Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Will Deacon | 1341 | 60.49% | 2 | 6.06% |
Ard Biesheuvel | 417 | 18.81% | 16 | 48.48% |
Mark Rutland | 146 | 6.59% | 2 | 6.06% |
Andre Przywara | 92 | 4.15% | 1 | 3.03% |
Jiang Liu | 81 | 3.65% | 1 | 3.03% |
Torsten Duwe | 54 | 2.44% | 1 | 3.03% |
Andrey Ryabinin | 40 | 1.80% | 2 | 6.06% |
Florian Fainelli | 18 | 0.81% | 1 | 3.03% |
Jessica Yu | 10 | 0.45% | 1 | 3.03% |
Gustavo A. R. Silva | 8 | 0.36% | 1 | 3.03% |
Paul Walmsley | 3 | 0.14% | 1 | 3.03% |
Luc Van Oostenryck | 3 | 0.14% | 1 | 3.03% |
Thomas Gleixner | 2 | 0.09% | 1 | 3.03% |
Kim Phillips | 1 | 0.05% | 1 | 3.03% |
Jianguo Wu | 1 | 0.05% | 1 | 3.03% |
Total | 2217 | 33 |
// SPDX-License-Identifier: GPL-2.0-only /* * AArch64 loadable module support. * * Copyright (C) 2012 ARM Limited * * Author: Will Deacon <will.deacon@arm.com> */ #include <linux/bitops.h> #include <linux/elf.h> #include <linux/ftrace.h> #include <linux/gfp.h> #include <linux/kasan.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/moduleloader.h> #include <linux/vmalloc.h> #include <asm/alternative.h> #include <asm/insn.h> #include <asm/sections.h> void *module_alloc(unsigned long size) { u64 module_alloc_end = module_alloc_base + MODULES_VSIZE; gfp_t gfp_mask = GFP_KERNEL; void *p; /* Silence the initial allocation */ if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS)) gfp_mask |= __GFP_NOWARN; if (IS_ENABLED(CONFIG_KASAN)) /* don't exceed the static module region - see below */ module_alloc_end = MODULES_END; p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base, module_alloc_end, gfp_mask, PAGE_KERNEL, 0, NUMA_NO_NODE, __builtin_return_address(0)); if (!p && IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) && !IS_ENABLED(CONFIG_KASAN)) /* * KASAN can only deal with module allocations being served * from the reserved module region, since the remainder of * the vmalloc region is already backed by zero shadow pages, * and punching holes into it is non-trivial. Since the module * region is not randomized when KASAN is enabled, it is even * less likely that the module region gets exhausted, so we * can simply omit this fallback in that case. */ p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base, module_alloc_base + SZ_2G, GFP_KERNEL, PAGE_KERNEL, 0, NUMA_NO_NODE, __builtin_return_address(0)); if (p && (kasan_module_alloc(p, size) < 0)) { vfree(p); return NULL; } return p; } enum aarch64_reloc_op { RELOC_OP_NONE, RELOC_OP_ABS, RELOC_OP_PREL, RELOC_OP_PAGE, }; static u64 do_reloc(enum aarch64_reloc_op reloc_op, __le32 *place, u64 val) { switch (reloc_op) { case RELOC_OP_ABS: return val; case RELOC_OP_PREL: return val - (u64)place; case RELOC_OP_PAGE: return (val & ~0xfff) - ((u64)place & ~0xfff); case RELOC_OP_NONE: return 0; } pr_err("do_reloc: unknown relocation operation %d\n", reloc_op); return 0; } static int reloc_data(enum aarch64_reloc_op op, void *place, u64 val, int len) { s64 sval = do_reloc(op, place, val); /* * The ELF psABI for AArch64 documents the 16-bit and 32-bit place * relative and absolute relocations as having a range of [-2^15, 2^16) * or [-2^31, 2^32), respectively. However, in order to be able to * detect overflows reliably, we have to choose whether we interpret * such quantities as signed or as unsigned, and stick with it. * The way we organize our address space requires a signed * interpretation of 32-bit relative references, so let's use that * for all R_AARCH64_PRELxx relocations. This means our upper * bound for overflow detection should be Sxx_MAX rather than Uxx_MAX. */ switch (len) { case 16: *(s16 *)place = sval; switch (op) { case RELOC_OP_ABS: if (sval < 0 || sval > U16_MAX) return -ERANGE; break; case RELOC_OP_PREL: if (sval < S16_MIN || sval > S16_MAX) return -ERANGE; break; default: pr_err("Invalid 16-bit data relocation (%d)\n", op); return 0; } break; case 32: *(s32 *)place = sval; switch (op) { case RELOC_OP_ABS: if (sval < 0 || sval > U32_MAX) return -ERANGE; break; case RELOC_OP_PREL: if (sval < S32_MIN || sval > S32_MAX) return -ERANGE; break; default: pr_err("Invalid 32-bit data relocation (%d)\n", op); return 0; } break; case 64: *(s64 *)place = sval; break; default: pr_err("Invalid length (%d) for data relocation\n", len); return 0; } return 0; } enum aarch64_insn_movw_imm_type { AARCH64_INSN_IMM_MOVNZ, AARCH64_INSN_IMM_MOVKZ, }; static int reloc_insn_movw(enum aarch64_reloc_op op, __le32 *place, u64 val, int lsb, enum aarch64_insn_movw_imm_type imm_type) { u64 imm; s64 sval; u32 insn = le32_to_cpu(*place); sval = do_reloc(op, place, val); imm = sval >> lsb; if (imm_type == AARCH64_INSN_IMM_MOVNZ) { /* * For signed MOVW relocations, we have to manipulate the * instruction encoding depending on whether or not the * immediate is less than zero. */ insn &= ~(3 << 29); if (sval >= 0) { /* >=0: Set the instruction to MOVZ (opcode 10b). */ insn |= 2 << 29; } else { /* * <0: Set the instruction to MOVN (opcode 00b). * Since we've masked the opcode already, we * don't need to do anything other than * inverting the new immediate field. */ imm = ~imm; } } /* Update the instruction with the new encoding. */ insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm); *place = cpu_to_le32(insn); if (imm > U16_MAX) return -ERANGE; return 0; } static int reloc_insn_imm(enum aarch64_reloc_op op, __le32 *place, u64 val, int lsb, int len, enum aarch64_insn_imm_type imm_type) { u64 imm, imm_mask; s64 sval; u32 insn = le32_to_cpu(*place); /* Calculate the relocation value. */ sval = do_reloc(op, place, val); sval >>= lsb; /* Extract the value bits and shift them to bit 0. */ imm_mask = (BIT(lsb + len) - 1) >> lsb; imm = sval & imm_mask; /* Update the instruction's immediate field. */ insn = aarch64_insn_encode_immediate(imm_type, insn, imm); *place = cpu_to_le32(insn); /* * Extract the upper value bits (including the sign bit) and * shift them to bit 0. */ sval = (s64)(sval & ~(imm_mask >> 1)) >> (len - 1); /* * Overflow has occurred if the upper bits are not all equal to * the sign bit of the value. */ if ((u64)(sval + 1) >= 2) return -ERANGE; return 0; } static int reloc_insn_adrp(struct module *mod, Elf64_Shdr *sechdrs, __le32 *place, u64 val) { u32 insn; if (!is_forbidden_offset_for_adrp(place)) return reloc_insn_imm(RELOC_OP_PAGE, place, val, 12, 21, AARCH64_INSN_IMM_ADR); /* patch ADRP to ADR if it is in range */ if (!reloc_insn_imm(RELOC_OP_PREL, place, val & ~0xfff, 0, 21, AARCH64_INSN_IMM_ADR)) { insn = le32_to_cpu(*place); insn &= ~BIT(31); } else { /* out of range for ADR -> emit a veneer */ val = module_emit_veneer_for_adrp(mod, sechdrs, place, val & ~0xfff); if (!val) return -ENOEXEC; insn = aarch64_insn_gen_branch_imm((u64)place, val, AARCH64_INSN_BRANCH_NOLINK); } *place = cpu_to_le32(insn); return 0; } int apply_relocate_add(Elf64_Shdr *sechdrs, const char *strtab, unsigned int symindex, unsigned int relsec, struct module *me) { unsigned int i; int ovf; bool overflow_check; Elf64_Sym *sym; void *loc; u64 val; Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr; for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) { /* loc corresponds to P in the AArch64 ELF document. */ loc = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr + rel[i].r_offset; /* sym is the ELF symbol we're referring to. */ sym = (Elf64_Sym *)sechdrs[symindex].sh_addr + ELF64_R_SYM(rel[i].r_info); /* val corresponds to (S + A) in the AArch64 ELF document. */ val = sym->st_value + rel[i].r_addend; /* Check for overflow by default. */ overflow_check = true; /* Perform the static relocation. */ switch (ELF64_R_TYPE(rel[i].r_info)) { /* Null relocations. */ case R_ARM_NONE: case R_AARCH64_NONE: ovf = 0; break; /* Data relocations. */ case R_AARCH64_ABS64: overflow_check = false; ovf = reloc_data(RELOC_OP_ABS, loc, val, 64); break; case R_AARCH64_ABS32: ovf = reloc_data(RELOC_OP_ABS, loc, val, 32); break; case R_AARCH64_ABS16: ovf = reloc_data(RELOC_OP_ABS, loc, val, 16); break; case R_AARCH64_PREL64: overflow_check = false; ovf = reloc_data(RELOC_OP_PREL, loc, val, 64); break; case R_AARCH64_PREL32: ovf = reloc_data(RELOC_OP_PREL, loc, val, 32); break; case R_AARCH64_PREL16: ovf = reloc_data(RELOC_OP_PREL, loc, val, 16); break; /* MOVW instruction relocations. */ case R_AARCH64_MOVW_UABS_G0_NC: overflow_check = false; fallthrough; case R_AARCH64_MOVW_UABS_G0: ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0, AARCH64_INSN_IMM_MOVKZ); break; case R_AARCH64_MOVW_UABS_G1_NC: overflow_check = false; fallthrough; case R_AARCH64_MOVW_UABS_G1: ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16, AARCH64_INSN_IMM_MOVKZ); break; case R_AARCH64_MOVW_UABS_G2_NC: overflow_check = false; fallthrough; case R_AARCH64_MOVW_UABS_G2: ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32, AARCH64_INSN_IMM_MOVKZ); break; case R_AARCH64_MOVW_UABS_G3: /* We're using the top bits so we can't overflow. */ overflow_check = false; ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 48, AARCH64_INSN_IMM_MOVKZ); break; case R_AARCH64_MOVW_SABS_G0: ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0, AARCH64_INSN_IMM_MOVNZ); break; case R_AARCH64_MOVW_SABS_G1: ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16, AARCH64_INSN_IMM_MOVNZ); break; case R_AARCH64_MOVW_SABS_G2: ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32, AARCH64_INSN_IMM_MOVNZ); break; case R_AARCH64_MOVW_PREL_G0_NC: overflow_check = false; ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0, AARCH64_INSN_IMM_MOVKZ); break; case R_AARCH64_MOVW_PREL_G0: ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0, AARCH64_INSN_IMM_MOVNZ); break; case R_AARCH64_MOVW_PREL_G1_NC: overflow_check = false; ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16, AARCH64_INSN_IMM_MOVKZ); break; case R_AARCH64_MOVW_PREL_G1: ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16, AARCH64_INSN_IMM_MOVNZ); break; case R_AARCH64_MOVW_PREL_G2_NC: overflow_check = false; ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32, AARCH64_INSN_IMM_MOVKZ); break; case R_AARCH64_MOVW_PREL_G2: ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32, AARCH64_INSN_IMM_MOVNZ); break; case R_AARCH64_MOVW_PREL_G3: /* We're using the top bits so we can't overflow. */ overflow_check = false; ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 48, AARCH64_INSN_IMM_MOVNZ); break; /* Immediate instruction relocations. */ case R_AARCH64_LD_PREL_LO19: ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19, AARCH64_INSN_IMM_19); break; case R_AARCH64_ADR_PREL_LO21: ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 0, 21, AARCH64_INSN_IMM_ADR); break; case R_AARCH64_ADR_PREL_PG_HI21_NC: overflow_check = false; fallthrough; case R_AARCH64_ADR_PREL_PG_HI21: ovf = reloc_insn_adrp(me, sechdrs, loc, val); if (ovf && ovf != -ERANGE) return ovf; break; case R_AARCH64_ADD_ABS_LO12_NC: case R_AARCH64_LDST8_ABS_LO12_NC: overflow_check = false; ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 0, 12, AARCH64_INSN_IMM_12); break; case R_AARCH64_LDST16_ABS_LO12_NC: overflow_check = false; ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 1, 11, AARCH64_INSN_IMM_12); break; case R_AARCH64_LDST32_ABS_LO12_NC: overflow_check = false; ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 2, 10, AARCH64_INSN_IMM_12); break; case R_AARCH64_LDST64_ABS_LO12_NC: overflow_check = false; ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 3, 9, AARCH64_INSN_IMM_12); break; case R_AARCH64_LDST128_ABS_LO12_NC: overflow_check = false; ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 4, 8, AARCH64_INSN_IMM_12); break; case R_AARCH64_TSTBR14: ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 14, AARCH64_INSN_IMM_14); break; case R_AARCH64_CONDBR19: ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19, AARCH64_INSN_IMM_19); break; case R_AARCH64_JUMP26: case R_AARCH64_CALL26: ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 26, AARCH64_INSN_IMM_26); if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) && ovf == -ERANGE) { val = module_emit_plt_entry(me, sechdrs, loc, &rel[i], sym); if (!val) return -ENOEXEC; ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 26, AARCH64_INSN_IMM_26); } break; default: pr_err("module %s: unsupported RELA relocation: %llu\n", me->name, ELF64_R_TYPE(rel[i].r_info)); return -ENOEXEC; } if (overflow_check && ovf == -ERANGE) goto overflow; } return 0; overflow: pr_err("module %s: overflow in relocation type %d val %Lx\n", me->name, (int)ELF64_R_TYPE(rel[i].r_info), val); return -ENOEXEC; } static const Elf_Shdr *find_section(const Elf_Ehdr *hdr, const Elf_Shdr *sechdrs, const char *name) { const Elf_Shdr *s, *se; const char *secstrs = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset; for (s = sechdrs, se = sechdrs + hdr->e_shnum; s < se; s++) { if (strcmp(name, secstrs + s->sh_name) == 0) return s; } return NULL; } static inline void __init_plt(struct plt_entry *plt, unsigned long addr) { *plt = get_plt_entry(addr, plt); } static int module_init_ftrace_plt(const Elf_Ehdr *hdr, const Elf_Shdr *sechdrs, struct module *mod) { #if defined(CONFIG_ARM64_MODULE_PLTS) && defined(CONFIG_DYNAMIC_FTRACE) const Elf_Shdr *s; struct plt_entry *plts; s = find_section(hdr, sechdrs, ".text.ftrace_trampoline"); if (!s) return -ENOEXEC; plts = (void *)s->sh_addr; __init_plt(&plts[FTRACE_PLT_IDX], FTRACE_ADDR); if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE_WITH_REGS)) __init_plt(&plts[FTRACE_REGS_PLT_IDX], FTRACE_REGS_ADDR); mod->arch.ftrace_trampolines = plts; #endif return 0; } int module_finalize(const Elf_Ehdr *hdr, const Elf_Shdr *sechdrs, struct module *me) { const Elf_Shdr *s; s = find_section(hdr, sechdrs, ".altinstructions"); if (s) apply_alternatives_module((void *)s->sh_addr, s->sh_size); return module_init_ftrace_plt(hdr, sechdrs, me); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1