Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Will Deacon | 1335 | 23.23% | 12 | 17.65% |
Mark Rutland | 840 | 14.62% | 10 | 14.71% |
Suzuki K. Poulose | 762 | 13.26% | 6 | 8.82% |
Ashok Kumar | 622 | 10.82% | 4 | 5.88% |
Robin Murphy | 512 | 8.91% | 3 | 4.41% |
Drew Richardson | 484 | 8.42% | 2 | 2.94% |
Andrew Murray | 325 | 5.66% | 4 | 5.88% |
Shaokun Zhang | 219 | 3.81% | 5 | 7.35% |
Julien Thierry | 161 | 2.80% | 3 | 4.41% |
Jan Glauber | 156 | 2.71% | 3 | 4.41% |
Peter Zijlstra | 145 | 2.52% | 3 | 4.41% |
Jeremy Linton | 67 | 1.17% | 2 | 2.94% |
Michael O'Farrell | 56 | 0.97% | 1 | 1.47% |
Ganapatrao Kulkarni | 19 | 0.33% | 1 | 1.47% |
Shannon Zhao | 17 | 0.30% | 1 | 1.47% |
Marc Zyngier | 8 | 0.14% | 1 | 1.47% |
Anders Roxell | 5 | 0.09% | 1 | 1.47% |
Mark Salter | 3 | 0.05% | 1 | 1.47% |
Pratyush Anand | 3 | 0.05% | 1 | 1.47% |
Raphael Gault | 3 | 0.05% | 1 | 1.47% |
Yury Norov | 2 | 0.03% | 1 | 1.47% |
Thomas Gleixner | 2 | 0.03% | 1 | 1.47% |
Kefeng Wang | 1 | 0.02% | 1 | 1.47% |
Total | 5747 | 68 |
// SPDX-License-Identifier: GPL-2.0-only /* * ARMv8 PMUv3 Performance Events handling code. * * Copyright (C) 2012 ARM Limited * Author: Will Deacon <will.deacon@arm.com> * * This code is based heavily on the ARMv7 perf event code. */ #include <asm/irq_regs.h> #include <asm/perf_event.h> #include <asm/sysreg.h> #include <asm/virt.h> #include <clocksource/arm_arch_timer.h> #include <linux/acpi.h> #include <linux/clocksource.h> #include <linux/kvm_host.h> #include <linux/of.h> #include <linux/perf/arm_pmu.h> #include <linux/platform_device.h> #include <linux/sched_clock.h> #include <linux/smp.h> /* ARMv8 Cortex-A53 specific event types. */ #define ARMV8_A53_PERFCTR_PREF_LINEFILL 0xC2 /* ARMv8 Cavium ThunderX specific event types. */ #define ARMV8_THUNDER_PERFCTR_L1D_CACHE_MISS_ST 0xE9 #define ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_ACCESS 0xEA #define ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_MISS 0xEB #define ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_ACCESS 0xEC #define ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_MISS 0xED /* * ARMv8 Architectural defined events, not all of these may * be supported on any given implementation. Unsupported events will * be disabled at run-time based on the PMCEID registers. */ static const unsigned armv8_pmuv3_perf_map[PERF_COUNT_HW_MAX] = { PERF_MAP_ALL_UNSUPPORTED, [PERF_COUNT_HW_CPU_CYCLES] = ARMV8_PMUV3_PERFCTR_CPU_CYCLES, [PERF_COUNT_HW_INSTRUCTIONS] = ARMV8_PMUV3_PERFCTR_INST_RETIRED, [PERF_COUNT_HW_CACHE_REFERENCES] = ARMV8_PMUV3_PERFCTR_L1D_CACHE, [PERF_COUNT_HW_CACHE_MISSES] = ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL, [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED, [PERF_COUNT_HW_BRANCH_MISSES] = ARMV8_PMUV3_PERFCTR_BR_MIS_PRED, [PERF_COUNT_HW_BUS_CYCLES] = ARMV8_PMUV3_PERFCTR_BUS_CYCLES, [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = ARMV8_PMUV3_PERFCTR_STALL_FRONTEND, [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = ARMV8_PMUV3_PERFCTR_STALL_BACKEND, }; static const unsigned armv8_pmuv3_perf_cache_map[PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { PERF_CACHE_MAP_ALL_UNSUPPORTED, [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1D_CACHE, [C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL, [C(L1I)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1I_CACHE, [C(L1I)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1I_CACHE_REFILL, [C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1D_TLB_REFILL, [C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1D_TLB, [C(ITLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1I_TLB_REFILL, [C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1I_TLB, [C(BPU)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_BR_PRED, [C(BPU)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_BR_MIS_PRED, }; static const unsigned armv8_a53_perf_cache_map[PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { PERF_CACHE_MAP_ALL_UNSUPPORTED, [C(L1D)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_A53_PERFCTR_PREF_LINEFILL, [C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD, [C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR, }; static const unsigned armv8_a57_perf_cache_map[PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { PERF_CACHE_MAP_ALL_UNSUPPORTED, [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD, [C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD, [C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR, [C(L1D)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_WR, [C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD, [C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR, [C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD, [C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR, }; static const unsigned armv8_a73_perf_cache_map[PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { PERF_CACHE_MAP_ALL_UNSUPPORTED, [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD, [C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR, }; static const unsigned armv8_thunder_perf_cache_map[PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { PERF_CACHE_MAP_ALL_UNSUPPORTED, [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD, [C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD, [C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR, [C(L1D)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_THUNDER_PERFCTR_L1D_CACHE_MISS_ST, [C(L1D)][C(OP_PREFETCH)][C(RESULT_ACCESS)] = ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_ACCESS, [C(L1D)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_MISS, [C(L1I)][C(OP_PREFETCH)][C(RESULT_ACCESS)] = ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_ACCESS, [C(L1I)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_MISS, [C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_RD, [C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD, [C(DTLB)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_WR, [C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR, }; static const unsigned armv8_vulcan_perf_cache_map[PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { PERF_CACHE_MAP_ALL_UNSUPPORTED, [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD, [C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD, [C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR, [C(L1D)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_WR, [C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_RD, [C(DTLB)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_WR, [C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD, [C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR, [C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD, [C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR, }; static ssize_t armv8pmu_events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page) { struct perf_pmu_events_attr *pmu_attr; pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr); return sprintf(page, "event=0x%04llx\n", pmu_attr->id); } #define ARMV8_EVENT_ATTR(name, config) \ (&((struct perf_pmu_events_attr) { \ .attr = __ATTR(name, 0444, armv8pmu_events_sysfs_show, NULL), \ .id = config, \ }).attr.attr) static struct attribute *armv8_pmuv3_event_attrs[] = { ARMV8_EVENT_ATTR(sw_incr, ARMV8_PMUV3_PERFCTR_SW_INCR), ARMV8_EVENT_ATTR(l1i_cache_refill, ARMV8_PMUV3_PERFCTR_L1I_CACHE_REFILL), ARMV8_EVENT_ATTR(l1i_tlb_refill, ARMV8_PMUV3_PERFCTR_L1I_TLB_REFILL), ARMV8_EVENT_ATTR(l1d_cache_refill, ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL), ARMV8_EVENT_ATTR(l1d_cache, ARMV8_PMUV3_PERFCTR_L1D_CACHE), ARMV8_EVENT_ATTR(l1d_tlb_refill, ARMV8_PMUV3_PERFCTR_L1D_TLB_REFILL), ARMV8_EVENT_ATTR(ld_retired, ARMV8_PMUV3_PERFCTR_LD_RETIRED), ARMV8_EVENT_ATTR(st_retired, ARMV8_PMUV3_PERFCTR_ST_RETIRED), ARMV8_EVENT_ATTR(inst_retired, ARMV8_PMUV3_PERFCTR_INST_RETIRED), ARMV8_EVENT_ATTR(exc_taken, ARMV8_PMUV3_PERFCTR_EXC_TAKEN), ARMV8_EVENT_ATTR(exc_return, ARMV8_PMUV3_PERFCTR_EXC_RETURN), ARMV8_EVENT_ATTR(cid_write_retired, ARMV8_PMUV3_PERFCTR_CID_WRITE_RETIRED), ARMV8_EVENT_ATTR(pc_write_retired, ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED), ARMV8_EVENT_ATTR(br_immed_retired, ARMV8_PMUV3_PERFCTR_BR_IMMED_RETIRED), ARMV8_EVENT_ATTR(br_return_retired, ARMV8_PMUV3_PERFCTR_BR_RETURN_RETIRED), ARMV8_EVENT_ATTR(unaligned_ldst_retired, ARMV8_PMUV3_PERFCTR_UNALIGNED_LDST_RETIRED), ARMV8_EVENT_ATTR(br_mis_pred, ARMV8_PMUV3_PERFCTR_BR_MIS_PRED), ARMV8_EVENT_ATTR(cpu_cycles, ARMV8_PMUV3_PERFCTR_CPU_CYCLES), ARMV8_EVENT_ATTR(br_pred, ARMV8_PMUV3_PERFCTR_BR_PRED), ARMV8_EVENT_ATTR(mem_access, ARMV8_PMUV3_PERFCTR_MEM_ACCESS), ARMV8_EVENT_ATTR(l1i_cache, ARMV8_PMUV3_PERFCTR_L1I_CACHE), ARMV8_EVENT_ATTR(l1d_cache_wb, ARMV8_PMUV3_PERFCTR_L1D_CACHE_WB), ARMV8_EVENT_ATTR(l2d_cache, ARMV8_PMUV3_PERFCTR_L2D_CACHE), ARMV8_EVENT_ATTR(l2d_cache_refill, ARMV8_PMUV3_PERFCTR_L2D_CACHE_REFILL), ARMV8_EVENT_ATTR(l2d_cache_wb, ARMV8_PMUV3_PERFCTR_L2D_CACHE_WB), ARMV8_EVENT_ATTR(bus_access, ARMV8_PMUV3_PERFCTR_BUS_ACCESS), ARMV8_EVENT_ATTR(memory_error, ARMV8_PMUV3_PERFCTR_MEMORY_ERROR), ARMV8_EVENT_ATTR(inst_spec, ARMV8_PMUV3_PERFCTR_INST_SPEC), ARMV8_EVENT_ATTR(ttbr_write_retired, ARMV8_PMUV3_PERFCTR_TTBR_WRITE_RETIRED), ARMV8_EVENT_ATTR(bus_cycles, ARMV8_PMUV3_PERFCTR_BUS_CYCLES), /* Don't expose the chain event in /sys, since it's useless in isolation */ ARMV8_EVENT_ATTR(l1d_cache_allocate, ARMV8_PMUV3_PERFCTR_L1D_CACHE_ALLOCATE), ARMV8_EVENT_ATTR(l2d_cache_allocate, ARMV8_PMUV3_PERFCTR_L2D_CACHE_ALLOCATE), ARMV8_EVENT_ATTR(br_retired, ARMV8_PMUV3_PERFCTR_BR_RETIRED), ARMV8_EVENT_ATTR(br_mis_pred_retired, ARMV8_PMUV3_PERFCTR_BR_MIS_PRED_RETIRED), ARMV8_EVENT_ATTR(stall_frontend, ARMV8_PMUV3_PERFCTR_STALL_FRONTEND), ARMV8_EVENT_ATTR(stall_backend, ARMV8_PMUV3_PERFCTR_STALL_BACKEND), ARMV8_EVENT_ATTR(l1d_tlb, ARMV8_PMUV3_PERFCTR_L1D_TLB), ARMV8_EVENT_ATTR(l1i_tlb, ARMV8_PMUV3_PERFCTR_L1I_TLB), ARMV8_EVENT_ATTR(l2i_cache, ARMV8_PMUV3_PERFCTR_L2I_CACHE), ARMV8_EVENT_ATTR(l2i_cache_refill, ARMV8_PMUV3_PERFCTR_L2I_CACHE_REFILL), ARMV8_EVENT_ATTR(l3d_cache_allocate, ARMV8_PMUV3_PERFCTR_L3D_CACHE_ALLOCATE), ARMV8_EVENT_ATTR(l3d_cache_refill, ARMV8_PMUV3_PERFCTR_L3D_CACHE_REFILL), ARMV8_EVENT_ATTR(l3d_cache, ARMV8_PMUV3_PERFCTR_L3D_CACHE), ARMV8_EVENT_ATTR(l3d_cache_wb, ARMV8_PMUV3_PERFCTR_L3D_CACHE_WB), ARMV8_EVENT_ATTR(l2d_tlb_refill, ARMV8_PMUV3_PERFCTR_L2D_TLB_REFILL), ARMV8_EVENT_ATTR(l2i_tlb_refill, ARMV8_PMUV3_PERFCTR_L2I_TLB_REFILL), ARMV8_EVENT_ATTR(l2d_tlb, ARMV8_PMUV3_PERFCTR_L2D_TLB), ARMV8_EVENT_ATTR(l2i_tlb, ARMV8_PMUV3_PERFCTR_L2I_TLB), ARMV8_EVENT_ATTR(remote_access, ARMV8_PMUV3_PERFCTR_REMOTE_ACCESS), ARMV8_EVENT_ATTR(ll_cache, ARMV8_PMUV3_PERFCTR_LL_CACHE), ARMV8_EVENT_ATTR(ll_cache_miss, ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS), ARMV8_EVENT_ATTR(dtlb_walk, ARMV8_PMUV3_PERFCTR_DTLB_WALK), ARMV8_EVENT_ATTR(itlb_walk, ARMV8_PMUV3_PERFCTR_ITLB_WALK), ARMV8_EVENT_ATTR(ll_cache_rd, ARMV8_PMUV3_PERFCTR_LL_CACHE_RD), ARMV8_EVENT_ATTR(ll_cache_miss_rd, ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS_RD), ARMV8_EVENT_ATTR(remote_access_rd, ARMV8_PMUV3_PERFCTR_REMOTE_ACCESS_RD), ARMV8_EVENT_ATTR(l1d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L1D_CACHE_LMISS_RD), ARMV8_EVENT_ATTR(op_retired, ARMV8_PMUV3_PERFCTR_OP_RETIRED), ARMV8_EVENT_ATTR(op_spec, ARMV8_PMUV3_PERFCTR_OP_SPEC), ARMV8_EVENT_ATTR(stall, ARMV8_PMUV3_PERFCTR_STALL), ARMV8_EVENT_ATTR(stall_slot_backend, ARMV8_PMUV3_PERFCTR_STALL_SLOT_BACKEND), ARMV8_EVENT_ATTR(stall_slot_frontend, ARMV8_PMUV3_PERFCTR_STALL_SLOT_FRONTEND), ARMV8_EVENT_ATTR(stall_slot, ARMV8_PMUV3_PERFCTR_STALL_SLOT), ARMV8_EVENT_ATTR(sample_pop, ARMV8_SPE_PERFCTR_SAMPLE_POP), ARMV8_EVENT_ATTR(sample_feed, ARMV8_SPE_PERFCTR_SAMPLE_FEED), ARMV8_EVENT_ATTR(sample_filtrate, ARMV8_SPE_PERFCTR_SAMPLE_FILTRATE), ARMV8_EVENT_ATTR(sample_collision, ARMV8_SPE_PERFCTR_SAMPLE_COLLISION), ARMV8_EVENT_ATTR(cnt_cycles, ARMV8_AMU_PERFCTR_CNT_CYCLES), ARMV8_EVENT_ATTR(stall_backend_mem, ARMV8_AMU_PERFCTR_STALL_BACKEND_MEM), ARMV8_EVENT_ATTR(l1i_cache_lmiss, ARMV8_PMUV3_PERFCTR_L1I_CACHE_LMISS), ARMV8_EVENT_ATTR(l2d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L2D_CACHE_LMISS_RD), ARMV8_EVENT_ATTR(l2i_cache_lmiss, ARMV8_PMUV3_PERFCTR_L2I_CACHE_LMISS), ARMV8_EVENT_ATTR(l3d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L3D_CACHE_LMISS_RD), ARMV8_EVENT_ATTR(ldst_align_lat, ARMV8_PMUV3_PERFCTR_LDST_ALIGN_LAT), ARMV8_EVENT_ATTR(ld_align_lat, ARMV8_PMUV3_PERFCTR_LD_ALIGN_LAT), ARMV8_EVENT_ATTR(st_align_lat, ARMV8_PMUV3_PERFCTR_ST_ALIGN_LAT), ARMV8_EVENT_ATTR(mem_access_checked, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED), ARMV8_EVENT_ATTR(mem_access_checked_rd, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED_RD), ARMV8_EVENT_ATTR(mem_access_checked_wr, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED_WR), NULL, }; static umode_t armv8pmu_event_attr_is_visible(struct kobject *kobj, struct attribute *attr, int unused) { struct device *dev = kobj_to_dev(kobj); struct pmu *pmu = dev_get_drvdata(dev); struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu); struct perf_pmu_events_attr *pmu_attr; pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr); if (pmu_attr->id < ARMV8_PMUV3_MAX_COMMON_EVENTS && test_bit(pmu_attr->id, cpu_pmu->pmceid_bitmap)) return attr->mode; if (pmu_attr->id >= ARMV8_PMUV3_EXT_COMMON_EVENT_BASE) { u64 id = pmu_attr->id - ARMV8_PMUV3_EXT_COMMON_EVENT_BASE; if (id < ARMV8_PMUV3_MAX_COMMON_EVENTS && test_bit(id, cpu_pmu->pmceid_ext_bitmap)) return attr->mode; } return 0; } static struct attribute_group armv8_pmuv3_events_attr_group = { .name = "events", .attrs = armv8_pmuv3_event_attrs, .is_visible = armv8pmu_event_attr_is_visible, }; PMU_FORMAT_ATTR(event, "config:0-15"); PMU_FORMAT_ATTR(long, "config1:0"); static inline bool armv8pmu_event_is_64bit(struct perf_event *event) { return event->attr.config1 & 0x1; } static struct attribute *armv8_pmuv3_format_attrs[] = { &format_attr_event.attr, &format_attr_long.attr, NULL, }; static struct attribute_group armv8_pmuv3_format_attr_group = { .name = "format", .attrs = armv8_pmuv3_format_attrs, }; /* * Perf Events' indices */ #define ARMV8_IDX_CYCLE_COUNTER 0 #define ARMV8_IDX_COUNTER0 1 #define ARMV8_IDX_COUNTER_LAST(cpu_pmu) \ (ARMV8_IDX_CYCLE_COUNTER + cpu_pmu->num_events - 1) /* * We unconditionally enable ARMv8.5-PMU long event counter support * (64-bit events) where supported. Indicate if this arm_pmu has long * event counter support. */ static bool armv8pmu_has_long_event(struct arm_pmu *cpu_pmu) { return (cpu_pmu->pmuver >= ID_AA64DFR0_PMUVER_8_5); } /* * We must chain two programmable counters for 64 bit events, * except when we have allocated the 64bit cycle counter (for CPU * cycles event). This must be called only when the event has * a counter allocated. */ static inline bool armv8pmu_event_is_chained(struct perf_event *event) { int idx = event->hw.idx; struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu); return !WARN_ON(idx < 0) && armv8pmu_event_is_64bit(event) && !armv8pmu_has_long_event(cpu_pmu) && (idx != ARMV8_IDX_CYCLE_COUNTER); } /* * ARMv8 low level PMU access */ /* * Perf Event to low level counters mapping */ #define ARMV8_IDX_TO_COUNTER(x) \ (((x) - ARMV8_IDX_COUNTER0) & ARMV8_PMU_COUNTER_MASK) static inline u32 armv8pmu_pmcr_read(void) { return read_sysreg(pmcr_el0); } static inline void armv8pmu_pmcr_write(u32 val) { val &= ARMV8_PMU_PMCR_MASK; isb(); write_sysreg(val, pmcr_el0); } static inline int armv8pmu_has_overflowed(u32 pmovsr) { return pmovsr & ARMV8_PMU_OVERFLOWED_MASK; } static inline int armv8pmu_counter_valid(struct arm_pmu *cpu_pmu, int idx) { return idx >= ARMV8_IDX_CYCLE_COUNTER && idx <= ARMV8_IDX_COUNTER_LAST(cpu_pmu); } static inline int armv8pmu_counter_has_overflowed(u32 pmnc, int idx) { return pmnc & BIT(ARMV8_IDX_TO_COUNTER(idx)); } static inline void armv8pmu_select_counter(int idx) { u32 counter = ARMV8_IDX_TO_COUNTER(idx); write_sysreg(counter, pmselr_el0); isb(); } static inline u64 armv8pmu_read_evcntr(int idx) { armv8pmu_select_counter(idx); return read_sysreg(pmxevcntr_el0); } static inline u64 armv8pmu_read_hw_counter(struct perf_event *event) { int idx = event->hw.idx; u64 val = 0; val = armv8pmu_read_evcntr(idx); if (armv8pmu_event_is_chained(event)) val = (val << 32) | armv8pmu_read_evcntr(idx - 1); return val; } /* * The cycle counter is always a 64-bit counter. When ARMV8_PMU_PMCR_LP * is set the event counters also become 64-bit counters. Unless the * user has requested a long counter (attr.config1) then we want to * interrupt upon 32-bit overflow - we achieve this by applying a bias. */ static bool armv8pmu_event_needs_bias(struct perf_event *event) { struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; int idx = hwc->idx; if (armv8pmu_event_is_64bit(event)) return false; if (armv8pmu_has_long_event(cpu_pmu) || idx == ARMV8_IDX_CYCLE_COUNTER) return true; return false; } static u64 armv8pmu_bias_long_counter(struct perf_event *event, u64 value) { if (armv8pmu_event_needs_bias(event)) value |= GENMASK(63, 32); return value; } static u64 armv8pmu_unbias_long_counter(struct perf_event *event, u64 value) { if (armv8pmu_event_needs_bias(event)) value &= ~GENMASK(63, 32); return value; } static u64 armv8pmu_read_counter(struct perf_event *event) { struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; int idx = hwc->idx; u64 value = 0; if (!armv8pmu_counter_valid(cpu_pmu, idx)) pr_err("CPU%u reading wrong counter %d\n", smp_processor_id(), idx); else if (idx == ARMV8_IDX_CYCLE_COUNTER) value = read_sysreg(pmccntr_el0); else value = armv8pmu_read_hw_counter(event); return armv8pmu_unbias_long_counter(event, value); } static inline void armv8pmu_write_evcntr(int idx, u64 value) { armv8pmu_select_counter(idx); write_sysreg(value, pmxevcntr_el0); } static inline void armv8pmu_write_hw_counter(struct perf_event *event, u64 value) { int idx = event->hw.idx; if (armv8pmu_event_is_chained(event)) { armv8pmu_write_evcntr(idx, upper_32_bits(value)); armv8pmu_write_evcntr(idx - 1, lower_32_bits(value)); } else { armv8pmu_write_evcntr(idx, value); } } static void armv8pmu_write_counter(struct perf_event *event, u64 value) { struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; int idx = hwc->idx; value = armv8pmu_bias_long_counter(event, value); if (!armv8pmu_counter_valid(cpu_pmu, idx)) pr_err("CPU%u writing wrong counter %d\n", smp_processor_id(), idx); else if (idx == ARMV8_IDX_CYCLE_COUNTER) write_sysreg(value, pmccntr_el0); else armv8pmu_write_hw_counter(event, value); } static inline void armv8pmu_write_evtype(int idx, u32 val) { armv8pmu_select_counter(idx); val &= ARMV8_PMU_EVTYPE_MASK; write_sysreg(val, pmxevtyper_el0); } static inline void armv8pmu_write_event_type(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; int idx = hwc->idx; /* * For chained events, the low counter is programmed to count * the event of interest and the high counter is programmed * with CHAIN event code with filters set to count at all ELs. */ if (armv8pmu_event_is_chained(event)) { u32 chain_evt = ARMV8_PMUV3_PERFCTR_CHAIN | ARMV8_PMU_INCLUDE_EL2; armv8pmu_write_evtype(idx - 1, hwc->config_base); armv8pmu_write_evtype(idx, chain_evt); } else { armv8pmu_write_evtype(idx, hwc->config_base); } } static u32 armv8pmu_event_cnten_mask(struct perf_event *event) { int counter = ARMV8_IDX_TO_COUNTER(event->hw.idx); u32 mask = BIT(counter); if (armv8pmu_event_is_chained(event)) mask |= BIT(counter - 1); return mask; } static inline void armv8pmu_enable_counter(u32 mask) { write_sysreg(mask, pmcntenset_el0); } static inline void armv8pmu_enable_event_counter(struct perf_event *event) { struct perf_event_attr *attr = &event->attr; u32 mask = armv8pmu_event_cnten_mask(event); kvm_set_pmu_events(mask, attr); /* We rely on the hypervisor switch code to enable guest counters */ if (!kvm_pmu_counter_deferred(attr)) armv8pmu_enable_counter(mask); } static inline void armv8pmu_disable_counter(u32 mask) { write_sysreg(mask, pmcntenclr_el0); } static inline void armv8pmu_disable_event_counter(struct perf_event *event) { struct perf_event_attr *attr = &event->attr; u32 mask = armv8pmu_event_cnten_mask(event); kvm_clr_pmu_events(mask); /* We rely on the hypervisor switch code to disable guest counters */ if (!kvm_pmu_counter_deferred(attr)) armv8pmu_disable_counter(mask); } static inline void armv8pmu_enable_intens(u32 mask) { write_sysreg(mask, pmintenset_el1); } static inline void armv8pmu_enable_event_irq(struct perf_event *event) { u32 counter = ARMV8_IDX_TO_COUNTER(event->hw.idx); armv8pmu_enable_intens(BIT(counter)); } static inline void armv8pmu_disable_intens(u32 mask) { write_sysreg(mask, pmintenclr_el1); isb(); /* Clear the overflow flag in case an interrupt is pending. */ write_sysreg(mask, pmovsclr_el0); isb(); } static inline void armv8pmu_disable_event_irq(struct perf_event *event) { u32 counter = ARMV8_IDX_TO_COUNTER(event->hw.idx); armv8pmu_disable_intens(BIT(counter)); } static inline u32 armv8pmu_getreset_flags(void) { u32 value; /* Read */ value = read_sysreg(pmovsclr_el0); /* Write to clear flags */ value &= ARMV8_PMU_OVSR_MASK; write_sysreg(value, pmovsclr_el0); return value; } static void armv8pmu_enable_event(struct perf_event *event) { unsigned long flags; struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu); struct pmu_hw_events *events = this_cpu_ptr(cpu_pmu->hw_events); /* * Enable counter and interrupt, and set the counter to count * the event that we're interested in. */ raw_spin_lock_irqsave(&events->pmu_lock, flags); /* * Disable counter */ armv8pmu_disable_event_counter(event); /* * Set event (if destined for PMNx counters). */ armv8pmu_write_event_type(event); /* * Enable interrupt for this counter */ armv8pmu_enable_event_irq(event); /* * Enable counter */ armv8pmu_enable_event_counter(event); raw_spin_unlock_irqrestore(&events->pmu_lock, flags); } static void armv8pmu_disable_event(struct perf_event *event) { unsigned long flags; struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu); struct pmu_hw_events *events = this_cpu_ptr(cpu_pmu->hw_events); /* * Disable counter and interrupt */ raw_spin_lock_irqsave(&events->pmu_lock, flags); /* * Disable counter */ armv8pmu_disable_event_counter(event); /* * Disable interrupt for this counter */ armv8pmu_disable_event_irq(event); raw_spin_unlock_irqrestore(&events->pmu_lock, flags); } static void armv8pmu_start(struct arm_pmu *cpu_pmu) { unsigned long flags; struct pmu_hw_events *events = this_cpu_ptr(cpu_pmu->hw_events); raw_spin_lock_irqsave(&events->pmu_lock, flags); /* Enable all counters */ armv8pmu_pmcr_write(armv8pmu_pmcr_read() | ARMV8_PMU_PMCR_E); raw_spin_unlock_irqrestore(&events->pmu_lock, flags); } static void armv8pmu_stop(struct arm_pmu *cpu_pmu) { unsigned long flags; struct pmu_hw_events *events = this_cpu_ptr(cpu_pmu->hw_events); raw_spin_lock_irqsave(&events->pmu_lock, flags); /* Disable all counters */ armv8pmu_pmcr_write(armv8pmu_pmcr_read() & ~ARMV8_PMU_PMCR_E); raw_spin_unlock_irqrestore(&events->pmu_lock, flags); } static irqreturn_t armv8pmu_handle_irq(struct arm_pmu *cpu_pmu) { u32 pmovsr; struct perf_sample_data data; struct pmu_hw_events *cpuc = this_cpu_ptr(cpu_pmu->hw_events); struct pt_regs *regs; int idx; /* * Get and reset the IRQ flags */ pmovsr = armv8pmu_getreset_flags(); /* * Did an overflow occur? */ if (!armv8pmu_has_overflowed(pmovsr)) return IRQ_NONE; /* * Handle the counter(s) overflow(s) */ regs = get_irq_regs(); /* * Stop the PMU while processing the counter overflows * to prevent skews in group events. */ armv8pmu_stop(cpu_pmu); for (idx = 0; idx < cpu_pmu->num_events; ++idx) { struct perf_event *event = cpuc->events[idx]; struct hw_perf_event *hwc; /* Ignore if we don't have an event. */ if (!event) continue; /* * We have a single interrupt for all counters. Check that * each counter has overflowed before we process it. */ if (!armv8pmu_counter_has_overflowed(pmovsr, idx)) continue; hwc = &event->hw; armpmu_event_update(event); perf_sample_data_init(&data, 0, hwc->last_period); if (!armpmu_event_set_period(event)) continue; if (perf_event_overflow(event, &data, regs)) cpu_pmu->disable(event); } armv8pmu_start(cpu_pmu); /* * Handle the pending perf events. * * Note: this call *must* be run with interrupts disabled. For * platforms that can have the PMU interrupts raised as an NMI, this * will not work. */ irq_work_run(); return IRQ_HANDLED; } static int armv8pmu_get_single_idx(struct pmu_hw_events *cpuc, struct arm_pmu *cpu_pmu) { int idx; for (idx = ARMV8_IDX_COUNTER0; idx < cpu_pmu->num_events; idx ++) { if (!test_and_set_bit(idx, cpuc->used_mask)) return idx; } return -EAGAIN; } static int armv8pmu_get_chain_idx(struct pmu_hw_events *cpuc, struct arm_pmu *cpu_pmu) { int idx; /* * Chaining requires two consecutive event counters, where * the lower idx must be even. */ for (idx = ARMV8_IDX_COUNTER0 + 1; idx < cpu_pmu->num_events; idx += 2) { if (!test_and_set_bit(idx, cpuc->used_mask)) { /* Check if the preceding even counter is available */ if (!test_and_set_bit(idx - 1, cpuc->used_mask)) return idx; /* Release the Odd counter */ clear_bit(idx, cpuc->used_mask); } } return -EAGAIN; } static int armv8pmu_get_event_idx(struct pmu_hw_events *cpuc, struct perf_event *event) { struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; unsigned long evtype = hwc->config_base & ARMV8_PMU_EVTYPE_EVENT; /* Always prefer to place a cycle counter into the cycle counter. */ if (evtype == ARMV8_PMUV3_PERFCTR_CPU_CYCLES) { if (!test_and_set_bit(ARMV8_IDX_CYCLE_COUNTER, cpuc->used_mask)) return ARMV8_IDX_CYCLE_COUNTER; } /* * Otherwise use events counters */ if (armv8pmu_event_is_64bit(event) && !armv8pmu_has_long_event(cpu_pmu)) return armv8pmu_get_chain_idx(cpuc, cpu_pmu); else return armv8pmu_get_single_idx(cpuc, cpu_pmu); } static void armv8pmu_clear_event_idx(struct pmu_hw_events *cpuc, struct perf_event *event) { int idx = event->hw.idx; clear_bit(idx, cpuc->used_mask); if (armv8pmu_event_is_chained(event)) clear_bit(idx - 1, cpuc->used_mask); } /* * Add an event filter to a given event. */ static int armv8pmu_set_event_filter(struct hw_perf_event *event, struct perf_event_attr *attr) { unsigned long config_base = 0; if (attr->exclude_idle) return -EPERM; /* * If we're running in hyp mode, then we *are* the hypervisor. * Therefore we ignore exclude_hv in this configuration, since * there's no hypervisor to sample anyway. This is consistent * with other architectures (x86 and Power). */ if (is_kernel_in_hyp_mode()) { if (!attr->exclude_kernel && !attr->exclude_host) config_base |= ARMV8_PMU_INCLUDE_EL2; if (attr->exclude_guest) config_base |= ARMV8_PMU_EXCLUDE_EL1; if (attr->exclude_host) config_base |= ARMV8_PMU_EXCLUDE_EL0; } else { if (!attr->exclude_hv && !attr->exclude_host) config_base |= ARMV8_PMU_INCLUDE_EL2; } /* * Filter out !VHE kernels and guest kernels */ if (attr->exclude_kernel) config_base |= ARMV8_PMU_EXCLUDE_EL1; if (attr->exclude_user) config_base |= ARMV8_PMU_EXCLUDE_EL0; /* * Install the filter into config_base as this is used to * construct the event type. */ event->config_base = config_base; return 0; } static int armv8pmu_filter_match(struct perf_event *event) { unsigned long evtype = event->hw.config_base & ARMV8_PMU_EVTYPE_EVENT; return evtype != ARMV8_PMUV3_PERFCTR_CHAIN; } static void armv8pmu_reset(void *info) { struct arm_pmu *cpu_pmu = (struct arm_pmu *)info; u32 pmcr; /* The counter and interrupt enable registers are unknown at reset. */ armv8pmu_disable_counter(U32_MAX); armv8pmu_disable_intens(U32_MAX); /* Clear the counters we flip at guest entry/exit */ kvm_clr_pmu_events(U32_MAX); /* * Initialize & Reset PMNC. Request overflow interrupt for * 64 bit cycle counter but cheat in armv8pmu_write_counter(). */ pmcr = ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C | ARMV8_PMU_PMCR_LC; /* Enable long event counter support where available */ if (armv8pmu_has_long_event(cpu_pmu)) pmcr |= ARMV8_PMU_PMCR_LP; armv8pmu_pmcr_write(pmcr); } static int __armv8_pmuv3_map_event(struct perf_event *event, const unsigned (*extra_event_map) [PERF_COUNT_HW_MAX], const unsigned (*extra_cache_map) [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX]) { int hw_event_id; struct arm_pmu *armpmu = to_arm_pmu(event->pmu); hw_event_id = armpmu_map_event(event, &armv8_pmuv3_perf_map, &armv8_pmuv3_perf_cache_map, ARMV8_PMU_EVTYPE_EVENT); if (armv8pmu_event_is_64bit(event)) event->hw.flags |= ARMPMU_EVT_64BIT; /* Only expose micro/arch events supported by this PMU */ if ((hw_event_id > 0) && (hw_event_id < ARMV8_PMUV3_MAX_COMMON_EVENTS) && test_bit(hw_event_id, armpmu->pmceid_bitmap)) { return hw_event_id; } return armpmu_map_event(event, extra_event_map, extra_cache_map, ARMV8_PMU_EVTYPE_EVENT); } static int armv8_pmuv3_map_event(struct perf_event *event) { return __armv8_pmuv3_map_event(event, NULL, NULL); } static int armv8_a53_map_event(struct perf_event *event) { return __armv8_pmuv3_map_event(event, NULL, &armv8_a53_perf_cache_map); } static int armv8_a57_map_event(struct perf_event *event) { return __armv8_pmuv3_map_event(event, NULL, &armv8_a57_perf_cache_map); } static int armv8_a73_map_event(struct perf_event *event) { return __armv8_pmuv3_map_event(event, NULL, &armv8_a73_perf_cache_map); } static int armv8_thunder_map_event(struct perf_event *event) { return __armv8_pmuv3_map_event(event, NULL, &armv8_thunder_perf_cache_map); } static int armv8_vulcan_map_event(struct perf_event *event) { return __armv8_pmuv3_map_event(event, NULL, &armv8_vulcan_perf_cache_map); } struct armv8pmu_probe_info { struct arm_pmu *pmu; bool present; }; static void __armv8pmu_probe_pmu(void *info) { struct armv8pmu_probe_info *probe = info; struct arm_pmu *cpu_pmu = probe->pmu; u64 dfr0; u64 pmceid_raw[2]; u32 pmceid[2]; int pmuver; dfr0 = read_sysreg(id_aa64dfr0_el1); pmuver = cpuid_feature_extract_unsigned_field(dfr0, ID_AA64DFR0_PMUVER_SHIFT); if (pmuver == 0xf || pmuver == 0) return; cpu_pmu->pmuver = pmuver; probe->present = true; /* Read the nb of CNTx counters supported from PMNC */ cpu_pmu->num_events = (armv8pmu_pmcr_read() >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK; /* Add the CPU cycles counter */ cpu_pmu->num_events += 1; pmceid[0] = pmceid_raw[0] = read_sysreg(pmceid0_el0); pmceid[1] = pmceid_raw[1] = read_sysreg(pmceid1_el0); bitmap_from_arr32(cpu_pmu->pmceid_bitmap, pmceid, ARMV8_PMUV3_MAX_COMMON_EVENTS); pmceid[0] = pmceid_raw[0] >> 32; pmceid[1] = pmceid_raw[1] >> 32; bitmap_from_arr32(cpu_pmu->pmceid_ext_bitmap, pmceid, ARMV8_PMUV3_MAX_COMMON_EVENTS); } static int armv8pmu_probe_pmu(struct arm_pmu *cpu_pmu) { struct armv8pmu_probe_info probe = { .pmu = cpu_pmu, .present = false, }; int ret; ret = smp_call_function_any(&cpu_pmu->supported_cpus, __armv8pmu_probe_pmu, &probe, 1); if (ret) return ret; return probe.present ? 0 : -ENODEV; } static int armv8_pmu_init(struct arm_pmu *cpu_pmu, char *name, int (*map_event)(struct perf_event *event), const struct attribute_group *events, const struct attribute_group *format) { int ret = armv8pmu_probe_pmu(cpu_pmu); if (ret) return ret; cpu_pmu->handle_irq = armv8pmu_handle_irq; cpu_pmu->enable = armv8pmu_enable_event; cpu_pmu->disable = armv8pmu_disable_event; cpu_pmu->read_counter = armv8pmu_read_counter; cpu_pmu->write_counter = armv8pmu_write_counter; cpu_pmu->get_event_idx = armv8pmu_get_event_idx; cpu_pmu->clear_event_idx = armv8pmu_clear_event_idx; cpu_pmu->start = armv8pmu_start; cpu_pmu->stop = armv8pmu_stop; cpu_pmu->reset = armv8pmu_reset; cpu_pmu->set_event_filter = armv8pmu_set_event_filter; cpu_pmu->filter_match = armv8pmu_filter_match; cpu_pmu->name = name; cpu_pmu->map_event = map_event; cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_EVENTS] = events ? events : &armv8_pmuv3_events_attr_group; cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_FORMATS] = format ? format : &armv8_pmuv3_format_attr_group; return 0; } static int armv8_pmuv3_init(struct arm_pmu *cpu_pmu) { return armv8_pmu_init(cpu_pmu, "armv8_pmuv3", armv8_pmuv3_map_event, NULL, NULL); } static int armv8_a34_pmu_init(struct arm_pmu *cpu_pmu) { return armv8_pmu_init(cpu_pmu, "armv8_cortex_a34", armv8_pmuv3_map_event, NULL, NULL); } static int armv8_a35_pmu_init(struct arm_pmu *cpu_pmu) { return armv8_pmu_init(cpu_pmu, "armv8_cortex_a35", armv8_a53_map_event, NULL, NULL); } static int armv8_a53_pmu_init(struct arm_pmu *cpu_pmu) { return armv8_pmu_init(cpu_pmu, "armv8_cortex_a53", armv8_a53_map_event, NULL, NULL); } static int armv8_a55_pmu_init(struct arm_pmu *cpu_pmu) { return armv8_pmu_init(cpu_pmu, "armv8_cortex_a55", armv8_pmuv3_map_event, NULL, NULL); } static int armv8_a57_pmu_init(struct arm_pmu *cpu_pmu) { return armv8_pmu_init(cpu_pmu, "armv8_cortex_a57", armv8_a57_map_event, NULL, NULL); } static int armv8_a65_pmu_init(struct arm_pmu *cpu_pmu) { return armv8_pmu_init(cpu_pmu, "armv8_cortex_a65", armv8_pmuv3_map_event, NULL, NULL); } static int armv8_a72_pmu_init(struct arm_pmu *cpu_pmu) { return armv8_pmu_init(cpu_pmu, "armv8_cortex_a72", armv8_a57_map_event, NULL, NULL); } static int armv8_a73_pmu_init(struct arm_pmu *cpu_pmu) { return armv8_pmu_init(cpu_pmu, "armv8_cortex_a73", armv8_a73_map_event, NULL, NULL); } static int armv8_a75_pmu_init(struct arm_pmu *cpu_pmu) { return armv8_pmu_init(cpu_pmu, "armv8_cortex_a75", armv8_pmuv3_map_event, NULL, NULL); } static int armv8_a76_pmu_init(struct arm_pmu *cpu_pmu) { return armv8_pmu_init(cpu_pmu, "armv8_cortex_a76", armv8_pmuv3_map_event, NULL, NULL); } static int armv8_a77_pmu_init(struct arm_pmu *cpu_pmu) { return armv8_pmu_init(cpu_pmu, "armv8_cortex_a77", armv8_pmuv3_map_event, NULL, NULL); } static int armv8_e1_pmu_init(struct arm_pmu *cpu_pmu) { return armv8_pmu_init(cpu_pmu, "armv8_neoverse_e1", armv8_pmuv3_map_event, NULL, NULL); } static int armv8_n1_pmu_init(struct arm_pmu *cpu_pmu) { return armv8_pmu_init(cpu_pmu, "armv8_neoverse_n1", armv8_pmuv3_map_event, NULL, NULL); } static int armv8_thunder_pmu_init(struct arm_pmu *cpu_pmu) { return armv8_pmu_init(cpu_pmu, "armv8_cavium_thunder", armv8_thunder_map_event, NULL, NULL); } static int armv8_vulcan_pmu_init(struct arm_pmu *cpu_pmu) { return armv8_pmu_init(cpu_pmu, "armv8_brcm_vulcan", armv8_vulcan_map_event, NULL, NULL); } static const struct of_device_id armv8_pmu_of_device_ids[] = { {.compatible = "arm,armv8-pmuv3", .data = armv8_pmuv3_init}, {.compatible = "arm,cortex-a34-pmu", .data = armv8_a34_pmu_init}, {.compatible = "arm,cortex-a35-pmu", .data = armv8_a35_pmu_init}, {.compatible = "arm,cortex-a53-pmu", .data = armv8_a53_pmu_init}, {.compatible = "arm,cortex-a55-pmu", .data = armv8_a55_pmu_init}, {.compatible = "arm,cortex-a57-pmu", .data = armv8_a57_pmu_init}, {.compatible = "arm,cortex-a65-pmu", .data = armv8_a65_pmu_init}, {.compatible = "arm,cortex-a72-pmu", .data = armv8_a72_pmu_init}, {.compatible = "arm,cortex-a73-pmu", .data = armv8_a73_pmu_init}, {.compatible = "arm,cortex-a75-pmu", .data = armv8_a75_pmu_init}, {.compatible = "arm,cortex-a76-pmu", .data = armv8_a76_pmu_init}, {.compatible = "arm,cortex-a77-pmu", .data = armv8_a77_pmu_init}, {.compatible = "arm,neoverse-e1-pmu", .data = armv8_e1_pmu_init}, {.compatible = "arm,neoverse-n1-pmu", .data = armv8_n1_pmu_init}, {.compatible = "cavium,thunder-pmu", .data = armv8_thunder_pmu_init}, {.compatible = "brcm,vulcan-pmu", .data = armv8_vulcan_pmu_init}, {}, }; static int armv8_pmu_device_probe(struct platform_device *pdev) { return arm_pmu_device_probe(pdev, armv8_pmu_of_device_ids, NULL); } static struct platform_driver armv8_pmu_driver = { .driver = { .name = ARMV8_PMU_PDEV_NAME, .of_match_table = armv8_pmu_of_device_ids, .suppress_bind_attrs = true, }, .probe = armv8_pmu_device_probe, }; static int __init armv8_pmu_driver_init(void) { if (acpi_disabled) return platform_driver_register(&armv8_pmu_driver); else return arm_pmu_acpi_probe(armv8_pmuv3_init); } device_initcall(armv8_pmu_driver_init) void arch_perf_update_userpage(struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) { struct clock_read_data *rd; unsigned int seq; u64 ns; userpg->cap_user_time = 0; userpg->cap_user_time_zero = 0; userpg->cap_user_time_short = 0; do { rd = sched_clock_read_begin(&seq); if (rd->read_sched_clock != arch_timer_read_counter) return; userpg->time_mult = rd->mult; userpg->time_shift = rd->shift; userpg->time_zero = rd->epoch_ns; userpg->time_cycles = rd->epoch_cyc; userpg->time_mask = rd->sched_clock_mask; /* * Subtract the cycle base, such that software that * doesn't know about cap_user_time_short still 'works' * assuming no wraps. */ ns = mul_u64_u32_shr(rd->epoch_cyc, rd->mult, rd->shift); userpg->time_zero -= ns; } while (sched_clock_read_retry(seq)); userpg->time_offset = userpg->time_zero - now; /* * time_shift is not expected to be greater than 31 due to * the original published conversion algorithm shifting a * 32-bit value (now specifies a 64-bit value) - refer * perf_event_mmap_page documentation in perf_event.h. */ if (userpg->time_shift == 32) { userpg->time_shift = 31; userpg->time_mult >>= 1; } /* * Internal timekeeping for enabled/running/stopped times * is always computed with the sched_clock. */ userpg->cap_user_time = 1; userpg->cap_user_time_zero = 1; userpg->cap_user_time_short = 1; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1