Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Tony Lindgren | 2447 | 59.99% | 18 | 28.12% |
Manjunath Kondaiah G | 814 | 19.96% | 4 | 6.25% |
Peter Ujfalusi | 240 | 5.88% | 4 | 6.25% |
Anand Gadiyar | 129 | 3.16% | 3 | 4.69% |
Santosh Shilimkar | 127 | 3.11% | 5 | 7.81% |
Kyungmin Park | 101 | 2.48% | 1 | 1.56% |
Russell King | 64 | 1.57% | 4 | 6.25% |
Samu Onkalo | 38 | 0.93% | 1 | 1.56% |
Oleg Matcovschi | 34 | 0.83% | 1 | 1.56% |
Paul Walmsley | 17 | 0.42% | 2 | 3.12% |
Kalle Jokiniemi | 12 | 0.29% | 2 | 3.12% |
Gustavo A. R. Silva | 9 | 0.22% | 2 | 3.12% |
R Sricharan | 8 | 0.20% | 2 | 3.12% |
Jarkko Nikula | 7 | 0.17% | 2 | 3.12% |
Janusz Krzysztofik | 7 | 0.17% | 2 | 3.12% |
Juha Yrjola | 6 | 0.15% | 1 | 1.56% |
Chen Gang S | 4 | 0.10% | 1 | 1.56% |
Mathias Nyman | 3 | 0.07% | 1 | 1.56% |
Tejun Heo | 3 | 0.07% | 1 | 1.56% |
Thomas Gleixner | 2 | 0.05% | 2 | 3.12% |
Lucas De Marchi | 2 | 0.05% | 1 | 1.56% |
SF Markus Elfring | 2 | 0.05% | 1 | 1.56% |
Alexander A. Klimov | 1 | 0.02% | 1 | 1.56% |
Adrian Hunter | 1 | 0.02% | 1 | 1.56% |
Aaro Koskinen | 1 | 0.02% | 1 | 1.56% |
Total | 4079 | 64 |
// SPDX-License-Identifier: GPL-2.0-only /* * linux/arch/arm/plat-omap/dma.c * * Copyright (C) 2003 - 2008 Nokia Corporation * Author: Juha Yrjölä <juha.yrjola@nokia.com> * DMA channel linking for 1610 by Samuel Ortiz <samuel.ortiz@nokia.com> * Graphics DMA and LCD DMA graphics tranformations * by Imre Deak <imre.deak@nokia.com> * OMAP2/3 support Copyright (C) 2004-2007 Texas Instruments, Inc. * Merged to support both OMAP1 and OMAP2 by Tony Lindgren <tony@atomide.com> * Some functions based on earlier dma-omap.c Copyright (C) 2001 RidgeRun, Inc. * * Copyright (C) 2009 Texas Instruments * Added OMAP4 support - Santosh Shilimkar <santosh.shilimkar@ti.com> * * Support functions for the OMAP internal DMA channels. * * Copyright (C) 2010 Texas Instruments Incorporated - https://www.ti.com/ * Converted DMA library into DMA platform driver. * - G, Manjunath Kondaiah <manjugk@ti.com> */ #include <linux/module.h> #include <linux/init.h> #include <linux/sched.h> #include <linux/spinlock.h> #include <linux/errno.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/io.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/omap-dma.h> #ifdef CONFIG_ARCH_OMAP1 #include <mach/soc.h> #endif /* * MAX_LOGICAL_DMA_CH_COUNT: the maximum number of logical DMA * channels that an instance of the SDMA IP block can support. Used * to size arrays. (The actual maximum on a particular SoC may be less * than this -- for example, OMAP1 SDMA instances only support 17 logical * DMA channels.) */ #define MAX_LOGICAL_DMA_CH_COUNT 32 #undef DEBUG #ifndef CONFIG_ARCH_OMAP1 enum { DMA_CH_ALLOC_DONE, DMA_CH_PARAMS_SET_DONE, DMA_CH_STARTED, DMA_CH_QUEUED, DMA_CH_NOTSTARTED, DMA_CH_PAUSED, DMA_CH_LINK_ENABLED }; enum { DMA_CHAIN_STARTED, DMA_CHAIN_NOTSTARTED }; #endif #define OMAP_DMA_ACTIVE 0x01 #define OMAP2_DMA_CSR_CLEAR_MASK 0xffffffff #define OMAP_FUNC_MUX_ARM_BASE (0xfffe1000 + 0xec) static struct omap_system_dma_plat_info *p; static struct omap_dma_dev_attr *d; static void omap_clear_dma(int lch); static int enable_1510_mode; static u32 errata; struct dma_link_info { int *linked_dmach_q; int no_of_lchs_linked; int q_count; int q_tail; int q_head; int chain_state; int chain_mode; }; static int dma_lch_count; static int dma_chan_count; static int omap_dma_reserve_channels; static spinlock_t dma_chan_lock; static struct omap_dma_lch *dma_chan; static inline void disable_lnk(int lch); static void omap_disable_channel_irq(int lch); static inline void omap_enable_channel_irq(int lch); #ifdef CONFIG_ARCH_OMAP15XX /* Returns 1 if the DMA module is in OMAP1510-compatible mode, 0 otherwise */ static int omap_dma_in_1510_mode(void) { return enable_1510_mode; } #else #define omap_dma_in_1510_mode() 0 #endif #ifdef CONFIG_ARCH_OMAP1 static inline void set_gdma_dev(int req, int dev) { u32 reg = OMAP_FUNC_MUX_ARM_BASE + ((req - 1) / 5) * 4; int shift = ((req - 1) % 5) * 6; u32 l; l = omap_readl(reg); l &= ~(0x3f << shift); l |= (dev - 1) << shift; omap_writel(l, reg); } #else #define set_gdma_dev(req, dev) do {} while (0) #define omap_readl(reg) 0 #define omap_writel(val, reg) do {} while (0) #endif #ifdef CONFIG_ARCH_OMAP1 void omap_set_dma_priority(int lch, int dst_port, int priority) { unsigned long reg; u32 l; if (dma_omap1()) { switch (dst_port) { case OMAP_DMA_PORT_OCP_T1: /* FFFECC00 */ reg = OMAP_TC_OCPT1_PRIOR; break; case OMAP_DMA_PORT_OCP_T2: /* FFFECCD0 */ reg = OMAP_TC_OCPT2_PRIOR; break; case OMAP_DMA_PORT_EMIFF: /* FFFECC08 */ reg = OMAP_TC_EMIFF_PRIOR; break; case OMAP_DMA_PORT_EMIFS: /* FFFECC04 */ reg = OMAP_TC_EMIFS_PRIOR; break; default: BUG(); return; } l = omap_readl(reg); l &= ~(0xf << 8); l |= (priority & 0xf) << 8; omap_writel(l, reg); } } #endif #ifdef CONFIG_ARCH_OMAP2PLUS void omap_set_dma_priority(int lch, int dst_port, int priority) { u32 ccr; ccr = p->dma_read(CCR, lch); if (priority) ccr |= (1 << 6); else ccr &= ~(1 << 6); p->dma_write(ccr, CCR, lch); } #endif EXPORT_SYMBOL(omap_set_dma_priority); void omap_set_dma_transfer_params(int lch, int data_type, int elem_count, int frame_count, int sync_mode, int dma_trigger, int src_or_dst_synch) { u32 l; l = p->dma_read(CSDP, lch); l &= ~0x03; l |= data_type; p->dma_write(l, CSDP, lch); if (dma_omap1()) { u16 ccr; ccr = p->dma_read(CCR, lch); ccr &= ~(1 << 5); if (sync_mode == OMAP_DMA_SYNC_FRAME) ccr |= 1 << 5; p->dma_write(ccr, CCR, lch); ccr = p->dma_read(CCR2, lch); ccr &= ~(1 << 2); if (sync_mode == OMAP_DMA_SYNC_BLOCK) ccr |= 1 << 2; p->dma_write(ccr, CCR2, lch); } if (dma_omap2plus() && dma_trigger) { u32 val; val = p->dma_read(CCR, lch); /* DMA_SYNCHRO_CONTROL_UPPER depends on the channel number */ val &= ~((1 << 23) | (3 << 19) | 0x1f); val |= (dma_trigger & ~0x1f) << 14; val |= dma_trigger & 0x1f; if (sync_mode & OMAP_DMA_SYNC_FRAME) val |= 1 << 5; else val &= ~(1 << 5); if (sync_mode & OMAP_DMA_SYNC_BLOCK) val |= 1 << 18; else val &= ~(1 << 18); if (src_or_dst_synch == OMAP_DMA_DST_SYNC_PREFETCH) { val &= ~(1 << 24); /* dest synch */ val |= (1 << 23); /* Prefetch */ } else if (src_or_dst_synch) { val |= 1 << 24; /* source synch */ } else { val &= ~(1 << 24); /* dest synch */ } p->dma_write(val, CCR, lch); } p->dma_write(elem_count, CEN, lch); p->dma_write(frame_count, CFN, lch); } EXPORT_SYMBOL(omap_set_dma_transfer_params); void omap_set_dma_channel_mode(int lch, enum omap_dma_channel_mode mode) { if (dma_omap1() && !dma_omap15xx()) { u32 l; l = p->dma_read(LCH_CTRL, lch); l &= ~0x7; l |= mode; p->dma_write(l, LCH_CTRL, lch); } } EXPORT_SYMBOL(omap_set_dma_channel_mode); /* Note that src_port is only for omap1 */ void omap_set_dma_src_params(int lch, int src_port, int src_amode, unsigned long src_start, int src_ei, int src_fi) { u32 l; if (dma_omap1()) { u16 w; w = p->dma_read(CSDP, lch); w &= ~(0x1f << 2); w |= src_port << 2; p->dma_write(w, CSDP, lch); } l = p->dma_read(CCR, lch); l &= ~(0x03 << 12); l |= src_amode << 12; p->dma_write(l, CCR, lch); p->dma_write(src_start, CSSA, lch); p->dma_write(src_ei, CSEI, lch); p->dma_write(src_fi, CSFI, lch); } EXPORT_SYMBOL(omap_set_dma_src_params); void omap_set_dma_src_data_pack(int lch, int enable) { u32 l; l = p->dma_read(CSDP, lch); l &= ~(1 << 6); if (enable) l |= (1 << 6); p->dma_write(l, CSDP, lch); } EXPORT_SYMBOL(omap_set_dma_src_data_pack); void omap_set_dma_src_burst_mode(int lch, enum omap_dma_burst_mode burst_mode) { unsigned int burst = 0; u32 l; l = p->dma_read(CSDP, lch); l &= ~(0x03 << 7); switch (burst_mode) { case OMAP_DMA_DATA_BURST_DIS: break; case OMAP_DMA_DATA_BURST_4: if (dma_omap2plus()) burst = 0x1; else burst = 0x2; break; case OMAP_DMA_DATA_BURST_8: if (dma_omap2plus()) { burst = 0x2; break; } /* * not supported by current hardware on OMAP1 * w |= (0x03 << 7); */ fallthrough; case OMAP_DMA_DATA_BURST_16: if (dma_omap2plus()) { burst = 0x3; break; } /* OMAP1 don't support burst 16 */ fallthrough; default: BUG(); } l |= (burst << 7); p->dma_write(l, CSDP, lch); } EXPORT_SYMBOL(omap_set_dma_src_burst_mode); /* Note that dest_port is only for OMAP1 */ void omap_set_dma_dest_params(int lch, int dest_port, int dest_amode, unsigned long dest_start, int dst_ei, int dst_fi) { u32 l; if (dma_omap1()) { l = p->dma_read(CSDP, lch); l &= ~(0x1f << 9); l |= dest_port << 9; p->dma_write(l, CSDP, lch); } l = p->dma_read(CCR, lch); l &= ~(0x03 << 14); l |= dest_amode << 14; p->dma_write(l, CCR, lch); p->dma_write(dest_start, CDSA, lch); p->dma_write(dst_ei, CDEI, lch); p->dma_write(dst_fi, CDFI, lch); } EXPORT_SYMBOL(omap_set_dma_dest_params); void omap_set_dma_dest_data_pack(int lch, int enable) { u32 l; l = p->dma_read(CSDP, lch); l &= ~(1 << 13); if (enable) l |= 1 << 13; p->dma_write(l, CSDP, lch); } EXPORT_SYMBOL(omap_set_dma_dest_data_pack); void omap_set_dma_dest_burst_mode(int lch, enum omap_dma_burst_mode burst_mode) { unsigned int burst = 0; u32 l; l = p->dma_read(CSDP, lch); l &= ~(0x03 << 14); switch (burst_mode) { case OMAP_DMA_DATA_BURST_DIS: break; case OMAP_DMA_DATA_BURST_4: if (dma_omap2plus()) burst = 0x1; else burst = 0x2; break; case OMAP_DMA_DATA_BURST_8: if (dma_omap2plus()) burst = 0x2; else burst = 0x3; break; case OMAP_DMA_DATA_BURST_16: if (dma_omap2plus()) { burst = 0x3; break; } /* OMAP1 don't support burst 16 */ fallthrough; default: printk(KERN_ERR "Invalid DMA burst mode\n"); BUG(); return; } l |= (burst << 14); p->dma_write(l, CSDP, lch); } EXPORT_SYMBOL(omap_set_dma_dest_burst_mode); static inline void omap_enable_channel_irq(int lch) { /* Clear CSR */ if (dma_omap1()) p->dma_read(CSR, lch); else p->dma_write(OMAP2_DMA_CSR_CLEAR_MASK, CSR, lch); /* Enable some nice interrupts. */ p->dma_write(dma_chan[lch].enabled_irqs, CICR, lch); } static inline void omap_disable_channel_irq(int lch) { /* disable channel interrupts */ p->dma_write(0, CICR, lch); /* Clear CSR */ if (dma_omap1()) p->dma_read(CSR, lch); else p->dma_write(OMAP2_DMA_CSR_CLEAR_MASK, CSR, lch); } void omap_disable_dma_irq(int lch, u16 bits) { dma_chan[lch].enabled_irqs &= ~bits; } EXPORT_SYMBOL(omap_disable_dma_irq); static inline void enable_lnk(int lch) { u32 l; l = p->dma_read(CLNK_CTRL, lch); if (dma_omap1()) l &= ~(1 << 14); /* Set the ENABLE_LNK bits */ if (dma_chan[lch].next_lch != -1) l = dma_chan[lch].next_lch | (1 << 15); p->dma_write(l, CLNK_CTRL, lch); } static inline void disable_lnk(int lch) { u32 l; l = p->dma_read(CLNK_CTRL, lch); /* Disable interrupts */ omap_disable_channel_irq(lch); if (dma_omap1()) { /* Set the STOP_LNK bit */ l |= 1 << 14; } if (dma_omap2plus()) { /* Clear the ENABLE_LNK bit */ l &= ~(1 << 15); } p->dma_write(l, CLNK_CTRL, lch); dma_chan[lch].flags &= ~OMAP_DMA_ACTIVE; } int omap_request_dma(int dev_id, const char *dev_name, void (*callback)(int lch, u16 ch_status, void *data), void *data, int *dma_ch_out) { int ch, free_ch = -1; unsigned long flags; struct omap_dma_lch *chan; WARN(strcmp(dev_name, "DMA engine"), "Using deprecated platform DMA API - please update to DMA engine"); spin_lock_irqsave(&dma_chan_lock, flags); for (ch = 0; ch < dma_chan_count; ch++) { if (free_ch == -1 && dma_chan[ch].dev_id == -1) { free_ch = ch; /* Exit after first free channel found */ break; } } if (free_ch == -1) { spin_unlock_irqrestore(&dma_chan_lock, flags); return -EBUSY; } chan = dma_chan + free_ch; chan->dev_id = dev_id; if (p->clear_lch_regs) p->clear_lch_regs(free_ch); spin_unlock_irqrestore(&dma_chan_lock, flags); chan->dev_name = dev_name; chan->callback = callback; chan->data = data; chan->flags = 0; chan->enabled_irqs = OMAP_DMA_DROP_IRQ | OMAP_DMA_BLOCK_IRQ; if (dma_omap1()) chan->enabled_irqs |= OMAP1_DMA_TOUT_IRQ; if (dma_omap16xx()) { /* If the sync device is set, configure it dynamically. */ if (dev_id != 0) { set_gdma_dev(free_ch + 1, dev_id); dev_id = free_ch + 1; } /* * Disable the 1510 compatibility mode and set the sync device * id. */ p->dma_write(dev_id | (1 << 10), CCR, free_ch); } else if (dma_omap1()) { p->dma_write(dev_id, CCR, free_ch); } *dma_ch_out = free_ch; return 0; } EXPORT_SYMBOL(omap_request_dma); void omap_free_dma(int lch) { unsigned long flags; if (dma_chan[lch].dev_id == -1) { pr_err("omap_dma: trying to free unallocated DMA channel %d\n", lch); return; } /* Disable all DMA interrupts for the channel. */ omap_disable_channel_irq(lch); /* Make sure the DMA transfer is stopped. */ p->dma_write(0, CCR, lch); spin_lock_irqsave(&dma_chan_lock, flags); dma_chan[lch].dev_id = -1; dma_chan[lch].next_lch = -1; dma_chan[lch].callback = NULL; spin_unlock_irqrestore(&dma_chan_lock, flags); } EXPORT_SYMBOL(omap_free_dma); /* * Clears any DMA state so the DMA engine is ready to restart with new buffers * through omap_start_dma(). Any buffers in flight are discarded. */ static void omap_clear_dma(int lch) { unsigned long flags; local_irq_save(flags); p->clear_dma(lch); local_irq_restore(flags); } void omap_start_dma(int lch) { u32 l; /* * The CPC/CDAC register needs to be initialized to zero * before starting dma transfer. */ if (dma_omap15xx()) p->dma_write(0, CPC, lch); else p->dma_write(0, CDAC, lch); if (!omap_dma_in_1510_mode() && dma_chan[lch].next_lch != -1) { int next_lch, cur_lch; char dma_chan_link_map[MAX_LOGICAL_DMA_CH_COUNT]; /* Set the link register of the first channel */ enable_lnk(lch); memset(dma_chan_link_map, 0, sizeof(dma_chan_link_map)); dma_chan_link_map[lch] = 1; cur_lch = dma_chan[lch].next_lch; do { next_lch = dma_chan[cur_lch].next_lch; /* The loop case: we've been here already */ if (dma_chan_link_map[cur_lch]) break; /* Mark the current channel */ dma_chan_link_map[cur_lch] = 1; enable_lnk(cur_lch); omap_enable_channel_irq(cur_lch); cur_lch = next_lch; } while (next_lch != -1); } else if (IS_DMA_ERRATA(DMA_ERRATA_PARALLEL_CHANNELS)) p->dma_write(lch, CLNK_CTRL, lch); omap_enable_channel_irq(lch); l = p->dma_read(CCR, lch); if (IS_DMA_ERRATA(DMA_ERRATA_IFRAME_BUFFERING)) l |= OMAP_DMA_CCR_BUFFERING_DISABLE; l |= OMAP_DMA_CCR_EN; /* * As dma_write() uses IO accessors which are weakly ordered, there * is no guarantee that data in coherent DMA memory will be visible * to the DMA device. Add a memory barrier here to ensure that any * such data is visible prior to enabling DMA. */ mb(); p->dma_write(l, CCR, lch); dma_chan[lch].flags |= OMAP_DMA_ACTIVE; } EXPORT_SYMBOL(omap_start_dma); void omap_stop_dma(int lch) { u32 l; /* Disable all interrupts on the channel */ omap_disable_channel_irq(lch); l = p->dma_read(CCR, lch); if (IS_DMA_ERRATA(DMA_ERRATA_i541) && (l & OMAP_DMA_CCR_SEL_SRC_DST_SYNC)) { int i = 0; u32 sys_cf; /* Configure No-Standby */ l = p->dma_read(OCP_SYSCONFIG, lch); sys_cf = l; l &= ~DMA_SYSCONFIG_MIDLEMODE_MASK; l |= DMA_SYSCONFIG_MIDLEMODE(DMA_IDLEMODE_NO_IDLE); p->dma_write(l , OCP_SYSCONFIG, 0); l = p->dma_read(CCR, lch); l &= ~OMAP_DMA_CCR_EN; p->dma_write(l, CCR, lch); /* Wait for sDMA FIFO drain */ l = p->dma_read(CCR, lch); while (i < 100 && (l & (OMAP_DMA_CCR_RD_ACTIVE | OMAP_DMA_CCR_WR_ACTIVE))) { udelay(5); i++; l = p->dma_read(CCR, lch); } if (i >= 100) pr_err("DMA drain did not complete on lch %d\n", lch); /* Restore OCP_SYSCONFIG */ p->dma_write(sys_cf, OCP_SYSCONFIG, lch); } else { l &= ~OMAP_DMA_CCR_EN; p->dma_write(l, CCR, lch); } /* * Ensure that data transferred by DMA is visible to any access * after DMA has been disabled. This is important for coherent * DMA regions. */ mb(); if (!omap_dma_in_1510_mode() && dma_chan[lch].next_lch != -1) { int next_lch, cur_lch = lch; char dma_chan_link_map[MAX_LOGICAL_DMA_CH_COUNT]; memset(dma_chan_link_map, 0, sizeof(dma_chan_link_map)); do { /* The loop case: we've been here already */ if (dma_chan_link_map[cur_lch]) break; /* Mark the current channel */ dma_chan_link_map[cur_lch] = 1; disable_lnk(cur_lch); next_lch = dma_chan[cur_lch].next_lch; cur_lch = next_lch; } while (next_lch != -1); } dma_chan[lch].flags &= ~OMAP_DMA_ACTIVE; } EXPORT_SYMBOL(omap_stop_dma); /* * Allows changing the DMA callback function or data. This may be needed if * the driver shares a single DMA channel for multiple dma triggers. */ /* * Returns current physical source address for the given DMA channel. * If the channel is running the caller must disable interrupts prior calling * this function and process the returned value before re-enabling interrupt to * prevent races with the interrupt handler. Note that in continuous mode there * is a chance for CSSA_L register overflow between the two reads resulting * in incorrect return value. */ dma_addr_t omap_get_dma_src_pos(int lch) { dma_addr_t offset = 0; if (dma_omap15xx()) offset = p->dma_read(CPC, lch); else offset = p->dma_read(CSAC, lch); if (IS_DMA_ERRATA(DMA_ERRATA_3_3) && offset == 0) offset = p->dma_read(CSAC, lch); if (!dma_omap15xx()) { /* * CDAC == 0 indicates that the DMA transfer on the channel has * not been started (no data has been transferred so far). * Return the programmed source start address in this case. */ if (likely(p->dma_read(CDAC, lch))) offset = p->dma_read(CSAC, lch); else offset = p->dma_read(CSSA, lch); } if (dma_omap1()) offset |= (p->dma_read(CSSA, lch) & 0xFFFF0000); return offset; } EXPORT_SYMBOL(omap_get_dma_src_pos); /* * Returns current physical destination address for the given DMA channel. * If the channel is running the caller must disable interrupts prior calling * this function and process the returned value before re-enabling interrupt to * prevent races with the interrupt handler. Note that in continuous mode there * is a chance for CDSA_L register overflow between the two reads resulting * in incorrect return value. */ dma_addr_t omap_get_dma_dst_pos(int lch) { dma_addr_t offset = 0; if (dma_omap15xx()) offset = p->dma_read(CPC, lch); else offset = p->dma_read(CDAC, lch); /* * omap 3.2/3.3 erratum: sometimes 0 is returned if CSAC/CDAC is * read before the DMA controller finished disabling the channel. */ if (!dma_omap15xx() && offset == 0) { offset = p->dma_read(CDAC, lch); /* * CDAC == 0 indicates that the DMA transfer on the channel has * not been started (no data has been transferred so far). * Return the programmed destination start address in this case. */ if (unlikely(!offset)) offset = p->dma_read(CDSA, lch); } if (dma_omap1()) offset |= (p->dma_read(CDSA, lch) & 0xFFFF0000); return offset; } EXPORT_SYMBOL(omap_get_dma_dst_pos); int omap_get_dma_active_status(int lch) { return (p->dma_read(CCR, lch) & OMAP_DMA_CCR_EN) != 0; } EXPORT_SYMBOL(omap_get_dma_active_status); int omap_dma_running(void) { int lch; if (dma_omap1()) if (omap_lcd_dma_running()) return 1; for (lch = 0; lch < dma_chan_count; lch++) if (p->dma_read(CCR, lch) & OMAP_DMA_CCR_EN) return 1; return 0; } /*----------------------------------------------------------------------------*/ #ifdef CONFIG_ARCH_OMAP1 static int omap1_dma_handle_ch(int ch) { u32 csr; if (enable_1510_mode && ch >= 6) { csr = dma_chan[ch].saved_csr; dma_chan[ch].saved_csr = 0; } else csr = p->dma_read(CSR, ch); if (enable_1510_mode && ch <= 2 && (csr >> 7) != 0) { dma_chan[ch + 6].saved_csr = csr >> 7; csr &= 0x7f; } if ((csr & 0x3f) == 0) return 0; if (unlikely(dma_chan[ch].dev_id == -1)) { pr_warn("Spurious interrupt from DMA channel %d (CSR %04x)\n", ch, csr); return 0; } if (unlikely(csr & OMAP1_DMA_TOUT_IRQ)) pr_warn("DMA timeout with device %d\n", dma_chan[ch].dev_id); if (unlikely(csr & OMAP_DMA_DROP_IRQ)) pr_warn("DMA synchronization event drop occurred with device %d\n", dma_chan[ch].dev_id); if (likely(csr & OMAP_DMA_BLOCK_IRQ)) dma_chan[ch].flags &= ~OMAP_DMA_ACTIVE; if (likely(dma_chan[ch].callback != NULL)) dma_chan[ch].callback(ch, csr, dma_chan[ch].data); return 1; } static irqreturn_t omap1_dma_irq_handler(int irq, void *dev_id) { int ch = ((int) dev_id) - 1; int handled = 0; for (;;) { int handled_now = 0; handled_now += omap1_dma_handle_ch(ch); if (enable_1510_mode && dma_chan[ch + 6].saved_csr) handled_now += omap1_dma_handle_ch(ch + 6); if (!handled_now) break; handled += handled_now; } return handled ? IRQ_HANDLED : IRQ_NONE; } #else #define omap1_dma_irq_handler NULL #endif struct omap_system_dma_plat_info *omap_get_plat_info(void) { return p; } EXPORT_SYMBOL_GPL(omap_get_plat_info); static int omap_system_dma_probe(struct platform_device *pdev) { int ch, ret = 0; int dma_irq; char irq_name[4]; p = pdev->dev.platform_data; if (!p) { dev_err(&pdev->dev, "%s: System DMA initialized without platform data\n", __func__); return -EINVAL; } d = p->dma_attr; errata = p->errata; if ((d->dev_caps & RESERVE_CHANNEL) && omap_dma_reserve_channels && (omap_dma_reserve_channels < d->lch_count)) d->lch_count = omap_dma_reserve_channels; dma_lch_count = d->lch_count; dma_chan_count = dma_lch_count; enable_1510_mode = d->dev_caps & ENABLE_1510_MODE; dma_chan = devm_kcalloc(&pdev->dev, dma_lch_count, sizeof(*dma_chan), GFP_KERNEL); if (!dma_chan) return -ENOMEM; spin_lock_init(&dma_chan_lock); for (ch = 0; ch < dma_chan_count; ch++) { omap_clear_dma(ch); dma_chan[ch].dev_id = -1; dma_chan[ch].next_lch = -1; if (ch >= 6 && enable_1510_mode) continue; if (dma_omap1()) { /* * request_irq() doesn't like dev_id (ie. ch) being * zero, so we have to kludge around this. */ sprintf(&irq_name[0], "%d", ch); dma_irq = platform_get_irq_byname(pdev, irq_name); if (dma_irq < 0) { ret = dma_irq; goto exit_dma_irq_fail; } /* INT_DMA_LCD is handled in lcd_dma.c */ if (dma_irq == INT_DMA_LCD) continue; ret = request_irq(dma_irq, omap1_dma_irq_handler, 0, "DMA", (void *) (ch + 1)); if (ret != 0) goto exit_dma_irq_fail; } } /* reserve dma channels 0 and 1 in high security devices on 34xx */ if (d->dev_caps & HS_CHANNELS_RESERVED) { pr_info("Reserving DMA channels 0 and 1 for HS ROM code\n"); dma_chan[0].dev_id = 0; dma_chan[1].dev_id = 1; } p->show_dma_caps(); return 0; exit_dma_irq_fail: return ret; } static int omap_system_dma_remove(struct platform_device *pdev) { int dma_irq, irq_rel = 0; if (dma_omap2plus()) return 0; for ( ; irq_rel < dma_chan_count; irq_rel++) { dma_irq = platform_get_irq(pdev, irq_rel); free_irq(dma_irq, (void *)(irq_rel + 1)); } return 0; } static struct platform_driver omap_system_dma_driver = { .probe = omap_system_dma_probe, .remove = omap_system_dma_remove, .driver = { .name = "omap_dma_system" }, }; static int __init omap_system_dma_init(void) { return platform_driver_register(&omap_system_dma_driver); } arch_initcall(omap_system_dma_init); static void __exit omap_system_dma_exit(void) { platform_driver_unregister(&omap_system_dma_driver); } MODULE_DESCRIPTION("OMAP SYSTEM DMA DRIVER"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Texas Instruments Inc"); /* * Reserve the omap SDMA channels using cmdline bootarg * "omap_dma_reserve_ch=". The valid range is 1 to 32 */ static int __init omap_dma_cmdline_reserve_ch(char *str) { if (get_option(&str, &omap_dma_reserve_channels) != 1) omap_dma_reserve_channels = 0; return 1; } __setup("omap_dma_reserve_ch=", omap_dma_cmdline_reserve_ch);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1