Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Suzuki K. Poulose | 894 | 83.55% | 7 | 53.85% |
Mike Rapoport | 146 | 13.64% | 2 | 15.38% |
Marc Zyngier | 17 | 1.59% | 1 | 7.69% |
Anshuman Khandual | 10 | 0.93% | 1 | 7.69% |
Thomas Gleixner | 2 | 0.19% | 1 | 7.69% |
Christoffer Dall | 1 | 0.09% | 1 | 7.69% |
Total | 1070 | 13 |
/* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (C) 2016 - ARM Ltd * * stage2 page table helpers */ #ifndef __ARM64_S2_PGTABLE_H_ #define __ARM64_S2_PGTABLE_H_ #include <linux/hugetlb.h> #include <linux/pgtable.h> /* * PGDIR_SHIFT determines the size a top-level page table entry can map * and depends on the number of levels in the page table. Compute the * PGDIR_SHIFT for a given number of levels. */ #define pt_levels_pgdir_shift(lvls) ARM64_HW_PGTABLE_LEVEL_SHIFT(4 - (lvls)) /* * The hardware supports concatenation of up to 16 tables at stage2 entry * level and we use the feature whenever possible, which means we resolve 4 * additional bits of address at the entry level. * * This implies, the total number of page table levels required for * IPA_SHIFT at stage2 expected by the hardware can be calculated using * the same logic used for the (non-collapsable) stage1 page tables but for * (IPA_SHIFT - 4). */ #define stage2_pgtable_levels(ipa) ARM64_HW_PGTABLE_LEVELS((ipa) - 4) #define kvm_stage2_levels(kvm) VTCR_EL2_LVLS(kvm->arch.vtcr) /* stage2_pgdir_shift() is the size mapped by top-level stage2 entry for the VM */ #define stage2_pgdir_shift(kvm) pt_levels_pgdir_shift(kvm_stage2_levels(kvm)) #define stage2_pgdir_size(kvm) (1ULL << stage2_pgdir_shift(kvm)) #define stage2_pgdir_mask(kvm) ~(stage2_pgdir_size(kvm) - 1) /* * The number of PTRS across all concatenated stage2 tables given by the * number of bits resolved at the initial level. * If we force more levels than necessary, we may have (stage2_pgdir_shift > IPA), * in which case, stage2_pgd_ptrs will have one entry. */ #define pgd_ptrs_shift(ipa, pgdir_shift) \ ((ipa) > (pgdir_shift) ? ((ipa) - (pgdir_shift)) : 0) #define __s2_pgd_ptrs(ipa, lvls) \ (1 << (pgd_ptrs_shift((ipa), pt_levels_pgdir_shift(lvls)))) #define __s2_pgd_size(ipa, lvls) (__s2_pgd_ptrs((ipa), (lvls)) * sizeof(pgd_t)) #define stage2_pgd_ptrs(kvm) __s2_pgd_ptrs(kvm_phys_shift(kvm), kvm_stage2_levels(kvm)) #define stage2_pgd_size(kvm) __s2_pgd_size(kvm_phys_shift(kvm), kvm_stage2_levels(kvm)) /* * kvm_mmmu_cache_min_pages() is the number of pages required to install * a stage-2 translation. We pre-allocate the entry level page table at * the VM creation. */ #define kvm_mmu_cache_min_pages(kvm) (kvm_stage2_levels(kvm) - 1) /* Stage2 PUD definitions when the level is present */ static inline bool kvm_stage2_has_pud(struct kvm *kvm) { return (CONFIG_PGTABLE_LEVELS > 3) && (kvm_stage2_levels(kvm) > 3); } #define S2_PUD_SHIFT ARM64_HW_PGTABLE_LEVEL_SHIFT(1) #define S2_PUD_SIZE (1UL << S2_PUD_SHIFT) #define S2_PUD_MASK (~(S2_PUD_SIZE - 1)) #define stage2_pgd_none(kvm, pgd) pgd_none(pgd) #define stage2_pgd_clear(kvm, pgd) pgd_clear(pgd) #define stage2_pgd_present(kvm, pgd) pgd_present(pgd) #define stage2_pgd_populate(kvm, pgd, p4d) pgd_populate(NULL, pgd, p4d) static inline p4d_t *stage2_p4d_offset(struct kvm *kvm, pgd_t *pgd, unsigned long address) { return p4d_offset(pgd, address); } static inline void stage2_p4d_free(struct kvm *kvm, p4d_t *p4d) { } static inline bool stage2_p4d_table_empty(struct kvm *kvm, p4d_t *p4dp) { return false; } static inline phys_addr_t stage2_p4d_addr_end(struct kvm *kvm, phys_addr_t addr, phys_addr_t end) { return end; } static inline bool stage2_p4d_none(struct kvm *kvm, p4d_t p4d) { if (kvm_stage2_has_pud(kvm)) return p4d_none(p4d); else return 0; } static inline void stage2_p4d_clear(struct kvm *kvm, p4d_t *p4dp) { if (kvm_stage2_has_pud(kvm)) p4d_clear(p4dp); } static inline bool stage2_p4d_present(struct kvm *kvm, p4d_t p4d) { if (kvm_stage2_has_pud(kvm)) return p4d_present(p4d); else return 1; } static inline void stage2_p4d_populate(struct kvm *kvm, p4d_t *p4d, pud_t *pud) { if (kvm_stage2_has_pud(kvm)) p4d_populate(NULL, p4d, pud); } static inline pud_t *stage2_pud_offset(struct kvm *kvm, p4d_t *p4d, unsigned long address) { if (kvm_stage2_has_pud(kvm)) return pud_offset(p4d, address); else return (pud_t *)p4d; } static inline void stage2_pud_free(struct kvm *kvm, pud_t *pud) { if (kvm_stage2_has_pud(kvm)) free_page((unsigned long)pud); } static inline bool stage2_pud_table_empty(struct kvm *kvm, pud_t *pudp) { if (kvm_stage2_has_pud(kvm)) return kvm_page_empty(pudp); else return false; } static inline phys_addr_t stage2_pud_addr_end(struct kvm *kvm, phys_addr_t addr, phys_addr_t end) { if (kvm_stage2_has_pud(kvm)) { phys_addr_t boundary = (addr + S2_PUD_SIZE) & S2_PUD_MASK; return (boundary - 1 < end - 1) ? boundary : end; } else { return end; } } /* Stage2 PMD definitions when the level is present */ static inline bool kvm_stage2_has_pmd(struct kvm *kvm) { return (CONFIG_PGTABLE_LEVELS > 2) && (kvm_stage2_levels(kvm) > 2); } #define S2_PMD_SHIFT ARM64_HW_PGTABLE_LEVEL_SHIFT(2) #define S2_PMD_SIZE (1UL << S2_PMD_SHIFT) #define S2_PMD_MASK (~(S2_PMD_SIZE - 1)) static inline bool stage2_pud_none(struct kvm *kvm, pud_t pud) { if (kvm_stage2_has_pmd(kvm)) return pud_none(pud); else return 0; } static inline void stage2_pud_clear(struct kvm *kvm, pud_t *pud) { if (kvm_stage2_has_pmd(kvm)) pud_clear(pud); } static inline bool stage2_pud_present(struct kvm *kvm, pud_t pud) { if (kvm_stage2_has_pmd(kvm)) return pud_present(pud); else return 1; } static inline void stage2_pud_populate(struct kvm *kvm, pud_t *pud, pmd_t *pmd) { if (kvm_stage2_has_pmd(kvm)) pud_populate(NULL, pud, pmd); } static inline pmd_t *stage2_pmd_offset(struct kvm *kvm, pud_t *pud, unsigned long address) { if (kvm_stage2_has_pmd(kvm)) return pmd_offset(pud, address); else return (pmd_t *)pud; } static inline void stage2_pmd_free(struct kvm *kvm, pmd_t *pmd) { if (kvm_stage2_has_pmd(kvm)) free_page((unsigned long)pmd); } static inline bool stage2_pud_huge(struct kvm *kvm, pud_t pud) { if (kvm_stage2_has_pmd(kvm)) return pud_huge(pud); else return 0; } static inline bool stage2_pmd_table_empty(struct kvm *kvm, pmd_t *pmdp) { if (kvm_stage2_has_pmd(kvm)) return kvm_page_empty(pmdp); else return 0; } static inline phys_addr_t stage2_pmd_addr_end(struct kvm *kvm, phys_addr_t addr, phys_addr_t end) { if (kvm_stage2_has_pmd(kvm)) { phys_addr_t boundary = (addr + S2_PMD_SIZE) & S2_PMD_MASK; return (boundary - 1 < end - 1) ? boundary : end; } else { return end; } } static inline bool stage2_pte_table_empty(struct kvm *kvm, pte_t *ptep) { return kvm_page_empty(ptep); } static inline unsigned long stage2_pgd_index(struct kvm *kvm, phys_addr_t addr) { return (((addr) >> stage2_pgdir_shift(kvm)) & (stage2_pgd_ptrs(kvm) - 1)); } static inline phys_addr_t stage2_pgd_addr_end(struct kvm *kvm, phys_addr_t addr, phys_addr_t end) { phys_addr_t boundary = (addr + stage2_pgdir_size(kvm)) & stage2_pgdir_mask(kvm); return (boundary - 1 < end - 1) ? boundary : end; } /* * Level values for the ARMv8.4-TTL extension, mapping PUD/PMD/PTE and * the architectural page-table level. */ #define S2_NO_LEVEL_HINT 0 #define S2_PUD_LEVEL 1 #define S2_PMD_LEVEL 2 #define S2_PTE_LEVEL 3 #endif /* __ARM64_S2_PGTABLE_H_ */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1