Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sandeepa Prabhu | 1709 | 82.68% | 3 | 12.50% |
Masami Hiramatsu | 109 | 5.27% | 6 | 25.00% |
Pratyush Anand | 85 | 4.11% | 2 | 8.33% |
Anders Roxell | 66 | 3.19% | 1 | 4.17% |
Will Deacon | 43 | 2.08% | 2 | 8.33% |
Christoph Hellwig | 19 | 0.92% | 2 | 8.33% |
William Cohen | 15 | 0.73% | 1 | 4.17% |
James Morse | 11 | 0.53% | 2 | 8.33% |
Catalin Marinas | 3 | 0.15% | 1 | 4.17% |
Ingo Molnar | 3 | 0.15% | 1 | 4.17% |
Thomas Gleixner | 2 | 0.10% | 1 | 4.17% |
Paul Gortmaker | 1 | 0.05% | 1 | 4.17% |
Linus Torvalds | 1 | 0.05% | 1 | 4.17% |
Total | 2067 | 24 |
// SPDX-License-Identifier: GPL-2.0-only /* * arch/arm64/kernel/probes/kprobes.c * * Kprobes support for ARM64 * * Copyright (C) 2013 Linaro Limited. * Author: Sandeepa Prabhu <sandeepa.prabhu@linaro.org> */ #include <linux/kasan.h> #include <linux/kernel.h> #include <linux/kprobes.h> #include <linux/extable.h> #include <linux/slab.h> #include <linux/stop_machine.h> #include <linux/sched/debug.h> #include <linux/set_memory.h> #include <linux/stringify.h> #include <linux/vmalloc.h> #include <asm/traps.h> #include <asm/ptrace.h> #include <asm/cacheflush.h> #include <asm/debug-monitors.h> #include <asm/daifflags.h> #include <asm/system_misc.h> #include <asm/insn.h> #include <linux/uaccess.h> #include <asm/irq.h> #include <asm/sections.h> #include "decode-insn.h" DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); static void __kprobes post_kprobe_handler(struct kprobe_ctlblk *, struct pt_regs *); static int __kprobes patch_text(kprobe_opcode_t *addr, u32 opcode) { void *addrs[1]; u32 insns[1]; addrs[0] = addr; insns[0] = opcode; return aarch64_insn_patch_text(addrs, insns, 1); } static void __kprobes arch_prepare_ss_slot(struct kprobe *p) { /* prepare insn slot */ patch_text(p->ainsn.api.insn, p->opcode); flush_icache_range((uintptr_t) (p->ainsn.api.insn), (uintptr_t) (p->ainsn.api.insn) + MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); /* * Needs restoring of return address after stepping xol. */ p->ainsn.api.restore = (unsigned long) p->addr + sizeof(kprobe_opcode_t); } static void __kprobes arch_prepare_simulate(struct kprobe *p) { /* This instructions is not executed xol. No need to adjust the PC */ p->ainsn.api.restore = 0; } static void __kprobes arch_simulate_insn(struct kprobe *p, struct pt_regs *regs) { struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); if (p->ainsn.api.handler) p->ainsn.api.handler((u32)p->opcode, (long)p->addr, regs); /* single step simulated, now go for post processing */ post_kprobe_handler(kcb, regs); } int __kprobes arch_prepare_kprobe(struct kprobe *p) { unsigned long probe_addr = (unsigned long)p->addr; if (probe_addr & 0x3) return -EINVAL; /* copy instruction */ p->opcode = le32_to_cpu(*p->addr); if (search_exception_tables(probe_addr)) return -EINVAL; /* decode instruction */ switch (arm_kprobe_decode_insn(p->addr, &p->ainsn)) { case INSN_REJECTED: /* insn not supported */ return -EINVAL; case INSN_GOOD_NO_SLOT: /* insn need simulation */ p->ainsn.api.insn = NULL; break; case INSN_GOOD: /* instruction uses slot */ p->ainsn.api.insn = get_insn_slot(); if (!p->ainsn.api.insn) return -ENOMEM; break; } /* prepare the instruction */ if (p->ainsn.api.insn) arch_prepare_ss_slot(p); else arch_prepare_simulate(p); return 0; } void *alloc_insn_page(void) { return __vmalloc_node_range(PAGE_SIZE, 1, VMALLOC_START, VMALLOC_END, GFP_KERNEL, PAGE_KERNEL_ROX, VM_FLUSH_RESET_PERMS, NUMA_NO_NODE, __builtin_return_address(0)); } /* arm kprobe: install breakpoint in text */ void __kprobes arch_arm_kprobe(struct kprobe *p) { patch_text(p->addr, BRK64_OPCODE_KPROBES); } /* disarm kprobe: remove breakpoint from text */ void __kprobes arch_disarm_kprobe(struct kprobe *p) { patch_text(p->addr, p->opcode); } void __kprobes arch_remove_kprobe(struct kprobe *p) { if (p->ainsn.api.insn) { free_insn_slot(p->ainsn.api.insn, 0); p->ainsn.api.insn = NULL; } } static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) { kcb->prev_kprobe.kp = kprobe_running(); kcb->prev_kprobe.status = kcb->kprobe_status; } static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) { __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); kcb->kprobe_status = kcb->prev_kprobe.status; } static void __kprobes set_current_kprobe(struct kprobe *p) { __this_cpu_write(current_kprobe, p); } /* * Interrupts need to be disabled before single-step mode is set, and not * reenabled until after single-step mode ends. * Without disabling interrupt on local CPU, there is a chance of * interrupt occurrence in the period of exception return and start of * out-of-line single-step, that result in wrongly single stepping * into the interrupt handler. */ static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb, struct pt_regs *regs) { kcb->saved_irqflag = regs->pstate & DAIF_MASK; regs->pstate |= PSR_I_BIT; /* Unmask PSTATE.D for enabling software step exceptions. */ regs->pstate &= ~PSR_D_BIT; } static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb, struct pt_regs *regs) { regs->pstate &= ~DAIF_MASK; regs->pstate |= kcb->saved_irqflag; } static void __kprobes set_ss_context(struct kprobe_ctlblk *kcb, unsigned long addr) { kcb->ss_ctx.ss_pending = true; kcb->ss_ctx.match_addr = addr + sizeof(kprobe_opcode_t); } static void __kprobes clear_ss_context(struct kprobe_ctlblk *kcb) { kcb->ss_ctx.ss_pending = false; kcb->ss_ctx.match_addr = 0; } static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb, int reenter) { unsigned long slot; if (reenter) { save_previous_kprobe(kcb); set_current_kprobe(p); kcb->kprobe_status = KPROBE_REENTER; } else { kcb->kprobe_status = KPROBE_HIT_SS; } if (p->ainsn.api.insn) { /* prepare for single stepping */ slot = (unsigned long)p->ainsn.api.insn; set_ss_context(kcb, slot); /* mark pending ss */ /* IRQs and single stepping do not mix well. */ kprobes_save_local_irqflag(kcb, regs); kernel_enable_single_step(regs); instruction_pointer_set(regs, slot); } else { /* insn simulation */ arch_simulate_insn(p, regs); } } static int __kprobes reenter_kprobe(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb) { switch (kcb->kprobe_status) { case KPROBE_HIT_SSDONE: case KPROBE_HIT_ACTIVE: kprobes_inc_nmissed_count(p); setup_singlestep(p, regs, kcb, 1); break; case KPROBE_HIT_SS: case KPROBE_REENTER: pr_warn("Unrecoverable kprobe detected.\n"); dump_kprobe(p); BUG(); break; default: WARN_ON(1); return 0; } return 1; } static void __kprobes post_kprobe_handler(struct kprobe_ctlblk *kcb, struct pt_regs *regs) { struct kprobe *cur = kprobe_running(); if (!cur) return; /* return addr restore if non-branching insn */ if (cur->ainsn.api.restore != 0) instruction_pointer_set(regs, cur->ainsn.api.restore); /* restore back original saved kprobe variables and continue */ if (kcb->kprobe_status == KPROBE_REENTER) { restore_previous_kprobe(kcb); return; } /* call post handler */ kcb->kprobe_status = KPROBE_HIT_SSDONE; if (cur->post_handler) { /* post_handler can hit breakpoint and single step * again, so we enable D-flag for recursive exception. */ cur->post_handler(cur, regs, 0); } reset_current_kprobe(); } int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr) { struct kprobe *cur = kprobe_running(); struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); switch (kcb->kprobe_status) { case KPROBE_HIT_SS: case KPROBE_REENTER: /* * We are here because the instruction being single * stepped caused a page fault. We reset the current * kprobe and the ip points back to the probe address * and allow the page fault handler to continue as a * normal page fault. */ instruction_pointer_set(regs, (unsigned long) cur->addr); if (!instruction_pointer(regs)) BUG(); kernel_disable_single_step(); if (kcb->kprobe_status == KPROBE_REENTER) restore_previous_kprobe(kcb); else reset_current_kprobe(); break; case KPROBE_HIT_ACTIVE: case KPROBE_HIT_SSDONE: /* * We increment the nmissed count for accounting, * we can also use npre/npostfault count for accounting * these specific fault cases. */ kprobes_inc_nmissed_count(cur); /* * We come here because instructions in the pre/post * handler caused the page_fault, this could happen * if handler tries to access user space by * copy_from_user(), get_user() etc. Let the * user-specified handler try to fix it first. */ if (cur->fault_handler && cur->fault_handler(cur, regs, fsr)) return 1; /* * In case the user-specified fault handler returned * zero, try to fix up. */ if (fixup_exception(regs)) return 1; } return 0; } static void __kprobes kprobe_handler(struct pt_regs *regs) { struct kprobe *p, *cur_kprobe; struct kprobe_ctlblk *kcb; unsigned long addr = instruction_pointer(regs); kcb = get_kprobe_ctlblk(); cur_kprobe = kprobe_running(); p = get_kprobe((kprobe_opcode_t *) addr); if (p) { if (cur_kprobe) { if (reenter_kprobe(p, regs, kcb)) return; } else { /* Probe hit */ set_current_kprobe(p); kcb->kprobe_status = KPROBE_HIT_ACTIVE; /* * If we have no pre-handler or it returned 0, we * continue with normal processing. If we have a * pre-handler and it returned non-zero, it will * modify the execution path and no need to single * stepping. Let's just reset current kprobe and exit. * * pre_handler can hit a breakpoint and can step thru * before return, keep PSTATE D-flag enabled until * pre_handler return back. */ if (!p->pre_handler || !p->pre_handler(p, regs)) { setup_singlestep(p, regs, kcb, 0); } else reset_current_kprobe(); } } /* * The breakpoint instruction was removed right * after we hit it. Another cpu has removed * either a probepoint or a debugger breakpoint * at this address. In either case, no further * handling of this interrupt is appropriate. * Return back to original instruction, and continue. */ } static int __kprobes kprobe_ss_hit(struct kprobe_ctlblk *kcb, unsigned long addr) { if ((kcb->ss_ctx.ss_pending) && (kcb->ss_ctx.match_addr == addr)) { clear_ss_context(kcb); /* clear pending ss */ return DBG_HOOK_HANDLED; } /* not ours, kprobes should ignore it */ return DBG_HOOK_ERROR; } static int __kprobes kprobe_single_step_handler(struct pt_regs *regs, unsigned int esr) { struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); int retval; /* return error if this is not our step */ retval = kprobe_ss_hit(kcb, instruction_pointer(regs)); if (retval == DBG_HOOK_HANDLED) { kprobes_restore_local_irqflag(kcb, regs); kernel_disable_single_step(); post_kprobe_handler(kcb, regs); } return retval; } static struct step_hook kprobes_step_hook = { .fn = kprobe_single_step_handler, }; static int __kprobes kprobe_breakpoint_handler(struct pt_regs *regs, unsigned int esr) { kprobe_handler(regs); return DBG_HOOK_HANDLED; } static struct break_hook kprobes_break_hook = { .imm = KPROBES_BRK_IMM, .fn = kprobe_breakpoint_handler, }; /* * Provide a blacklist of symbols identifying ranges which cannot be kprobed. * This blacklist is exposed to userspace via debugfs (kprobes/blacklist). */ int __init arch_populate_kprobe_blacklist(void) { int ret; ret = kprobe_add_area_blacklist((unsigned long)__entry_text_start, (unsigned long)__entry_text_end); if (ret) return ret; ret = kprobe_add_area_blacklist((unsigned long)__irqentry_text_start, (unsigned long)__irqentry_text_end); if (ret) return ret; ret = kprobe_add_area_blacklist((unsigned long)__idmap_text_start, (unsigned long)__idmap_text_end); if (ret) return ret; ret = kprobe_add_area_blacklist((unsigned long)__hyp_text_start, (unsigned long)__hyp_text_end); if (ret || is_kernel_in_hyp_mode()) return ret; ret = kprobe_add_area_blacklist((unsigned long)__hyp_idmap_text_start, (unsigned long)__hyp_idmap_text_end); return ret; } void __kprobes __used *trampoline_probe_handler(struct pt_regs *regs) { struct kretprobe_instance *ri = NULL; struct hlist_head *head, empty_rp; struct hlist_node *tmp; unsigned long flags, orig_ret_address = 0; unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline; kprobe_opcode_t *correct_ret_addr = NULL; INIT_HLIST_HEAD(&empty_rp); kretprobe_hash_lock(current, &head, &flags); /* * It is possible to have multiple instances associated with a given * task either because multiple functions in the call path have * return probes installed on them, and/or more than one * return probe was registered for a target function. * * We can handle this because: * - instances are always pushed into the head of the list * - when multiple return probes are registered for the same * function, the (chronologically) first instance's ret_addr * will be the real return address, and all the rest will * point to kretprobe_trampoline. */ hlist_for_each_entry_safe(ri, tmp, head, hlist) { if (ri->task != current) /* another task is sharing our hash bucket */ continue; orig_ret_address = (unsigned long)ri->ret_addr; if (orig_ret_address != trampoline_address) /* * This is the real return address. Any other * instances associated with this task are for * other calls deeper on the call stack */ break; } kretprobe_assert(ri, orig_ret_address, trampoline_address); correct_ret_addr = ri->ret_addr; hlist_for_each_entry_safe(ri, tmp, head, hlist) { if (ri->task != current) /* another task is sharing our hash bucket */ continue; orig_ret_address = (unsigned long)ri->ret_addr; if (ri->rp && ri->rp->handler) { __this_cpu_write(current_kprobe, &ri->rp->kp); get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE; ri->ret_addr = correct_ret_addr; ri->rp->handler(ri, regs); __this_cpu_write(current_kprobe, NULL); } recycle_rp_inst(ri, &empty_rp); if (orig_ret_address != trampoline_address) /* * This is the real return address. Any other * instances associated with this task are for * other calls deeper on the call stack */ break; } kretprobe_hash_unlock(current, &flags); hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { hlist_del(&ri->hlist); kfree(ri); } return (void *)orig_ret_address; } void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) { ri->ret_addr = (kprobe_opcode_t *)regs->regs[30]; /* replace return addr (x30) with trampoline */ regs->regs[30] = (long)&kretprobe_trampoline; } int __kprobes arch_trampoline_kprobe(struct kprobe *p) { return 0; } int __init arch_init_kprobes(void) { register_kernel_break_hook(&kprobes_break_hook); register_kernel_step_hook(&kprobes_step_hook); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1