NO; } else { if (sf & SYSC_HAS_ENAWAKEUP) _enable_wakeup(oh, &v); if (oh->class->sysc->idlemodes & SIDLE_SMART_WKUP) idlemode = HWMOD_IDLEMODE_SMART_WKUP; else idlemode = HWMOD_IDLEMODE_SMART; } /* * This is special handling for some IPs like * 32k sync timer. Force them to idle! */ clkdm_act = (clkdm && clkdm->flags & CLKDM_ACTIVE_WITH_MPU); if (clkdm_act && !(oh->class->sysc->idlemodes & (SIDLE_SMART | SIDLE_SMART_WKUP))) idlemode = HWMOD_IDLEMODE_FORCE; _set_slave_idlemode(oh, idlemode, &v); } if (sf & SYSC_HAS_MIDLEMODE) { if (oh->flags & HWMOD_FORCE_MSTANDBY) { idlemode = HWMOD_IDLEMODE_FORCE; } else if (oh->flags & HWMOD_SWSUP_MSTANDBY) { idlemode = HWMOD_IDLEMODE_NO; } else { if (sf & SYSC_HAS_ENAWAKEUP) _enable_wakeup(oh, &v); if (oh->class->sysc->idlemodes & MSTANDBY_SMART_WKUP) idlemode = HWMOD_IDLEMODE_SMART_WKUP; else idlemode = HWMOD_IDLEMODE_SMART; } _set_master_standbymode(oh, idlemode, &v); } /* * XXX The clock framework should handle this, by * calling into this code. But this must wait until the * clock structures are tagged with omap_hwmod entries */ if ((oh->flags & HWMOD_SET_DEFAULT_CLOCKACT) && (sf & SYSC_HAS_CLOCKACTIVITY)) _set_clockactivity(oh, CLOCKACT_TEST_ICLK, &v); _write_sysconfig(v, oh); /* * Set the autoidle bit only after setting the smartidle bit * Setting this will not have any impact on the other modules. */ if (sf & SYSC_HAS_AUTOIDLE) { idlemode = (oh->flags & HWMOD_NO_OCP_AUTOIDLE) ? 0 : 1; _set_module_autoidle(oh, idlemode, &v); _write_sysconfig(v, oh); } } /** * _idle_sysc - try to put a module into idle via OCP_SYSCONFIG * @oh: struct omap_hwmod * * * If module is marked as SWSUP_SIDLE, force the module into slave * idle; otherwise, configure it for smart-idle. If module is marked * as SWSUP_MSUSPEND, force the module into master standby; otherwise, * configure it for smart-standby. No return value. */ static void _idle_sysc(struct omap_hwmod *oh) { u8 idlemode, sf; u32 v; if (!oh->class->sysc) return; v = oh->_sysc_cache; sf = oh->class->sysc->sysc_flags; if (sf & SYSC_HAS_SIDLEMODE) { if (oh->flags & HWMOD_SWSUP_SIDLE) { idlemode = HWMOD_IDLEMODE_FORCE; } else { if (sf & SYSC_HAS_ENAWAKEUP) _enable_wakeup(oh, &v); if (oh->class->sysc->idlemodes & SIDLE_SMART_WKUP) idlemode = HWMOD_IDLEMODE_SMART_WKUP; else idlemode = HWMOD_IDLEMODE_SMART; } _set_slave_idlemode(oh, idlemode, &v); } if (sf & SYSC_HAS_MIDLEMODE) { if ((oh->flags & HWMOD_SWSUP_MSTANDBY) || (oh->flags & HWMOD_FORCE_MSTANDBY)) { idlemode = HWMOD_IDLEMODE_FORCE; } else { if (sf & SYSC_HAS_ENAWAKEUP) _enable_wakeup(oh, &v); if (oh->class->sysc->idlemodes & MSTANDBY_SMART_WKUP) idlemode = HWMOD_IDLEMODE_SMART_WKUP; else idlemode = HWMOD_IDLEMODE_SMART; } _set_master_standbymode(oh, idlemode, &v); } /* If the cached value is the same as the new value, skip the write */ if (oh->_sysc_cache != v) _write_sysconfig(v, oh); } /** * _shutdown_sysc - force a module into idle via OCP_SYSCONFIG * @oh: struct omap_hwmod * * * Force the module into slave idle and master suspend. No return * value. */ static void _shutdown_sysc(struct omap_hwmod *oh) { u32 v; u8 sf; if (!oh->class->sysc) return; v = oh->_sysc_cache; sf = oh->class->sysc->sysc_flags; if (sf & SYSC_HAS_SIDLEMODE) _set_slave_idlemode(oh, HWMOD_IDLEMODE_FORCE, &v); if (sf & SYSC_HAS_MIDLEMODE) _set_master_standbymode(oh, HWMOD_IDLEMODE_FORCE, &v); if (sf & SYSC_HAS_AUTOIDLE) _set_module_autoidle(oh, 1, &v); _write_sysconfig(v, oh); } /** * _lookup - find an omap_hwmod by name * @name: find an omap_hwmod by name * * Return a pointer to an omap_hwmod by name, or NULL if not found. */ static struct omap_hwmod *_lookup(const char *name) { struct omap_hwmod *oh, *temp_oh; oh = NULL; list_for_each_entry(temp_oh, &omap_hwmod_list, node) { if (!strcmp(name, temp_oh->name)) { oh = temp_oh; break; } } return oh; } /** * _init_clkdm - look up a clockdomain name, store pointer in omap_hwmod * @oh: struct omap_hwmod * * * Convert a clockdomain name stored in a struct omap_hwmod into a * clockdomain pointer, and save it into the struct omap_hwmod. * Return -EINVAL if the clkdm_name lookup failed. */ static int _init_clkdm(struct omap_hwmod *oh) { if (!oh->clkdm_name) { pr_debug("omap_hwmod: %s: missing clockdomain\n", oh->name); return 0; } oh->clkdm = clkdm_lookup(oh->clkdm_name); if (!oh->clkdm) { pr_warn("omap_hwmod: %s: could not associate to clkdm %s\n", oh->name, oh->clkdm_name); return 0; } pr_debug("omap_hwmod: %s: associated to clkdm %s\n", oh->name, oh->clkdm_name); return 0; } /** * _init_clocks - clk_get() all clocks associated with this hwmod. Retrieve as * well the clockdomain. * @oh: struct omap_hwmod * * @np: device_node mapped to this hwmod * * Called by omap_hwmod_setup_*() (after omap2_clk_init()). * Resolves all clock names embedded in the hwmod. Returns 0 on * success, or a negative error code on failure. */ static int _init_clocks(struct omap_hwmod *oh, struct device_node *np) { int ret = 0; if (oh->_state != _HWMOD_STATE_REGISTERED) return 0; pr_debug("omap_hwmod: %s: looking up clocks\n", oh->name); if (soc_ops.init_clkdm) ret |= soc_ops.init_clkdm(oh); ret |= _init_main_clk(oh); ret |= _init_interface_clks(oh); ret |= _init_opt_clks(oh); if (!ret) oh->_state = _HWMOD_STATE_CLKS_INITED; else pr_warn("omap_hwmod: %s: cannot _init_clocks\n", oh->name); return ret; } /** * _lookup_hardreset - fill register bit info for this hwmod/reset line * @oh: struct omap_hwmod * * @name: name of the reset line in the context of this hwmod * @ohri: struct omap_hwmod_rst_info * that this function will fill in * * Return the bit position of the reset line that match the * input name. Return -ENOENT if not found. */ static int _lookup_hardreset(struct omap_hwmod *oh, const char *name, struct omap_hwmod_rst_info *ohri) { int i; for (i = 0; i < oh->rst_lines_cnt; i++) { const char *rst_line = oh->rst_lines[i].name; if (!strcmp(rst_line, name)) { ohri->rst_shift = oh->rst_lines[i].rst_shift; ohri->st_shift = oh->rst_lines[i].st_shift; pr_debug("omap_hwmod: %s: %s: %s: rst %d st %d\n", oh->name, __func__, rst_line, ohri->rst_shift, ohri->st_shift); return 0; } } return -ENOENT; } /** * _assert_hardreset - assert the HW reset line of submodules * contained in the hwmod module. * @oh: struct omap_hwmod * * @name: name of the reset line to lookup and assert * * Some IP like dsp, ipu or iva contain processor that require an HW * reset line to be assert / deassert in order to enable fully the IP. * Returns -EINVAL if @oh is null, -ENOSYS if we have no way of * asserting the hardreset line on the currently-booted SoC, or passes * along the return value from _lookup_hardreset() or the SoC's * assert_hardreset code. */ static int _assert_hardreset(struct omap_hwmod *oh, const char *name) { struct omap_hwmod_rst_info ohri; int ret = -EINVAL; if (!oh) return -EINVAL; if (!soc_ops.assert_hardreset) return -ENOSYS; ret = _lookup_hardreset(oh, name, &ohri); if (ret < 0) return ret; ret = soc_ops.assert_hardreset(oh, &ohri); return ret; } /** * _deassert_hardreset - deassert the HW reset line of submodules contained * in the hwmod module. * @oh: struct omap_hwmod * * @name: name of the reset line to look up and deassert * * Some IP like dsp, ipu or iva contain processor that require an HW * reset line to be assert / deassert in order to enable fully the IP. * Returns -EINVAL if @oh is null, -ENOSYS if we have no way of * deasserting the hardreset line on the currently-booted SoC, or passes * along the return value from _lookup_hardreset() or the SoC's * deassert_hardreset code. */ static int _deassert_hardreset(struct omap_hwmod *oh, const char *name) { struct omap_hwmod_rst_info ohri; int ret = -EINVAL; if (!oh) return -EINVAL; if (!soc_ops.deassert_hardreset) return -ENOSYS; ret = _lookup_hardreset(oh, name, &ohri); if (ret < 0) return ret; if (oh->clkdm) { /* * A clockdomain must be in SW_SUP otherwise reset * might not be completed. The clockdomain can be set * in HW_AUTO only when the module become ready. */ clkdm_deny_idle(oh->clkdm); ret = clkdm_hwmod_enable(oh->clkdm, oh); if (ret) { WARN(1, "omap_hwmod: %s: could not enable clockdomain %s: %d\n", oh->name, oh->clkdm->name, ret); return ret; } } _enable_clocks(oh); if (soc_ops.enable_module) soc_ops.enable_module(oh); ret = soc_ops.deassert_hardreset(oh, &ohri); if (soc_ops.disable_module) soc_ops.disable_module(oh); _disable_clocks(oh); if (ret == -EBUSY) pr_warn("omap_hwmod: %s: failed to hardreset\n", oh->name); if (oh->clkdm) { /* * Set the clockdomain to HW_AUTO, assuming that the * previous state was HW_AUTO. */ clkdm_allow_idle(oh->clkdm); clkdm_hwmod_disable(oh->clkdm, oh); } return ret; } /** * _read_hardreset - read the HW reset line state of submodules * contained in the hwmod module * @oh: struct omap_hwmod * * @name: name of the reset line to look up and read * * Return the state of the reset line. Returns -EINVAL if @oh is * null, -ENOSYS if we have no way of reading the hardreset line * status on the currently-booted SoC, or passes along the return * value from _lookup_hardreset() or the SoC's is_hardreset_asserted * code. */ static int _read_hardreset(struct omap_hwmod *oh, const char *name) { struct omap_hwmod_rst_info ohri; int ret = -EINVAL; if (!oh) return -EINVAL; if (!soc_ops.is_hardreset_asserted) return -ENOSYS; ret = _lookup_hardreset(oh, name, &ohri); if (ret < 0) return ret; return soc_ops.is_hardreset_asserted(oh, &ohri); } /** * _are_all_hardreset_lines_asserted - return true if the @oh is hard-reset * @oh: struct omap_hwmod * * * If all hardreset lines associated with @oh are asserted, then return true. * Otherwise, if part of @oh is out hardreset or if no hardreset lines * associated with @oh are asserted, then return false. * This function is used to avoid executing some parts of the IP block * enable/disable sequence if its hardreset line is set. */ static bool _are_all_hardreset_lines_asserted(struct omap_hwmod *oh) { int i, rst_cnt = 0; if (oh->rst_lines_cnt == 0) return false; for (i = 0; i < oh->rst_lines_cnt; i++) if (_read_hardreset(oh, oh->rst_lines[i].name) > 0) rst_cnt++; if (oh->rst_lines_cnt == rst_cnt) return true; return false; } /** * _are_any_hardreset_lines_asserted - return true if any part of @oh is * hard-reset * @oh: struct omap_hwmod * * * If any hardreset lines associated with @oh are asserted, then * return true. Otherwise, if no hardreset lines associated with @oh * are asserted, or if @oh has no hardreset lines, then return false. * This function is used to avoid executing some parts of the IP block * enable/disable sequence if any hardreset line is set. */ static bool _are_any_hardreset_lines_asserted(struct omap_hwmod *oh) { int rst_cnt = 0; int i; for (i = 0; i < oh->rst_lines_cnt && rst_cnt == 0; i++) if (_read_hardreset(oh, oh->rst_lines[i].name) > 0) rst_cnt++; return (rst_cnt) ? true : false; } /** * _omap4_disable_module - enable CLKCTRL modulemode on OMAP4 * @oh: struct omap_hwmod * * * Disable the PRCM module mode related to the hwmod @oh. * Return EINVAL if the modulemode is not supported and 0 in case of success. */ static int _omap4_disable_module(struct omap_hwmod *oh) { int v; if (!oh->clkdm || !oh->prcm.omap4.modulemode || _omap4_clkctrl_managed_by_clkfwk(oh)) return -EINVAL; /* * Since integration code might still be doing something, only * disable if all lines are under hardreset. */ if (_are_any_hardreset_lines_asserted(oh)) return 0; pr_debug("omap_hwmod: %s: %s\n", oh->name, __func__); omap_cm_module_disable(oh->clkdm->prcm_partition, oh->clkdm->cm_inst, oh->prcm.omap4.clkctrl_offs); v = _omap4_wait_target_disable(oh); if (v) pr_warn("omap_hwmod: %s: _wait_target_disable failed\n", oh->name); return 0; } /** * _ocp_softreset - reset an omap_hwmod via the OCP_SYSCONFIG bit * @oh: struct omap_hwmod * * * Resets an omap_hwmod @oh via the OCP_SYSCONFIG bit. hwmod must be * enabled for this to work. Returns -ENOENT if the hwmod cannot be * reset this way, -EINVAL if the hwmod is in the wrong state, * -ETIMEDOUT if the module did not reset in time, or 0 upon success. * * In OMAP3 a specific SYSSTATUS register is used to get the reset status. * Starting in OMAP4, some IPs do not have SYSSTATUS registers and instead * use the SYSCONFIG softreset bit to provide the status. * * Note that some IP like McBSP do have reset control but don't have * reset status. */ static int _ocp_softreset(struct omap_hwmod *oh) { u32 v; int c = 0; int ret = 0; if (!oh->class->sysc || !(oh->class->sysc->sysc_flags & SYSC_HAS_SOFTRESET)) return -ENOENT; /* clocks must be on for this operation */ if (oh->_state != _HWMOD_STATE_ENABLED) { pr_warn("omap_hwmod: %s: reset can only be entered from enabled state\n", oh->name); return -EINVAL; } /* For some modules, all optionnal clocks need to be enabled as well */ if (oh->flags & HWMOD_CONTROL_OPT_CLKS_IN_RESET) _enable_optional_clocks(oh); pr_debug("omap_hwmod: %s: resetting via OCP SOFTRESET\n", oh->name); v = oh->_sysc_cache; ret = _set_softreset(oh, &v); if (ret) goto dis_opt_clks; _write_sysconfig(v, oh); if (oh->class->sysc->srst_udelay) udelay(oh->class->sysc->srst_udelay); c = _wait_softreset_complete(oh); if (c == MAX_MODULE_SOFTRESET_WAIT) { pr_warn("omap_hwmod: %s: softreset failed (waited %d usec)\n", oh->name, MAX_MODULE_SOFTRESET_WAIT); ret = -ETIMEDOUT; goto dis_opt_clks; } else { pr_debug("omap_hwmod: %s: softreset in %d usec\n", oh->name, c); } ret = _clear_softreset(oh, &v); if (ret) goto dis_opt_clks; _write_sysconfig(v, oh); /* * XXX add _HWMOD_STATE_WEDGED for modules that don't come back from * _wait_target_ready() or _reset() */ dis_opt_clks: if (oh->flags & HWMOD_CONTROL_OPT_CLKS_IN_RESET) _disable_optional_clocks(oh); return ret; } /** * _reset - reset an omap_hwmod * @oh: struct omap_hwmod * * * Resets an omap_hwmod @oh. If the module has a custom reset * function pointer defined, then call it to reset the IP block, and * pass along its return value to the caller. Otherwise, if the IP * block has an OCP_SYSCONFIG register with a SOFTRESET bitfield * associated with it, call a function to reset the IP block via that * method, and pass along the return value to the caller. Finally, if * the IP block has some hardreset lines associated with it, assert * all of those, but do _not_ deassert them. (This is because driver * authors have expressed an apparent requirement to control the * deassertion of the hardreset lines themselves.) * * The default software reset mechanism for most OMAP IP blocks is * triggered via the OCP_SYSCONFIG.SOFTRESET bit. However, some * hwmods cannot be reset via this method. Some are not targets and * therefore have no OCP header registers to access. Others (like the * IVA) have idiosyncratic reset sequences. So for these relatively * rare cases, custom reset code can be supplied in the struct * omap_hwmod_class .reset function pointer. * * _set_dmadisable() is called to set the DMADISABLE bit so that it * does not prevent idling of the system. This is necessary for cases * where ROMCODE/BOOTLOADER uses dma and transfers control to the * kernel without disabling dma. * * Passes along the return value from either _ocp_softreset() or the * custom reset function - these must return -EINVAL if the hwmod * cannot be reset this way or if the hwmod is in the wrong state, * -ETIMEDOUT if the module did not reset in time, or 0 upon success. */ static int _reset(struct omap_hwmod *oh) { int i, r; pr_debug("omap_hwmod: %s: resetting\n", oh->name); if (oh->class->reset) { r = oh->class->reset(oh); } else { if (oh->rst_lines_cnt > 0) { for (i = 0; i < oh->rst_lines_cnt; i++) _assert_hardreset(oh, oh->rst_lines[i].name); return 0; } else { r = _ocp_softreset(oh); if (r == -ENOENT) r = 0; } } _set_dmadisable(oh); /* * OCP_SYSCONFIG bits need to be reprogrammed after a * softreset. The _enable() function should be split to avoid * the rewrite of the OCP_SYSCONFIG register. */ if (oh->class->sysc) { _update_sysc_cache(oh); _enable_sysc(oh); } return r; } /** * _omap4_update_context_lost - increment hwmod context loss counter if * hwmod context was lost, and clear hardware context loss reg * @oh: hwmod to check for context loss * * If the PRCM indicates that the hwmod @oh lost context, increment * our in-memory context loss counter, and clear the RM_*_CONTEXT * bits. No return value. */ static void _omap4_update_context_lost(struct omap_hwmod *oh) { if (oh->prcm.omap4.flags & HWMOD_OMAP4_NO_CONTEXT_LOSS_BIT) return; if (!prm_was_any_context_lost_old(oh->clkdm->pwrdm.ptr->prcm_partition, oh->clkdm->pwrdm.ptr->prcm_offs, oh->prcm.omap4.context_offs)) return; oh->prcm.omap4.context_lost_counter++; prm_clear_context_loss_flags_old(oh->clkdm->pwrdm.ptr->prcm_partition, oh->clkdm->pwrdm.ptr->prcm_offs, oh->prcm.omap4.context_offs); } /** * _omap4_get_context_lost - get context loss counter for a hwmod * @oh: hwmod to get context loss counter for * * Returns the in-memory context loss counter for a hwmod. */ static int _omap4_get_context_lost(struct omap_hwmod *oh) { return oh->prcm.omap4.context_lost_counter; } /** * _enable - enable an omap_hwmod * @oh: struct omap_hwmod * * * Enables an omap_hwmod @oh such that the MPU can access the hwmod's * register target. Returns -EINVAL if the hwmod is in the wrong * state or passes along the return value of _wait_target_ready(). */ static int _enable(struct omap_hwmod *oh) { int r; pr_debug("omap_hwmod: %s: enabling\n", oh->name); /* * hwmods with HWMOD_INIT_NO_IDLE flag set are left in enabled * state at init. */ if (oh->_int_flags & _HWMOD_SKIP_ENABLE) { oh->_int_flags &= ~_HWMOD_SKIP_ENABLE; return 0; } if (oh->_state != _HWMOD_STATE_INITIALIZED && oh->_state != _HWMOD_STATE_IDLE && oh->_state != _HWMOD_STATE_DISABLED) { WARN(1, "omap_hwmod: %s: enabled state can only be entered from initialized, idle, or disabled state\n", oh->name); return -EINVAL; } /* * If an IP block contains HW reset lines and all of them are * asserted, we let integration code associated with that * block handle the enable. We've received very little * information on what those driver authors need, and until * detailed information is provided and the driver code is * posted to the public lists, this is probably the best we * can do. */ if (_are_all_hardreset_lines_asserted(oh)) return 0; _add_initiator_dep(oh, mpu_oh); if (oh->clkdm) { /* * A clockdomain must be in SW_SUP before enabling * completely the module. The clockdomain can be set * in HW_AUTO only when the module become ready. */ clkdm_deny_idle(oh->clkdm); r = clkdm_hwmod_enable(oh->clkdm, oh); if (r) { WARN(1, "omap_hwmod: %s: could not enable clockdomain %s: %d\n", oh->name, oh->clkdm->name, r); return r; } } _enable_clocks(oh); if (soc_ops.enable_module) soc_ops.enable_module(oh); if (oh->flags & HWMOD_BLOCK_WFI) cpu_idle_poll_ctrl(true); if (soc_ops.update_context_lost) soc_ops.update_context_lost(oh); r = (soc_ops.wait_target_ready) ? soc_ops.wait_target_ready(oh) : -EINVAL; if (oh->clkdm && !(oh->flags & HWMOD_CLKDM_NOAUTO)) clkdm_allow_idle(oh->clkdm); if (!r) { oh->_state = _HWMOD_STATE_ENABLED; /* Access the sysconfig only if the target is ready */ if (oh->class->sysc) { if (!(oh->_int_flags & _HWMOD_SYSCONFIG_LOADED)) _update_sysc_cache(oh); _enable_sysc(oh); } } else { if (soc_ops.disable_module) soc_ops.disable_module(oh); _disable_clocks(oh); pr_err("omap_hwmod: %s: _wait_target_ready failed: %d\n", oh->name, r); if (oh->clkdm) clkdm_hwmod_disable(oh->clkdm, oh); } return r; } /** * _idle - idle an omap_hwmod * @oh: struct omap_hwmod * * * Idles an omap_hwmod @oh. This should be called once the hwmod has * no further work. Returns -EINVAL if the hwmod is in the wrong * state or returns 0. */ static int _idle(struct omap_hwmod *oh) { if (oh->flags & HWMOD_NO_IDLE) { oh->_int_flags |= _HWMOD_SKIP_ENABLE; return 0; } pr_debug("omap_hwmod: %s: idling\n", oh->name); if (_are_all_hardreset_lines_asserted(oh)) return 0; if (oh->_state != _HWMOD_STATE_ENABLED) { WARN(1, "omap_hwmod: %s: idle state can only be entered from enabled state\n", oh->name); return -EINVAL; } if (oh->class->sysc) _idle_sysc(oh); _del_initiator_dep(oh, mpu_oh); /* * If HWMOD_CLKDM_NOAUTO is set then we don't * deny idle the clkdm again since idle was already denied * in _enable() */ if (oh->clkdm && !(oh->flags & HWMOD_CLKDM_NOAUTO)) clkdm_deny_idle(oh->clkdm); if (oh->flags & HWMOD_BLOCK_WFI) cpu_idle_poll_ctrl(false); if (soc_ops.disable_module) soc_ops.disable_module(oh); /* * The module must be in idle mode before disabling any parents * clocks. Otherwise, the parent clock might be disabled before * the module transition is done, and thus will prevent the * transition to complete properly. */ _disable_clocks(oh); if (oh->clkdm) { clkdm_allow_idle(oh->clkdm); clkdm_hwmod_disable(oh->clkdm, oh); } oh->_state = _HWMOD_STATE_IDLE; return 0; } /** * _shutdown - shutdown an omap_hwmod * @oh: struct omap_hwmod * * * Shut down an omap_hwmod @oh. This should be called when the driver * used for the hwmod is removed or unloaded or if the driver is not * used by the system. Returns -EINVAL if the hwmod is in the wrong * state or returns 0. */ static int _shutdown(struct omap_hwmod *oh) { int ret, i; u8 prev_state; if (_are_all_hardreset_lines_asserted(oh)) return 0; if (oh->_state != _HWMOD_STATE_IDLE && oh->_state != _HWMOD_STATE_ENABLED) { WARN(1, "omap_hwmod: %s: disabled state can only be entered from idle, or enabled state\n", oh->name); return -EINVAL; } pr_debug("omap_hwmod: %s: disabling\n", oh->name); if (oh->class->pre_shutdown) { prev_state = oh->_state; if (oh->_state == _HWMOD_STATE_IDLE) _enable(oh); ret = oh->class->pre_shutdown(oh); if (ret) { if (prev_state == _HWMOD_STATE_IDLE) _idle(oh); return ret; } } if (oh->class->sysc) { if (oh->_state == _HWMOD_STATE_IDLE) _enable(oh); _shutdown_sysc(oh); } /* clocks and deps are already disabled in idle */ if (oh->_state == _HWMOD_STATE_ENABLED) { _del_initiator_dep(oh, mpu_oh); /* XXX what about the other system initiators here? dma, dsp */ if (oh->flags & HWMOD_BLOCK_WFI) cpu_idle_poll_ctrl(false); if (soc_ops.disable_module) soc_ops.disable_module(oh); _disable_clocks(oh); if (oh->clkdm) clkdm_hwmod_disable(oh->clkdm, oh); } /* XXX Should this code also force-disable the optional clocks? */ for (i = 0; i < oh->rst_lines_cnt; i++) _assert_hardreset(oh, oh->rst_lines[i].name); oh->_state = _HWMOD_STATE_DISABLED; return 0; } static int of_dev_find_hwmod(struct device_node *np, struct omap_hwmod *oh) { int count, i, res; const char *p; count = of_property_count_strings(np, "ti,hwmods"); if (count < 1) return -ENODEV; for (i = 0; i < count; i++) { res = of_property_read_string_index(np, "ti,hwmods", i, &p); if (res) continue; if (!strcmp(p, oh->name)) { pr_debug("omap_hwmod: dt %pOFn[%i] uses hwmod %s\n", np, i, oh->name); return i; } } return -ENODEV; } /** * of_dev_hwmod_lookup - look up needed hwmod from dt blob * @np: struct device_node * * @oh: struct omap_hwmod * * @index: index of the entry found * @found: struct device_node * found or NULL * * Parse the dt blob and find out needed hwmod. Recursive function is * implemented to take care hierarchical dt blob parsing. * Return: Returns 0 on success, -ENODEV when not found. */ static int of_dev_hwmod_lookup(struct device_node *np, struct omap_hwmod *oh, int *index, struct device_node **found) { struct device_node *np0 = NULL; int res; res = of_dev_find_hwmod(np, oh); if (res >= 0) { *found = np; *index = res; return 0; } for_each_child_of_node(np, np0) { struct device_node *fc; int i; res = of_dev_hwmod_lookup(np0, oh, &i, &fc); if (res == 0) { *found = fc; *index = i; return 0; } } *found = NULL; *index = 0; return -ENODEV; } /** * omap_hwmod_fix_mpu_rt_idx - fix up mpu_rt_idx register offsets * * @oh: struct omap_hwmod * * @np: struct device_node * * * Fix up module register offsets for modules with mpu_rt_idx. * Only needed for cpsw with interconnect target module defined * in device tree while still using legacy hwmod platform data * for rev, sysc and syss registers. * * Can be removed when all cpsw hwmod platform data has been * dropped. */ static void omap_hwmod_fix_mpu_rt_idx(struct omap_hwmod *oh, struct device_node *np, struct resource *res) { struct device_node *child = NULL; int error; child = of_get_next_child(np, child); if (!child) return; error = of_address_to_resource(child, oh->mpu_rt_idx, res); if (error) pr_err("%s: error mapping mpu_rt_idx: %i\n", __func__, error); } /** * omap_hwmod_parse_module_range - map module IO range from device tree * @oh: struct omap_hwmod * * @np: struct device_node * * * Parse the device tree range an interconnect target module provides * for it's child device IP blocks. This way we can support the old * "ti,hwmods" property with just dts data without a need for platform * data for IO resources. And we don't need all the child IP device * nodes available in the dts. */ int omap_hwmod_parse_module_range(struct omap_hwmod *oh, struct device_node *np, struct resource *res) { struct property *prop; const __be32 *ranges; const char *name; u32 nr_addr, nr_size; u64 base, size; int len, error; if (!res) return -EINVAL; ranges = of_get_property(np, "ranges", &len); if (!ranges) return -ENOENT; len /= sizeof(*ranges); if (len < 3) return -EINVAL; of_property_for_each_string(np, "compatible", prop, name) if (!strncmp("ti,sysc-", name, 8)) break; if (!name) return -ENOENT; error = of_property_read_u32(np, "#address-cells", &nr_addr); if (error) return -ENOENT; error = of_property_read_u32(np, "#size-cells", &nr_size); if (error) return -ENOENT; if (nr_addr != 1 || nr_size != 1) { pr_err("%s: invalid range for %s->%pOFn\n", __func__, oh->name, np); return -EINVAL; } ranges++; base = of_translate_address(np, ranges++); size = be32_to_cpup(ranges); pr_debug("omap_hwmod: %s %pOFn at 0x%llx size 0x%llx\n", oh->name, np, base, size); if (oh && oh->mpu_rt_idx) { omap_hwmod_fix_mpu_rt_idx(oh, np, res); return 0; } res->start = base; res->end = base + size - 1; res->flags = IORESOURCE_MEM; return 0; } /** * _init_mpu_rt_base - populate the virtual address for a hwmod * @oh: struct omap_hwmod * to locate the virtual address * @data: (unused, caller should pass NULL) * @index: index of the reg entry iospace in device tree * @np: struct device_node * of the IP block's device node in the DT data * * Cache the virtual address used by the MPU to access this IP block's * registers. This address is needed early so the OCP registers that * are part of the device's address space can be ioremapped properly. * * If SYSC access is not needed, the registers will not be remapped * and non-availability of MPU access is not treated as an error. * * Returns 0 on success, -EINVAL if an invalid hwmod is passed, and * -ENXIO on absent or invalid register target address space. */ static int __init _init_mpu_rt_base(struct omap_hwmod *oh, void *data, int index, struct device_node *np) { void __iomem *va_start = NULL; struct resource res; int error; if (!oh) return -EINVAL; _save_mpu_port_index(oh); /* if we don't need sysc access we don't need to ioremap */ if (!oh->class->sysc) return 0; /* we can't continue without MPU PORT if we need sysc access */ if (oh->_int_flags & _HWMOD_NO_MPU_PORT) return -ENXIO; if (!np) { pr_err("omap_hwmod: %s: no dt node\n", oh->name); return -ENXIO; } /* Do we have a dts range for the interconnect target module? */ error = omap_hwmod_parse_module_range(oh, np, &res); if (!error) va_start = ioremap(res.start, resource_size(&res)); /* No ranges, rely on device reg entry */ if (!va_start) va_start = of_iomap(np, index + oh->mpu_rt_idx); if (!va_start) { pr_err("omap_hwmod: %s: Missing dt reg%i for %pOF\n", oh->name, index, np); return -ENXIO; } pr_debug("omap_hwmod: %s: MPU register target at va %p\n", oh->name, va_start); oh->_mpu_rt_va = va_start; return 0; } static void __init parse_module_flags(struct omap_hwmod *oh, struct device_node *np) { if (of_find_property(np, "ti,no-reset-on-init", NULL)) oh->flags |= HWMOD_INIT_NO_RESET; if (of_find_property(np, "ti,no-idle-on-init", NULL)) oh->flags |= HWMOD_INIT_NO_IDLE; if (of_find_property(np, "ti,no-idle", NULL)) oh->flags |= HWMOD_NO_IDLE; } /** * _init - initialize internal data for the hwmod @oh * @oh: struct omap_hwmod * * @n: (unused) * * Look up the clocks and the address space used by the MPU to access * registers belonging to the hwmod @oh. @oh must already be * registered at this point. This is the first of two phases for * hwmod initialization. Code called here does not touch any hardware * registers, it simply prepares internal data structures. Returns 0 * upon success or if the hwmod isn't registered or if the hwmod's * address space is not defined, or -EINVAL upon failure. */ static int __init _init(struct omap_hwmod *oh, void *data) { int r, index; struct device_node *np = NULL; struct device_node *bus; if (oh->_state != _HWMOD_STATE_REGISTERED) return 0; bus = of_find_node_by_name(NULL, "ocp"); if (!bus) return -ENODEV; r = of_dev_hwmod_lookup(bus, oh, &index, &np); if (r) pr_debug("omap_hwmod: %s missing dt data\n", oh->name); else if (np && index) pr_warn("omap_hwmod: %s using broken dt data from %pOFn\n", oh->name, np); r = _init_mpu_rt_base(oh, NULL, index, np); if (r < 0) { WARN(1, "omap_hwmod: %s: doesn't have mpu register target base\n", oh->name); return 0; } r = _init_clocks(oh, np); if (r < 0) { WARN(1, "omap_hwmod: %s: couldn't init clocks\n", oh->name); return -EINVAL; } if (np) { struct device_node *child; parse_module_flags(oh, np); child = of_get_next_child(np, NULL); if (child) parse_module_flags(oh, child); } oh->_state = _HWMOD_STATE_INITIALIZED; return 0; } /** * _setup_iclk_autoidle - configure an IP block's interface clocks * @oh: struct omap_hwmod * * * Set up the module's interface clocks. XXX This function is still mostly * a stub; implementing this properly requires iclk autoidle usecounting in * the clock code. No return value. */ static void _setup_iclk_autoidle(struct omap_hwmod *oh) { struct omap_hwmod_ocp_if *os; if (oh->_state != _HWMOD_STATE_INITIALIZED) return; list_for_each_entry(os, &oh->slave_ports, node) { if (!os->_clk) continue; if (os->flags & OCPIF_SWSUP_IDLE) { /* * we might have multiple users of one iclk with * different requirements, disable autoidle when * the module is enabled, e.g. dss iclk */ } else { /* we are enabling autoidle afterwards anyways */ clk_enable(os->_clk); } } return; } /** * _setup_reset - reset an IP block during the setup process * @oh: struct omap_hwmod * * * Reset the IP block corresponding to the hwmod @oh during the setup * process. The IP block is first enabled so it can be successfully * reset. Returns 0 upon success or a negative error code upon * failure. */ static int _setup_reset(struct omap_hwmod *oh) { int r = 0; if (oh->_state != _HWMOD_STATE_INITIALIZED) return -EINVAL; if (oh->flags & HWMOD_EXT_OPT_MAIN_CLK) return -EPERM; if (oh->rst_lines_cnt == 0) { r = _enable(oh); if (r) { pr_warn("omap_hwmod: %s: cannot be enabled for reset (%d)\n", oh->name, oh->_state); return -EINVAL; } } if (!(oh->flags & HWMOD_INIT_NO_RESET)) r = _reset(oh); return r; } /** * _setup_postsetup - transition to the appropriate state after _setup * @oh: struct omap_hwmod * * * Place an IP block represented by @oh into a "post-setup" state -- * either IDLE, ENABLED, or DISABLED. ("post-setup" simply means that * this function is called at the end of _setup().) The postsetup * state for an IP block can be changed by calling * omap_hwmod_enter_postsetup_state() early in the boot process, * before one of the omap_hwmod_setup*() functions are called for the * IP block. * * The IP block stays in this state until a PM runtime-based driver is * loaded for that IP block. A post-setup state of IDLE is * appropriate for almost all IP blocks with runtime PM-enabled * drivers, since those drivers are able to enable the IP block. A * post-setup state of ENABLED is appropriate for kernels with PM * runtime disabled. The DISABLED state is appropriate for unusual IP * blocks such as the MPU WDTIMER on kernels without WDTIMER drivers * included, since the WDTIMER starts running on reset and will reset * the MPU if left active. * * This post-setup mechanism is deprecated. Once all of the OMAP * drivers have been converted to use PM runtime, and all of the IP * block data and interconnect data is available to the hwmod code, it * should be possible to replace this mechanism with a "lazy reset" * arrangement. In a "lazy reset" setup, each IP block is enabled * when the driver first probes, then all remaining IP blocks without * drivers are either shut down or enabled after the drivers have * loaded. However, this cannot take place until the above * preconditions have been met, since otherwise the late reset code * has no way of knowing which IP blocks are in use by drivers, and * which ones are unused. * * No return value. */ static void _setup_postsetup(struct omap_hwmod *oh) { u8 postsetup_state; if (oh->rst_lines_cnt > 0) return; postsetup_state = oh->_postsetup_state; if (postsetup_state == _HWMOD_STATE_UNKNOWN) postsetup_state = _HWMOD_STATE_ENABLED; /* * XXX HWMOD_INIT_NO_IDLE does not belong in hwmod data - * it should be set by the core code as a runtime flag during startup */ if ((oh->flags & (HWMOD_INIT_NO_IDLE | HWMOD_NO_IDLE)) && (postsetup_state == _HWMOD_STATE_IDLE)) { oh->_int_flags |= _HWMOD_SKIP_ENABLE; postsetup_state = _HWMOD_STATE_ENABLED; } if (postsetup_state == _HWMOD_STATE_IDLE) _idle(oh); else if (postsetup_state == _HWMOD_STATE_DISABLED) _shutdown(oh); else if (postsetup_state != _HWMOD_STATE_ENABLED) WARN(1, "hwmod: %s: unknown postsetup state %d! defaulting to enabled\n", oh->name, postsetup_state); return; } /** * _setup - prepare IP block hardware for use * @oh: struct omap_hwmod * * @n: (unused, pass NULL) * * Configure the IP block represented by @oh. This may include * enabling the IP block, resetting it, and placing it into a * post-setup state, depending on the type of IP block and applicable * flags. IP blocks are reset to prevent any previous configuration * by the bootloader or previous operating system from interfering * with power management or other parts of the system. The reset can * be avoided; see omap_hwmod_no_setup_reset(). This is the second of * two phases for hwmod initialization. Code called here generally * affects the IP block hardware, or system integration hardware * associated with the IP block. Returns 0. */ static int _setup(struct omap_hwmod *oh, void *data) { if (oh->_state != _HWMOD_STATE_INITIALIZED) return 0; if (oh->parent_hwmod) { int r; r = _enable(oh->parent_hwmod); WARN(r, "hwmod: %s: setup: failed to enable parent hwmod %s\n", oh->name, oh->parent_hwmod->name); } _setup_iclk_autoidle(oh); if (!_setup_reset(oh)) _setup_postsetup(oh); if (oh->parent_hwmod) { u8 postsetup_state; postsetup_state = oh->parent_hwmod->_postsetup_state; if (postsetup_state == _HWMOD_STATE_IDLE) _idle(oh->parent_hwmod); else if (postsetup_state == _HWMOD_STATE_DISABLED) _shutdown(oh->parent_hwmod); else if (postsetup_state != _HWMOD_STATE_ENABLED) WARN(1, "hwmod: %s: unknown postsetup state %d! defaulting to enabled\n", oh->parent_hwmod->name, postsetup_state); } return 0; } /** * _register - register a struct omap_hwmod * @oh: struct omap_hwmod * * * Registers the omap_hwmod @oh. Returns -EEXIST if an omap_hwmod * already has been registered by the same name; -EINVAL if the * omap_hwmod is in the wrong state, if @oh is NULL, if the * omap_hwmod's class field is NULL; if the omap_hwmod is missing a * name, or if the omap_hwmod's class is missing a name; or 0 upon * success. * * XXX The data should be copied into bootmem, so the original data * should be marked __initdata and freed after init. This would allow * unneeded omap_hwmods to be freed on multi-OMAP configurations. Note * that the copy process would be relatively complex due to the large number * of substructures. */ static int _register(struct omap_hwmod *oh) { if (!oh || !oh->name || !oh->class || !oh->class->name || (oh->_state != _HWMOD_STATE_UNKNOWN)) return -EINVAL; pr_debug("omap_hwmod: %s: registering\n", oh->name); if (_lookup(oh->name)) return -EEXIST; list_add_tail(&oh->node, &omap_hwmod_list); INIT_LIST_HEAD(&oh->slave_ports); spin_lock_init(&oh->_lock); lockdep_set_class(&oh->_lock, &oh->hwmod_key); oh->_state = _HWMOD_STATE_REGISTERED; /* * XXX Rather than doing a strcmp(), this should test a flag * set in the hwmod data, inserted by the autogenerator code. */ if (!strcmp(oh->name, MPU_INITIATOR_NAME)) mpu_oh = oh; return 0; } /** * _add_link - add an interconnect between two IP blocks * @oi: pointer to a struct omap_hwmod_ocp_if record * * Add struct omap_hwmod_link records connecting the slave IP block * specified in @oi->slave to @oi. This code is assumed to run before * preemption or SMP has been enabled, thus avoiding the need for * locking in this code. Changes to this assumption will require * additional locking. Returns 0. */ static int _add_link(struct omap_hwmod_ocp_if *oi) { pr_debug("omap_hwmod: %s -> %s: adding link\n", oi->master->name, oi->slave->name); list_add(&oi->node, &oi->slave->slave_ports); oi->slave->slaves_cnt++; return 0; } /** * _register_link - register a struct omap_hwmod_ocp_if * @oi: struct omap_hwmod_ocp_if * * * Registers the omap_hwmod_ocp_if record @oi. Returns -EEXIST if it * has already been registered; -EINVAL if @oi is NULL or if the * record pointed to by @oi is missing required fields; or 0 upon * success. * * XXX The data should be copied into bootmem, so the original data * should be marked __initdata and freed after init. This would allow * unneeded omap_hwmods to be freed on multi-OMAP configurations. */ static int __init _register_link(struct omap_hwmod_ocp_if *oi) { if (!oi || !oi->master || !oi->slave || !oi->user) return -EINVAL; if (oi->_int_flags & _OCPIF_INT_FLAGS_REGISTERED) return -EEXIST; pr_debug("omap_hwmod: registering link from %s to %s\n", oi->master->name, oi->slave->name); /* * Register the connected hwmods, if they haven't been * registered already */ if (oi->master->_state != _HWMOD_STATE_REGISTERED) _register(oi->master); if (oi->slave->_state != _HWMOD_STATE_REGISTERED) _register(oi->slave); _add_link(oi); oi->_int_flags |= _OCPIF_INT_FLAGS_REGISTERED; return 0; } /* Static functions intended only for use in soc_ops field function pointers */ /** * _omap2xxx_3xxx_wait_target_ready - wait for a module to leave slave idle * @oh: struct omap_hwmod * * * Wait for a module @oh to leave slave idle. Returns 0 if the module * does not have an IDLEST bit or if the module successfully leaves * slave idle; otherwise, pass along the return value of the * appropriate *_cm*_wait_module_ready() function. */ static int _omap2xxx_3xxx_wait_target_ready(struct omap_hwmod *oh) { if (!oh) return -EINVAL; if (oh->flags & HWMOD_NO_IDLEST) return 0; if (!_find_mpu_rt_port(oh)) return 0; /* XXX check module SIDLEMODE, hardreset status, enabled clocks */ return omap_cm_wait_module_ready(0, oh->prcm.omap2.module_offs, oh->prcm.omap2.idlest_reg_id, oh->prcm.omap2.idlest_idle_bit); } /** * _omap4_wait_target_ready - wait for a module to leave slave idle * @oh: struct omap_hwmod * * * Wait for a module @oh to leave slave idle. Returns 0 if the module * does not have an IDLEST bit or if the module successfully leaves * slave idle; otherwise, pass along the return value of the * appropriate *_cm*_wait_module_ready() function. */ static int _omap4_wait_target_ready(struct omap_hwmod *oh) { if (!oh) return -EINVAL; if (oh->flags & HWMOD_NO_IDLEST || !oh->clkdm) return 0; if (!_find_mpu_rt_port(oh)) return 0; if (_omap4_clkctrl_managed_by_clkfwk(oh)) return 0; if (!_omap4_has_clkctrl_clock(oh)) return 0; /* XXX check module SIDLEMODE, hardreset status */ return omap_cm_wait_module_ready(oh->clkdm->prcm_partition, oh->clkdm->cm_inst, oh->prcm.omap4.clkctrl_offs, 0); } /** * _omap2_assert_hardreset - call OMAP2 PRM hardreset fn with hwmod args * @oh: struct omap_hwmod * to assert hardreset * @ohri: hardreset line data * * Call omap2_prm_assert_hardreset() with parameters extracted from * the hwmod @oh and the hardreset line data @ohri. Only intended for * use as an soc_ops function pointer. Passes along the return value * from omap2_prm_assert_hardreset(). XXX This function is scheduled * for removal when the PRM code is moved into drivers/. */ static int _omap2_assert_hardreset(struct omap_hwmod *oh, struct omap_hwmod_rst_info *ohri) { return omap_prm_assert_hardreset(ohri->rst_shift, 0, oh->prcm.omap2.module_offs, 0); } /** * _omap2_deassert_hardreset - call OMAP2 PRM hardreset fn with hwmod args * @oh: struct omap_hwmod * to deassert hardreset * @ohri: hardreset line data * * Call omap2_prm_deassert_hardreset() with parameters extracted from * the hwmod @oh and the hardreset line data @ohri. Only intended for * use as an soc_ops function pointer. Passes along the return value * from omap2_prm_deassert_hardreset(). XXX This function is * scheduled for removal when the PRM code is moved into drivers/. */ static int _omap2_deassert_hardreset(struct omap_hwmod *oh, struct omap_hwmod_rst_info *ohri) { return omap_prm_deassert_hardreset(ohri->rst_shift, ohri->st_shift, 0, oh->prcm.omap2.module_offs, 0, 0); } /** * _omap2_is_hardreset_asserted - call OMAP2 PRM hardreset fn with hwmod args * @oh: struct omap_hwmod * to test hardreset * @ohri: hardreset line data * * Call omap2_prm_is_hardreset_asserted() with parameters extracted * from the hwmod @oh and the hardreset line data @ohri. Only * intended for use as an soc_ops function pointer. Passes along the * return value from omap2_prm_is_hardreset_asserted(). XXX This * function is scheduled for removal when the PRM code is moved into * drivers/. */ static int _omap2_is_hardreset_asserted(struct omap_hwmod *oh, struct omap_hwmod_rst_info *ohri) { return omap_prm_is_hardreset_asserted(ohri->st_shift, 0, oh->prcm.omap2.module_offs, 0); } /** * _omap4_assert_hardreset - call OMAP4 PRM hardreset fn with hwmod args * @oh: struct omap_hwmod * to assert hardreset * @ohri: hardreset line data * * Call omap4_prminst_assert_hardreset() with parameters extracted * from the hwmod @oh and the hardreset line data @ohri. Only * intended for use as an soc_ops function pointer. Passes along the * return value from omap4_prminst_assert_hardreset(). XXX This * function is scheduled for removal when the PRM code is moved into * drivers/. */ static int _omap4_assert_hardreset(struct omap_hwmod *oh, struct omap_hwmod_rst_info *ohri) { if (!oh->clkdm) return -EINVAL; return omap_prm_assert_hardreset(ohri->rst_shift, oh->clkdm->pwrdm.ptr->prcm_partition, oh->clkdm->pwrdm.ptr->prcm_offs, oh->prcm.omap4.rstctrl_offs); } /** * _omap4_deassert_hardreset - call OMAP4 PRM hardreset fn with hwmod args * @oh: struct omap_hwmod * to deassert hardreset * @ohri: hardreset line data * * Call omap4_prminst_deassert_hardreset() with parameters extracted * from the hwmod @oh and the hardreset line data @ohri. Only * intended for use as an soc_ops function pointer. Passes along the * return value from omap4_prminst_deassert_hardreset(). XXX This * function is scheduled for removal when the PRM code is moved into * drivers/. */ static int _omap4_deassert_hardreset(struct omap_hwmod *oh, struct omap_hwmod_rst_info *ohri) { if (!oh->clkdm) return -EINVAL; if (ohri->st_shift) pr_err("omap_hwmod: %s: %s: hwmod data error: OMAP4 does not support st_shift\n", oh->name, ohri->name); return omap_prm_deassert_hardreset(ohri->rst_shift, ohri->rst_shift, oh->clkdm->pwrdm.ptr->prcm_partition, oh->clkdm->pwrdm.ptr->prcm_offs, oh->prcm.omap4.rstctrl_offs, oh->prcm.omap4.rstctrl_offs + OMAP4_RST_CTRL_ST_OFFSET); } /** * _omap4_is_hardreset_asserted - call OMAP4 PRM hardreset fn with hwmod args * @oh: struct omap_hwmod * to test hardreset * @ohri: hardreset line data * * Call omap4_prminst_is_hardreset_asserted() with parameters * extracted from the hwmod @oh and the hardreset line data @ohri. * Only intended for use as an soc_ops function pointer. Passes along * the return value from omap4_prminst_is_hardreset_asserted(). XXX * This function is scheduled for removal when the PRM code is moved * into drivers/. */ static int _omap4_is_hardreset_asserted(struct omap_hwmod *oh, struct omap_hwmod_rst_info *ohri) { if (!oh->clkdm) return -EINVAL; return omap_prm_is_hardreset_asserted(ohri->rst_shift, oh->clkdm->pwrdm.ptr-> prcm_partition, oh->clkdm->pwrdm.ptr->prcm_offs, oh->prcm.omap4.rstctrl_offs); } /** * _omap4_disable_direct_prcm - disable direct PRCM control for hwmod * @oh: struct omap_hwmod * to disable control for * * Disables direct PRCM clkctrl done by hwmod core. Instead, the hwmod * will be using its main_clk to enable/disable the module. Returns * 0 if successful. */ static int _omap4_disable_direct_prcm(struct omap_hwmod *oh) { if (!oh) return -EINVAL; oh->prcm.omap4.flags |= HWMOD_OMAP4_CLKFWK_CLKCTR_CLOCK; return 0; } /** * _am33xx_deassert_hardreset - call AM33XX PRM hardreset fn with hwmod args * @oh: struct omap_hwmod * to deassert hardreset * @ohri: hardreset line data * * Call am33xx_prminst_deassert_hardreset() with parameters extracted * from the hwmod @oh and the hardreset line data @ohri. Only * intended for use as an soc_ops function pointer. Passes along the * return value from am33xx_prminst_deassert_hardreset(). XXX This * function is scheduled for removal when the PRM code is moved into * drivers/. */ static int _am33xx_deassert_hardreset(struct omap_hwmod *oh, struct omap_hwmod_rst_info *ohri) { return omap_prm_deassert_hardreset(ohri->rst_shift, ohri->st_shift, oh->clkdm->pwrdm.ptr->prcm_partition, oh->clkdm->pwrdm.ptr->prcm_offs, oh->prcm.omap4.rstctrl_offs, oh->prcm.omap4.rstst_offs); } /* Public functions */ u32 omap_hwmod_read(struct omap_hwmod *oh, u16 reg_offs) { if (oh->flags & HWMOD_16BIT_REG) return readw_relaxed(oh->_mpu_rt_va + reg_offs); else return readl_relaxed(oh->_mpu_rt_va + reg_offs); } void omap_hwmod_write(u32 v, struct omap_hwmod *oh, u16 reg_offs) { if (oh->flags & HWMOD_16BIT_REG) writew_relaxed(v, oh->_mpu_rt_va + reg_offs); else writel_relaxed(v, oh->_mpu_rt_va + reg_offs); } /** * omap_hwmod_softreset - reset a module via SYSCONFIG.SOFTRESET bit * @oh: struct omap_hwmod * * * This is a public function exposed to drivers. Some drivers may need to do * some settings before and after resetting the device. Those drivers after * doing the necessary settings could use this function to start a reset by * setting the SYSCONFIG.SOFTRESET bit. */ int omap_hwmod_softreset(struct omap_hwmod *oh) { u32 v; int ret; if (!oh || !(oh->_sysc_cache)) return -EINVAL; v = oh->_sysc_cache; ret = _set_softreset(oh, &v); if (ret) goto error; _write_sysconfig(v, oh); ret = _clear_softreset(oh, &v); if (ret) goto error; _write_sysconfig(v, oh); error: return ret; } /** * omap_hwmod_lookup - look up a registered omap_hwmod by name * @name: name of the omap_hwmod to look up * * Given a @name of an omap_hwmod, return a pointer to the registered * struct omap_hwmod *, or NULL upon error. */ struct omap_hwmod *omap_hwmod_lookup(const char *name) { struct omap_hwmod *oh; if (!name) return NULL; oh = _lookup(name); return oh; } /** * omap_hwmod_for_each - call function for each registered omap_hwmod * @fn: pointer to a callback function * @data: void * data to pass to callback function * * Call @fn for each registered omap_hwmod, passing @data to each * function. @fn must return 0 for success or any other value for * failure. If @fn returns non-zero, the iteration across omap_hwmods * will stop and the non-zero return value will be passed to the * caller of omap_hwmod_for_each(). @fn is called with * omap_hwmod_for_each() held. */ int omap_hwmod_for_each(int (*fn)(struct omap_hwmod *oh, void *data), void *data) { struct omap_hwmod *temp_oh; int ret = 0; if (!fn) return -EINVAL; list_for_each_entry(temp_oh, &omap_hwmod_list, node) { ret = (*fn)(temp_oh, data); if (ret) break; } return ret; } /** * omap_hwmod_register_links - register an array of hwmod links * @ois: pointer to an array of omap_hwmod_ocp_if to register * * Intended to be called early in boot before the clock framework is * initialized. If @ois is not null, will register all omap_hwmods * listed in @ois that are valid for this chip. Returns -EINVAL if * omap_hwmod_init() hasn't been called before calling this function, * -ENOMEM if the link memory area can't be allocated, or 0 upon * success. */ int __init omap_hwmod_register_links(struct omap_hwmod_ocp_if **ois) { int r, i; if (!inited) return -EINVAL; if (!ois) return 0; if (ois[0] == NULL) /* Empty list */ return 0; i = 0; do { r = _register_link(ois[i]); WARN(r && r != -EEXIST, "omap_hwmod: _register_link(%s -> %s) returned %d\n", ois[i]->master->name, ois[i]->slave->name, r); } while (ois[++i]); return 0; } /** * _ensure_mpu_hwmod_is_setup - ensure the MPU SS hwmod is init'ed and set up * @oh: pointer to the hwmod currently being set up (usually not the MPU) * * If the hwmod data corresponding to the MPU subsystem IP block * hasn't been initialized and set up yet, do so now. This must be * done first since sleep dependencies may be added from other hwmods * to the MPU. Intended to be called only by omap_hwmod_setup*(). No * return value. */ static void __init _ensure_mpu_hwmod_is_setup(struct omap_hwmod *oh) { if (!mpu_oh || mpu_oh->_state == _HWMOD_STATE_UNKNOWN) pr_err("omap_hwmod: %s: MPU initiator hwmod %s not yet registered\n", __func__, MPU_INITIATOR_NAME); else if (mpu_oh->_state == _HWMOD_STATE_REGISTERED && oh != mpu_oh) omap_hwmod_setup_one(MPU_INITIATOR_NAME); } /** * omap_hwmod_setup_one - set up a single hwmod * @oh_name: const char * name of the already-registered hwmod to set up * * Initialize and set up a single hwmod. Intended to be used for a * small number of early devices, such as the timer IP blocks used for * the scheduler clock. Must be called after omap2_clk_init(). * Resolves the struct clk names to struct clk pointers for each * registered omap_hwmod. Also calls _setup() on each hwmod. Returns * -EINVAL upon error or 0 upon success. */ int __init omap_hwmod_setup_one(const char *oh_name) { struct omap_hwmod *oh; pr_debug("omap_hwmod: %s: %s\n", oh_name, __func__); oh = _lookup(oh_name); if (!oh) { WARN(1, "omap_hwmod: %s: hwmod not yet registered\n", oh_name); return -EINVAL; } _ensure_mpu_hwmod_is_setup(oh); _init(oh, NULL); _setup(oh, NULL); return 0; } static void omap_hwmod_check_one(struct device *dev, const char *name, s8 v1, u8 v2) { if (v1 < 0) return; if (v1 != v2) dev_warn(dev, "%s %d != %d\n", name, v1, v2); } /** * omap_hwmod_check_sysc - check sysc against platform sysc * @dev: struct device * @data: module data * @sysc_fields: new sysc configuration */ static int omap_hwmod_check_sysc(struct device *dev, const struct ti_sysc_module_data *data, struct sysc_regbits *sysc_fields) { const struct sysc_regbits *regbits = data->cap->regbits; omap_hwmod_check_one(dev, "dmadisable_shift", regbits->dmadisable_shift, sysc_fields->dmadisable_shift); omap_hwmod_check_one(dev, "midle_shift", regbits->midle_shift, sysc_fields->midle_shift); omap_hwmod_check_one(dev, "sidle_shift", regbits->sidle_shift, sysc_fields->sidle_shift); omap_hwmod_check_one(dev, "clkact_shift", regbits->clkact_shift, sysc_fields->clkact_shift); omap_hwmod_check_one(dev, "enwkup_shift", regbits->enwkup_shift, sysc_fields->enwkup_shift); omap_hwmod_check_one(dev, "srst_shift", regbits->srst_shift, sysc_fields->srst_shift); omap_hwmod_check_one(dev, "autoidle_shift", regbits->autoidle_shift, sysc_fields->autoidle_shift); return 0; } /** * omap_hwmod_init_regbits - init sysconfig specific register bits * @dev: struct device * @oh: module * @data: module data * @sysc_fields: new sysc configuration */ static int omap_hwmod_init_regbits(struct device *dev, struct omap_hwmod *oh, const struct ti_sysc_module_data *data, struct sysc_regbits **sysc_fields) { switch (data->cap->type) { case TI_SYSC_OMAP2: case TI_SYSC_OMAP2_TIMER: *sysc_fields = &omap_hwmod_sysc_type1; break; case TI_SYSC_OMAP3_SHAM: *sysc_fields = &omap3_sham_sysc_fields; break; case TI_SYSC_OMAP3_AES: *sysc_fields = &omap3xxx_aes_sysc_fields; break; case TI_SYSC_OMAP4: case TI_SYSC_OMAP4_TIMER: *sysc_fields = &omap_hwmod_sysc_type2; break; case TI_SYSC_OMAP4_SIMPLE: *sysc_fields = &omap_hwmod_sysc_type3; break; case TI_SYSC_OMAP34XX_SR: *sysc_fields = &omap34xx_sr_sysc_fields; break; case TI_SYSC_OMAP36XX_SR: *sysc_fields = &omap36xx_sr_sysc_fields; break; case TI_SYSC_OMAP4_SR: *sysc_fields = &omap36xx_sr_sysc_fields; break; case TI_SYSC_OMAP4_MCASP: *sysc_fields = &omap_hwmod_sysc_type_mcasp; break; case TI_SYSC_OMAP4_USB_HOST_FS: *sysc_fields = &omap_hwmod_sysc_type_usb_host_fs; break; default: *sysc_fields = NULL; if (!oh->class->sysc->sysc_fields) return 0; dev_err(dev, "sysc_fields not found\n"); return -EINVAL; } return omap_hwmod_check_sysc(dev, data, *sysc_fields); } /** * omap_hwmod_init_reg_offs - initialize sysconfig register offsets * @dev: struct device * @data: module data * @rev_offs: revision register offset * @sysc_offs: sysc register offset * @syss_offs: syss register offset */ static int omap_hwmod_init_reg_offs(struct device *dev, const struct ti_sysc_module_data *data, s32 *rev_offs, s32 *sysc_offs, s32 *syss_offs) { *rev_offs = -ENODEV; *sysc_offs = 0; *syss_offs = 0; if (data->offsets[SYSC_REVISION] >= 0) *rev_offs = data->offsets[SYSC_REVISION]; if (data->offsets[SYSC_SYSCONFIG] >= 0) *sysc_offs = data->offsets[SYSC_SYSCONFIG]; if (data->offsets[SYSC_SYSSTATUS] >= 0) *syss_offs = data->offsets[SYSC_SYSSTATUS]; return 0; } /** * omap_hwmod_init_sysc_flags - initialize sysconfig features * @dev: struct device * @data: module data * @sysc_flags: module configuration */ static int omap_hwmod_init_sysc_flags(struct device *dev, const struct ti_sysc_module_data *data, u32 *sysc_flags) { *sysc_flags = 0; switch (data->cap->type) { case TI_SYSC_OMAP2: case TI_SYSC_OMAP2_TIMER: /* See SYSC_OMAP2_* in include/dt-bindings/bus/ti-sysc.h */ if (data->cfg->sysc_val & SYSC_OMAP2_CLOCKACTIVITY) *sysc_flags |= SYSC_HAS_CLOCKACTIVITY; if (data->cfg->sysc_val & SYSC_OMAP2_EMUFREE) *sysc_flags |= SYSC_HAS_EMUFREE; if (data->cfg->sysc_val & SYSC_OMAP2_ENAWAKEUP) *sysc_flags |= SYSC_HAS_ENAWAKEUP; if (data->cfg->sysc_val & SYSC_OMAP2_SOFTRESET) *sysc_flags |= SYSC_HAS_SOFTRESET; if (data->cfg->sysc_val & SYSC_OMAP2_AUTOIDLE) *sysc_flags |= SYSC_HAS_AUTOIDLE; break; case TI_SYSC_OMAP4: case TI_SYSC_OMAP4_TIMER: /* See SYSC_OMAP4_* in include/dt-bindings/bus/ti-sysc.h */ if (data->cfg->sysc_val & SYSC_OMAP4_DMADISABLE) *sysc_flags |= SYSC_HAS_DMADISABLE; if (data->cfg->sysc_val & SYSC_OMAP4_FREEEMU) *sysc_flags |= SYSC_HAS_EMUFREE; if (data->cfg->sysc_val & SYSC_OMAP4_SOFTRESET) *sysc_flags |= SYSC_HAS_SOFTRESET; break; case TI_SYSC_OMAP34XX_SR: case TI_SYSC_OMAP36XX_SR: /* See SYSC_OMAP3_SR_* in include/dt-bindings/bus/ti-sysc.h */ if (data->cfg->sysc_val & SYSC_OMAP3_SR_ENAWAKEUP) *sysc_flags |= SYSC_HAS_ENAWAKEUP; break; default: if (data->cap->regbits->emufree_shift >= 0) *sysc_flags |= SYSC_HAS_EMUFREE; if (data->cap->regbits->enwkup_shift >= 0) *sysc_flags |= SYSC_HAS_ENAWAKEUP; if (data->cap->regbits->srst_shift >= 0) *sysc_flags |= SYSC_HAS_SOFTRESET; if (data->cap->regbits->autoidle_shift >= 0) *sysc_flags |= SYSC_HAS_AUTOIDLE; break; } if (data->cap->regbits->midle_shift >= 0 && data->cfg->midlemodes) *sysc_flags |= SYSC_HAS_MIDLEMODE; if (data->cap->regbits->sidle_shift >= 0 && data->cfg->sidlemodes) *sysc_flags |= SYSC_HAS_SIDLEMODE; if (data->cfg->quirks & SYSC_QUIRK_UNCACHED) *sysc_flags |= SYSC_NO_CACHE; if (data->cfg->quirks & SYSC_QUIRK_RESET_STATUS) *sysc_flags |= SYSC_HAS_RESET_STATUS; if (data->cfg->syss_mask & 1) *sysc_flags |= SYSS_HAS_RESET_STATUS; return 0; } /** * omap_hwmod_init_idlemodes - initialize module idle modes * @dev: struct device * @data: module data * @idlemodes: module supported idle modes */ static int omap_hwmod_init_idlemodes(struct device *dev, const struct ti_sysc_module_data *data, u32 *idlemodes) { *idlemodes = 0; if (data->cfg->midlemodes & BIT(SYSC_IDLE_FORCE)) *idlemodes |= MSTANDBY_FORCE; if (data->cfg->midlemodes & BIT(SYSC_IDLE_NO)) *idlemodes |= MSTANDBY_NO; if (data->cfg->midlemodes & BIT(SYSC_IDLE_SMART)) *idlemodes |= MSTANDBY_SMART; if (data->cfg->midlemodes & BIT(SYSC_IDLE_SMART_WKUP)) *idlemodes |= MSTANDBY_SMART_WKUP; if (data->cfg->sidlemodes & BIT(SYSC_IDLE_FORCE)) *idlemodes |= SIDLE_FORCE; if (data->cfg->sidlemodes & BIT(SYSC_IDLE_NO)) *idlemodes |= SIDLE_NO; if (data->cfg->sidlemodes & BIT(SYSC_IDLE_SMART)) *idlemodes |= SIDLE_SMART; if (data->cfg->sidlemodes & BIT(SYSC_IDLE_SMART_WKUP)) *idlemodes |= SIDLE_SMART_WKUP; return 0; } /** * omap_hwmod_check_module - check new module against platform data * @dev: struct device * @oh: module * @data: new module data * @sysc_fields: sysc register bits * @rev_offs: revision register offset * @sysc_offs: sysconfig register offset * @syss_offs: sysstatus register offset * @sysc_flags: sysc specific flags * @idlemodes: sysc supported idlemodes */ static int omap_hwmod_check_module(struct device *dev, struct omap_hwmod *oh, const struct ti_sysc_module_data *data, struct sysc_regbits *sysc_fields, s32 rev_offs, s32 sysc_offs, s32 syss_offs, u32 sysc_flags, u32 idlemodes) { if (!oh->class->sysc) return -ENODEV; if (oh->class->sysc->sysc_fields && sysc_fields != oh->class->sysc->sysc_fields) dev_warn(dev, "sysc_fields mismatch\n"); if (rev_offs != oh->class->sysc->rev_offs) dev_warn(dev, "rev_offs %08x != %08x\n", rev_offs, oh->class->sysc->rev_offs); if (sysc_offs != oh->class->sysc->sysc_offs) dev_warn(dev, "sysc_offs %08x != %08x\n", sysc_offs, oh->class->sysc->sysc_offs); if (syss_offs != oh->class->sysc->syss_offs) dev_warn(dev, "syss_offs %08x != %08x\n", syss_offs, oh->class->sysc->syss_offs); if (sysc_flags != oh->class->sysc->sysc_flags) dev_warn(dev, "sysc_flags %08x != %08x\n", sysc_flags, oh->class->sysc->sysc_flags); if (idlemodes != oh->class->sysc->idlemodes) dev_warn(dev, "idlemodes %08x != %08x\n", idlemodes, oh->class->sysc->idlemodes); if (data->cfg->srst_udelay != oh->class->sysc->srst_udelay) dev_warn(dev, "srst_udelay %i != %i\n", data->cfg->srst_udelay, oh->class->sysc->srst_udelay); return 0; } /** * omap_hwmod_allocate_module - allocate new module * @dev: struct device * @oh: module * @sysc_fields: sysc register bits * @clockdomain: clockdomain * @rev_offs: revision register offset * @sysc_offs: sysconfig register offset * @syss_offs: sysstatus register offset * @sysc_flags: sysc specific flags * @idlemodes: sysc supported idlemodes * * Note that the allocations here cannot use devm as ti-sysc can rebind. */ static int omap_hwmod_allocate_module(struct device *dev, struct omap_hwmod *oh, const struct ti_sysc_module_data *data, struct sysc_regbits *sysc_fields, struct clockdomain *clkdm, s32 rev_offs, s32 sysc_offs, s32 syss_offs, u32 sysc_flags, u32 idlemodes) { struct omap_hwmod_class_sysconfig *sysc; struct omap_hwmod_class *class = NULL; struct omap_hwmod_ocp_if *oi = NULL; void __iomem *regs = NULL; unsigned long flags; sysc = kzalloc(sizeof(*sysc), GFP_KERNEL); if (!sysc) return -ENOMEM; sysc->sysc_fields = sysc_fields; sysc->rev_offs = rev_offs; sysc->sysc_offs = sysc_offs; sysc->syss_offs = syss_offs; sysc->sysc_flags = sysc_flags; sysc->idlemodes = idlemodes; sysc->srst_udelay = data->cfg->srst_udelay; if (!oh->_mpu_rt_va) { regs = ioremap(data->module_pa, data->module_size); if (!regs) goto out_free_sysc; } /* * We may need a new oh->class as the other devices in the same class * may not yet have ioremapped their registers. */ if (oh->class->name && strcmp(oh->class->name, data->name)) { class = kmemdup(oh->class, sizeof(*oh->class), GFP_KERNEL); if (!class) goto out_unmap; } if (list_empty(&oh->slave_ports)) { oi = kcalloc(1, sizeof(*oi), GFP_KERNEL); if (!oi) goto out_free_class; /* * Note that we assume interconnect interface clocks will be * managed by the interconnect driver for OCPIF_SWSUP_IDLE case * on omap24xx and omap3. */ oi->slave = oh; oi->user = OCP_USER_MPU | OCP_USER_SDMA; } spin_lock_irqsave(&oh->_lock, flags); if (regs) oh->_mpu_rt_va = regs; if (class) oh->class = class; oh->class->sysc = sysc; if (oi) _add_link(oi); if (clkdm) oh->clkdm = clkdm; oh->_state = _HWMOD_STATE_INITIALIZED; oh->_postsetup_state = _HWMOD_STATE_DEFAULT; _setup(oh, NULL); spin_unlock_irqrestore(&oh->_lock, flags); return 0; out_free_class: kfree(class); out_unmap: iounmap(regs); out_free_sysc: kfree(sysc); return -ENOMEM; } static const struct omap_hwmod_reset omap24xx_reset_quirks[] = { { .match = "msdi", .len = 4, .reset = omap_msdi_reset, }, }; static const struct omap_hwmod_reset dra7_reset_quirks[] = { { .match = "pcie", .len = 4, .reset = dra7xx_pciess_reset, }, }; static const struct omap_hwmod_reset omap_reset_quirks[] = { { .match = "dss_core", .len = 8, .reset = omap_dss_reset, }, { .match = "hdq1w", .len = 5, .reset = omap_hdq1w_reset, }, { .match = "i2c", .len = 3, .reset = omap_i2c_reset, }, { .match = "wd_timer", .len = 8, .reset = omap2_wd_timer_reset, }, }; static void omap_hwmod_init_reset_quirk(struct device *dev, struct omap_hwmod *oh, const struct ti_sysc_module_data *data, const struct omap_hwmod_reset *quirks, int quirks_sz) { const struct omap_hwmod_reset *quirk; int i; for (i = 0; i < quirks_sz; i++) { quirk = &quirks[i]; if (!strncmp(data->name, quirk->match, quirk->len)) { oh->class->reset = quirk->reset; return; } } } static void omap_hwmod_init_reset_quirks(struct device *dev, struct omap_hwmod *oh, const struct ti_sysc_module_data *data) { if (soc_is_omap24xx()) omap_hwmod_init_reset_quirk(dev, oh, data, omap24xx_reset_quirks, ARRAY_SIZE(omap24xx_reset_quirks)); if (soc_is_dra7xx()) omap_hwmod_init_reset_quirk(dev, oh, data, dra7_reset_quirks, ARRAY_SIZE(dra7_reset_quirks)); omap_hwmod_init_reset_quirk(dev, oh, data, omap_reset_quirks, ARRAY_SIZE(omap_reset_quirks)); } /** * omap_hwmod_init_module - initialize new module * @dev: struct device * @data: module data * @cookie: cookie for the caller to use for later calls */ int omap_hwmod_init_module(struct device *dev, const struct ti_sysc_module_data *data, struct ti_sysc_cookie *cookie) { struct omap_hwmod *oh; struct sysc_regbits *sysc_fields; s32 rev_offs, sysc_offs, syss_offs; u32 sysc_flags, idlemodes; int error; if (!dev || !data || !data->name || !cookie) return -EINVAL; oh = _lookup(data->name); if (!oh) { oh = kzalloc(sizeof(*oh), GFP_KERNEL); if (!oh) return -ENOMEM; oh->name = data->name; oh->_state = _HWMOD_STATE_UNKNOWN; lockdep_register_key(&oh->hwmod_key); /* Unused, can be handled by PRM driver handling resets */ oh->prcm.omap4.flags = HWMOD_OMAP4_NO_CONTEXT_LOSS_BIT; oh->class = kzalloc(sizeof(*oh->class), GFP_KERNEL); if (!oh->class) { kfree(oh); return -ENOMEM; } omap_hwmod_init_reset_quirks(dev, oh, data); oh->class->name = data->name; mutex_lock(&list_lock); error = _register(oh); mutex_unlock(&list_lock); } cookie->data = oh; error = omap_hwmod_init_regbits(dev, oh, data, &sysc_fields); if (error) return error; error = omap_hwmod_init_reg_offs(dev, data, &rev_offs, &sysc_offs, &syss_offs); if (error) return error; error = omap_hwmod_init_sysc_flags(dev, data, &sysc_flags); if (error) return error; error = omap_hwmod_init_idlemodes(dev, data, &idlemodes); if (error) return error; if (data->cfg->quirks & SYSC_QUIRK_NO_IDLE) oh->flags |= HWMOD_NO_IDLE; if (data->cfg->quirks & SYSC_QUIRK_NO_IDLE_ON_INIT) oh->flags |= HWMOD_INIT_NO_IDLE; if (data->cfg->quirks & SYSC_QUIRK_NO_RESET_ON_INIT) oh->flags |= HWMOD_INIT_NO_RESET; if (data->cfg->quirks & SYSC_QUIRK_USE_CLOCKACT) oh->flags |= HWMOD_SET_DEFAULT_CLOCKACT; if (data->cfg->quirks & SYSC_QUIRK_SWSUP_SIDLE) oh->flags |= HWMOD_SWSUP_SIDLE; if (data->cfg->quirks & SYSC_QUIRK_SWSUP_SIDLE_ACT) oh->flags |= HWMOD_SWSUP_SIDLE_ACT; if (data->cfg->quirks & SYSC_QUIRK_SWSUP_MSTANDBY) oh->flags |= HWMOD_SWSUP_MSTANDBY; error = omap_hwmod_check_module(dev, oh, data, sysc_fields, rev_offs, sysc_offs, syss_offs, sysc_flags, idlemodes); if (!error) return error; return omap_hwmod_allocate_module(dev, oh, data, sysc_fields, cookie->clkdm, rev_offs, sysc_offs, syss_offs, sysc_flags, idlemodes); } /** * omap_hwmod_setup_earlycon_flags - set up flags for early console * * Enable DEBUG_OMAPUART_FLAGS for uart hwmod that is being used as * early concole so that hwmod core doesn't reset and keep it in idle * that specific uart. */ #ifdef CONFIG_SERIAL_EARLYCON static void __init omap_hwmod_setup_earlycon_flags(void) { struct device_node *np; struct omap_hwmod *oh; const char *uart; np = of_find_node_by_path("/chosen"); if (np) { uart = of_get_property(np, "stdout-path", NULL); if (uart) { np = of_find_node_by_path(uart); if (np) { uart = of_get_property(np, "ti,hwmods", NULL); oh = omap_hwmod_lookup(uart); if (!oh) { uart = of_get_property(np->parent, "ti,hwmods", NULL); oh = omap_hwmod_lookup(uart); } if (oh) oh->flags |= DEBUG_OMAPUART_FLAGS; } } } } #endif /** * omap_hwmod_setup_all - set up all registered IP blocks * * Initialize and set up all IP blocks registered with the hwmod code. * Must be called after omap2_clk_init(). Resolves the struct clk * names to struct clk pointers for each registered omap_hwmod. Also * calls _setup() on each hwmod. Returns 0 upon success. */ static int __init omap_hwmod_setup_all(void) { _ensure_mpu_hwmod_is_setup(NULL); omap_hwmod_for_each(_init, NULL); #ifdef CONFIG_SERIAL_EARLYCON omap_hwmod_setup_earlycon_flags(); #endif omap_hwmod_for_each(_setup, NULL); return 0; } omap_postcore_initcall(omap_hwmod_setup_all); /** * omap_hwmod_enable - enable an omap_hwmod * @oh: struct omap_hwmod * * * Enable an omap_hwmod @oh. Intended to be called by omap_device_enable(). * Returns -EINVAL on error or passes along the return value from _enable(). */ int omap_hwmod_enable(struct omap_hwmod *oh) { int r; unsigned long flags; if (!oh) return -EINVAL; spin_lock_irqsave(&oh->_lock, flags); r = _enable(oh); spin_unlock_irqrestore(&oh->_lock, flags); return r; } /** * omap_hwmod_idle - idle an omap_hwmod * @oh: struct omap_hwmod * * * Idle an omap_hwmod @oh. Intended to be called by omap_device_idle(). * Returns -EINVAL on error or passes along the return value from _idle(). */ int omap_hwmod_idle(struct omap_hwmod *oh) { int r; unsigned long flags; if (!oh) return -EINVAL; spin_lock_irqsave(&oh->_lock, flags); r = _idle(oh); spin_unlock_irqrestore(&oh->_lock, flags); return r; } /** * omap_hwmod_shutdown - shutdown an omap_hwmod * @oh: struct omap_hwmod * * * Shutdown an omap_hwmod @oh. Intended to be called by * omap_device_shutdown(). Returns -EINVAL on error or passes along * the return value from _shutdown(). */ int omap_hwmod_shutdown(struct omap_hwmod *oh) { int r; unsigned long flags; if (!oh) return -EINVAL; spin_lock_irqsave(&oh->_lock, flags); r = _shutdown(oh); spin_unlock_irqrestore(&oh->_lock, flags); return r; } /* * IP block data retrieval functions */ /** * omap_hwmod_get_pwrdm - return pointer to this module's main powerdomain * @oh: struct omap_hwmod * * * Return the powerdomain pointer associated with the OMAP module * @oh's main clock. If @oh does not have a main clk, return the * powerdomain associated with the interface clock associated with the * module's MPU port. (XXX Perhaps this should use the SDMA port * instead?) Returns NULL on error, or a struct powerdomain * on * success. */ struct powerdomain *omap_hwmod_get_pwrdm(struct omap_hwmod *oh) { struct clk *c; struct omap_hwmod_ocp_if *oi; struct clockdomain *clkdm; struct clk_hw_omap *clk; if (!oh) return NULL; if (oh->clkdm) return oh->clkdm->pwrdm.ptr; if (oh->_clk) { c = oh->_clk; } else { oi = _find_mpu_rt_port(oh); if (!oi) return NULL; c = oi->_clk; } clk = to_clk_hw_omap(__clk_get_hw(c)); clkdm = clk->clkdm; if (!clkdm) return NULL; return clkdm->pwrdm.ptr; } /** * omap_hwmod_get_mpu_rt_va - return the module's base address (for the MPU) * @oh: struct omap_hwmod * * * Returns the virtual address corresponding to the beginning of the * module's register target, in the address range that is intended to * be used by the MPU. Returns the virtual address upon success or NULL * upon error. */ void __iomem *omap_hwmod_get_mpu_rt_va(struct omap_hwmod *oh) { if (!oh) return NULL; if (oh->_int_flags & _HWMOD_NO_MPU_PORT) return NULL; if (oh->_state == _HWMOD_STATE_UNKNOWN) return NULL; return oh->_mpu_rt_va; } /* * XXX what about functions for drivers to save/restore ocp_sysconfig * for context save/restore operations? */ /** * omap_hwmod_assert_hardreset - assert the HW reset line of submodules * contained in the hwmod module. * @oh: struct omap_hwmod * * @name: name of the reset line to lookup and assert * * Some IP like dsp, ipu or iva contain processor that require * an HW reset line to be assert / deassert in order to enable fully * the IP. Returns -EINVAL if @oh is null or if the operation is not * yet supported on this OMAP; otherwise, passes along the return value * from _assert_hardreset(). */ int omap_hwmod_assert_hardreset(struct omap_hwmod *oh, const char *name) { int ret; unsigned long flags; if (!oh) return -EINVAL; spin_lock_irqsave(&oh->_lock, flags); ret = _assert_hardreset(oh, name); spin_unlock_irqrestore(&oh->_lock, flags); return ret; } /** * omap_hwmod_deassert_hardreset - deassert the HW reset line of submodules * contained in the hwmod module. * @oh: struct omap_hwmod * * @name: name of the reset line to look up and deassert * * Some IP like dsp, ipu or iva contain processor that require * an HW reset line to be assert / deassert in order to enable fully * the IP. Returns -EINVAL if @oh is null or if the operation is not * yet supported on this OMAP; otherwise, passes along the return value * from _deassert_hardreset(). */ int omap_hwmod_deassert_hardreset(struct omap_hwmod *oh, const char *name) { int ret; unsigned long flags; if (!oh) return -EINVAL; spin_lock_irqsave(&oh->_lock, flags); ret = _deassert_hardreset(oh, name); spin_unlock_irqrestore(&oh->_lock, flags); return ret; } /** * omap_hwmod_for_each_by_class - call @fn for each hwmod of class @classname * @classname: struct omap_hwmod_class name to search for * @fn: callback function pointer to call for each hwmod in class @classname * @user: arbitrary context data to pass to the callback function * * For each omap_hwmod of class @classname, call @fn. * If the callback function returns something other than * zero, the iterator is terminated, and the callback function's return * value is passed back to the caller. Returns 0 upon success, -EINVAL * if @classname or @fn are NULL, or passes back the error code from @fn. */ int omap_hwmod_for_each_by_class(const char *classname, int (*fn)(struct omap_hwmod *oh, void *user), void *user) { struct omap_hwmod *temp_oh; int ret = 0; if (!classname || !fn) return -EINVAL; pr_debug("omap_hwmod: %s: looking for modules of class %s\n", __func__, classname); list_for_each_entry(temp_oh, &omap_hwmod_list, node) { if (!strcmp(temp_oh->class->name, classname)) { pr_debug("omap_hwmod: %s: %s: calling callback fn\n", __func__, temp_oh->name); ret = (*fn)(temp_oh, user); if (ret) break; } } if (ret) pr_debug("omap_hwmod: %s: iterator terminated early: %d\n", __func__, ret); return ret; } /** * omap_hwmod_set_postsetup_state - set the post-_setup() state for this hwmod * @oh: struct omap_hwmod * * @state: state that _setup() should leave the hwmod in * * Sets the hwmod state that @oh will enter at the end of _setup() * (called by omap_hwmod_setup_*()). See also the documentation * for _setup_postsetup(), above. Returns 0 upon success or * -EINVAL if there is a problem with the arguments or if the hwmod is * in the wrong state. */ int omap_hwmod_set_postsetup_state(struct omap_hwmod *oh, u8 state) { int ret; unsigned long flags; if (!oh) return -EINVAL; if (state != _HWMOD_STATE_DISABLED && state != _HWMOD_STATE_ENABLED && state != _HWMOD_STATE_IDLE) return -EINVAL; spin_lock_irqsave(&oh->_lock, flags); if (oh->_state != _HWMOD_STATE_REGISTERED) { ret = -EINVAL; goto ohsps_unlock; } oh->_postsetup_state = state; ret = 0; ohsps_unlock: spin_unlock_irqrestore(&oh->_lock, flags); return ret; } /** * omap_hwmod_get_context_loss_count - get lost context count * @oh: struct omap_hwmod * * * Returns the context loss count of associated @oh * upon success, or zero if no context loss data is available. * * On OMAP4, this queries the per-hwmod context loss register, * assuming one exists. If not, or on OMAP2/3, this queries the * enclosing powerdomain context loss count. */ int omap_hwmod_get_context_loss_count(struct omap_hwmod *oh) { struct powerdomain *pwrdm; int ret = 0; if (soc_ops.get_context_lost) return soc_ops.get_context_lost(oh); pwrdm = omap_hwmod_get_pwrdm(oh); if (pwrdm) ret = pwrdm_get_context_loss_count(pwrdm); return ret; } /** * omap_hwmod_init - initialize the hwmod code * * Sets up some function pointers needed by the hwmod code to operate on the * currently-booted SoC. Intended to be called once during kernel init * before any hwmods are registered. No return value. */ void __init omap_hwmod_init(void) { if (cpu_is_omap24xx()) { soc_ops.wait_target_ready = _omap2xxx_3xxx_wait_target_ready; soc_ops.assert_hardreset = _omap2_assert_hardreset; soc_ops.deassert_hardreset = _omap2_deassert_hardreset; soc_ops.is_hardreset_asserted = _omap2_is_hardreset_asserted; } else if (cpu_is_omap34xx()) { soc_ops.wait_target_ready = _omap2xxx_3xxx_wait_target_ready; soc_ops.assert_hardreset = _omap2_assert_hardreset; soc_ops.deassert_hardreset = _omap2_deassert_hardreset; soc_ops.is_hardreset_asserted = _omap2_is_hardreset_asserted; soc_ops.init_clkdm = _init_clkdm; } else if (cpu_is_omap44xx() || soc_is_omap54xx() || soc_is_dra7xx()) { soc_ops.enable_module = _omap4_enable_module; soc_ops.disable_module = _omap4_disable_module; soc_ops.wait_target_ready = _omap4_wait_target_ready; soc_ops.assert_hardreset = _omap4_assert_hardreset; soc_ops.deassert_hardreset = _omap4_deassert_hardreset; soc_ops.is_hardreset_asserted = _omap4_is_hardreset_asserted; soc_ops.init_clkdm = _init_clkdm; soc_ops.update_context_lost = _omap4_update_context_lost; soc_ops.get_context_lost = _omap4_get_context_lost; soc_ops.disable_direct_prcm = _omap4_disable_direct_prcm; soc_ops.xlate_clkctrl = _omap4_xlate_clkctrl; } else if (cpu_is_ti814x() || cpu_is_ti816x() || soc_is_am33xx() || soc_is_am43xx()) { soc_ops.enable_module = _omap4_enable_module; soc_ops.disable_module = _omap4_disable_module; soc_ops.wait_target_ready = _omap4_wait_target_ready; soc_ops.assert_hardreset = _omap4_assert_hardreset; soc_ops.deassert_hardreset = _am33xx_deassert_hardreset; soc_ops.is_hardreset_asserted = _omap4_is_hardreset_asserted; soc_ops.init_clkdm = _init_clkdm; soc_ops.disable_direct_prcm = _omap4_disable_direct_prcm; soc_ops.xlate_clkctrl = _omap4_xlate_clkctrl; } else { WARN(1, "omap_hwmod: unknown SoC type\n"); } _init_clkctrl_providers(); inited = true; } /** * omap_hwmod_get_main_clk - get pointer to main clock name * @oh: struct omap_hwmod * * * Returns the main clock name assocated with @oh upon success, * or NULL if @oh is NULL. */ const char *omap_hwmod_get_main_clk(struct omap_hwmod *oh) { if (!oh) return NULL; return oh->main_clk; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1