Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Dave P Martin | 1868 | 44.64% | 14 | 26.42% |
Marc Zyngier | 1304 | 31.16% | 12 | 22.64% |
Alex Bennée | 388 | 9.27% | 4 | 7.55% |
gengdongjiu | 170 | 4.06% | 1 | 1.89% |
Shannon Zhao | 147 | 3.51% | 1 | 1.89% |
Christoffer Dall | 79 | 1.89% | 3 | 5.66% |
Anup Patel | 76 | 1.82% | 2 | 3.77% |
Steven Price | 39 | 0.93% | 1 | 1.89% |
Amit Tomar | 30 | 0.72% | 1 | 1.89% |
Emanuele Giuseppe Esposito | 20 | 0.48% | 1 | 1.89% |
Christian Bornträger | 20 | 0.48% | 1 | 1.89% |
David Matlack | 14 | 0.33% | 1 | 1.89% |
Mark Rutland | 7 | 0.17% | 1 | 1.89% |
Michael S. Tsirkin | 5 | 0.12% | 1 | 1.89% |
Viresh Kumar | 5 | 0.12% | 1 | 1.89% |
Fuad Tabba | 2 | 0.05% | 1 | 1.89% |
Thomas Gleixner | 2 | 0.05% | 1 | 1.89% |
Will Deacon | 2 | 0.05% | 1 | 1.89% |
Suzuki K. Poulose | 2 | 0.05% | 1 | 1.89% |
James Morse | 2 | 0.05% | 1 | 1.89% |
Andrea Gelmini | 1 | 0.02% | 1 | 1.89% |
Linus Torvalds | 1 | 0.02% | 1 | 1.89% |
Zhang Lei | 1 | 0.02% | 1 | 1.89% |
Total | 4185 | 53 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2012,2013 - ARM Ltd * Author: Marc Zyngier <marc.zyngier@arm.com> * * Derived from arch/arm/kvm/guest.c: * Copyright (C) 2012 - Virtual Open Systems and Columbia University * Author: Christoffer Dall <c.dall@virtualopensystems.com> */ #include <linux/bits.h> #include <linux/errno.h> #include <linux/err.h> #include <linux/nospec.h> #include <linux/kvm_host.h> #include <linux/module.h> #include <linux/stddef.h> #include <linux/string.h> #include <linux/vmalloc.h> #include <linux/fs.h> #include <kvm/arm_psci.h> #include <asm/cputype.h> #include <linux/uaccess.h> #include <asm/fpsimd.h> #include <asm/kvm.h> #include <asm/kvm_emulate.h> #include <asm/kvm_coproc.h> #include <asm/sigcontext.h> #include "trace.h" struct kvm_stats_debugfs_item debugfs_entries[] = { VCPU_STAT("halt_successful_poll", halt_successful_poll), VCPU_STAT("halt_attempted_poll", halt_attempted_poll), VCPU_STAT("halt_poll_invalid", halt_poll_invalid), VCPU_STAT("halt_wakeup", halt_wakeup), VCPU_STAT("hvc_exit_stat", hvc_exit_stat), VCPU_STAT("wfe_exit_stat", wfe_exit_stat), VCPU_STAT("wfi_exit_stat", wfi_exit_stat), VCPU_STAT("mmio_exit_user", mmio_exit_user), VCPU_STAT("mmio_exit_kernel", mmio_exit_kernel), VCPU_STAT("exits", exits), VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns), VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns), { NULL } }; static bool core_reg_offset_is_vreg(u64 off) { return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) && off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr); } static u64 core_reg_offset_from_id(u64 id) { return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE); } static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off) { int size; switch (off) { case KVM_REG_ARM_CORE_REG(regs.regs[0]) ... KVM_REG_ARM_CORE_REG(regs.regs[30]): case KVM_REG_ARM_CORE_REG(regs.sp): case KVM_REG_ARM_CORE_REG(regs.pc): case KVM_REG_ARM_CORE_REG(regs.pstate): case KVM_REG_ARM_CORE_REG(sp_el1): case KVM_REG_ARM_CORE_REG(elr_el1): case KVM_REG_ARM_CORE_REG(spsr[0]) ... KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]): size = sizeof(__u64); break; case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ... KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]): size = sizeof(__uint128_t); break; case KVM_REG_ARM_CORE_REG(fp_regs.fpsr): case KVM_REG_ARM_CORE_REG(fp_regs.fpcr): size = sizeof(__u32); break; default: return -EINVAL; } if (!IS_ALIGNED(off, size / sizeof(__u32))) return -EINVAL; /* * The KVM_REG_ARM64_SVE regs must be used instead of * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on * SVE-enabled vcpus: */ if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off)) return -EINVAL; return size; } static void *core_reg_addr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { u64 off = core_reg_offset_from_id(reg->id); int size = core_reg_size_from_offset(vcpu, off); if (size < 0) return NULL; if (KVM_REG_SIZE(reg->id) != size) return NULL; switch (off) { case KVM_REG_ARM_CORE_REG(regs.regs[0]) ... KVM_REG_ARM_CORE_REG(regs.regs[30]): off -= KVM_REG_ARM_CORE_REG(regs.regs[0]); off /= 2; return &vcpu->arch.ctxt.regs.regs[off]; case KVM_REG_ARM_CORE_REG(regs.sp): return &vcpu->arch.ctxt.regs.sp; case KVM_REG_ARM_CORE_REG(regs.pc): return &vcpu->arch.ctxt.regs.pc; case KVM_REG_ARM_CORE_REG(regs.pstate): return &vcpu->arch.ctxt.regs.pstate; case KVM_REG_ARM_CORE_REG(sp_el1): return __ctxt_sys_reg(&vcpu->arch.ctxt, SP_EL1); case KVM_REG_ARM_CORE_REG(elr_el1): return __ctxt_sys_reg(&vcpu->arch.ctxt, ELR_EL1); case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_EL1]): return __ctxt_sys_reg(&vcpu->arch.ctxt, SPSR_EL1); case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_ABT]): return &vcpu->arch.ctxt.spsr_abt; case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_UND]): return &vcpu->arch.ctxt.spsr_und; case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_IRQ]): return &vcpu->arch.ctxt.spsr_irq; case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_FIQ]): return &vcpu->arch.ctxt.spsr_fiq; case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ... KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]): off -= KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]); off /= 4; return &vcpu->arch.ctxt.fp_regs.vregs[off]; case KVM_REG_ARM_CORE_REG(fp_regs.fpsr): return &vcpu->arch.ctxt.fp_regs.fpsr; case KVM_REG_ARM_CORE_REG(fp_regs.fpcr): return &vcpu->arch.ctxt.fp_regs.fpcr; default: return NULL; } } static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { /* * Because the kvm_regs structure is a mix of 32, 64 and * 128bit fields, we index it as if it was a 32bit * array. Hence below, nr_regs is the number of entries, and * off the index in the "array". */ __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr; int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32); void *addr; u32 off; /* Our ID is an index into the kvm_regs struct. */ off = core_reg_offset_from_id(reg->id); if (off >= nr_regs || (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs) return -ENOENT; addr = core_reg_addr(vcpu, reg); if (!addr) return -EINVAL; if (copy_to_user(uaddr, addr, KVM_REG_SIZE(reg->id))) return -EFAULT; return 0; } static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr; int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32); __uint128_t tmp; void *valp = &tmp, *addr; u64 off; int err = 0; /* Our ID is an index into the kvm_regs struct. */ off = core_reg_offset_from_id(reg->id); if (off >= nr_regs || (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs) return -ENOENT; addr = core_reg_addr(vcpu, reg); if (!addr) return -EINVAL; if (KVM_REG_SIZE(reg->id) > sizeof(tmp)) return -EINVAL; if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) { err = -EFAULT; goto out; } if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) { u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK; switch (mode) { case PSR_AA32_MODE_USR: if (!system_supports_32bit_el0()) return -EINVAL; break; case PSR_AA32_MODE_FIQ: case PSR_AA32_MODE_IRQ: case PSR_AA32_MODE_SVC: case PSR_AA32_MODE_ABT: case PSR_AA32_MODE_UND: if (!vcpu_el1_is_32bit(vcpu)) return -EINVAL; break; case PSR_MODE_EL0t: case PSR_MODE_EL1t: case PSR_MODE_EL1h: if (vcpu_el1_is_32bit(vcpu)) return -EINVAL; break; default: err = -EINVAL; goto out; } } memcpy(addr, valp, KVM_REG_SIZE(reg->id)); if (*vcpu_cpsr(vcpu) & PSR_MODE32_BIT) { int i; for (i = 0; i < 16; i++) *vcpu_reg32(vcpu, i) = (u32)*vcpu_reg32(vcpu, i); } out: return err; } #define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64) #define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64) #define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq))) static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { unsigned int max_vq, vq; u64 vqs[KVM_ARM64_SVE_VLS_WORDS]; if (!vcpu_has_sve(vcpu)) return -ENOENT; if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl))) return -EINVAL; memset(vqs, 0, sizeof(vqs)); max_vq = sve_vq_from_vl(vcpu->arch.sve_max_vl); for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq) if (sve_vq_available(vq)) vqs[vq_word(vq)] |= vq_mask(vq); if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs))) return -EFAULT; return 0; } static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { unsigned int max_vq, vq; u64 vqs[KVM_ARM64_SVE_VLS_WORDS]; if (!vcpu_has_sve(vcpu)) return -ENOENT; if (kvm_arm_vcpu_sve_finalized(vcpu)) return -EPERM; /* too late! */ if (WARN_ON(vcpu->arch.sve_state)) return -EINVAL; if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs))) return -EFAULT; max_vq = 0; for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq) if (vq_present(vqs, vq)) max_vq = vq; if (max_vq > sve_vq_from_vl(kvm_sve_max_vl)) return -EINVAL; /* * Vector lengths supported by the host can't currently be * hidden from the guest individually: instead we can only set a * maximum via ZCR_EL2.LEN. So, make sure the available vector * lengths match the set requested exactly up to the requested * maximum: */ for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq) if (vq_present(vqs, vq) != sve_vq_available(vq)) return -EINVAL; /* Can't run with no vector lengths at all: */ if (max_vq < SVE_VQ_MIN) return -EINVAL; /* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */ vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq); return 0; } #define SVE_REG_SLICE_SHIFT 0 #define SVE_REG_SLICE_BITS 5 #define SVE_REG_ID_SHIFT (SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS) #define SVE_REG_ID_BITS 5 #define SVE_REG_SLICE_MASK \ GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1, \ SVE_REG_SLICE_SHIFT) #define SVE_REG_ID_MASK \ GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT) #define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS) #define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0)) #define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0)) /* * Number of register slices required to cover each whole SVE register. * NOTE: Only the first slice every exists, for now. * If you are tempted to modify this, you must also rework sve_reg_to_region() * to match: */ #define vcpu_sve_slices(vcpu) 1 /* Bounds of a single SVE register slice within vcpu->arch.sve_state */ struct sve_state_reg_region { unsigned int koffset; /* offset into sve_state in kernel memory */ unsigned int klen; /* length in kernel memory */ unsigned int upad; /* extra trailing padding in user memory */ }; /* * Validate SVE register ID and get sanitised bounds for user/kernel SVE * register copy */ static int sve_reg_to_region(struct sve_state_reg_region *region, struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { /* reg ID ranges for Z- registers */ const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0); const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1, SVE_NUM_SLICES - 1); /* reg ID ranges for P- registers and FFR (which are contiguous) */ const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0); const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1); unsigned int vq; unsigned int reg_num; unsigned int reqoffset, reqlen; /* User-requested offset and length */ unsigned int maxlen; /* Maximum permitted length */ size_t sve_state_size; const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1, SVE_NUM_SLICES - 1); /* Verify that the P-regs and FFR really do have contiguous IDs: */ BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1); /* Verify that we match the UAPI header: */ BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES); reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT; if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) { if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0) return -ENOENT; vq = sve_vq_from_vl(vcpu->arch.sve_max_vl); reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) - SVE_SIG_REGS_OFFSET; reqlen = KVM_SVE_ZREG_SIZE; maxlen = SVE_SIG_ZREG_SIZE(vq); } else if (reg->id >= preg_id_min && reg->id <= preg_id_max) { if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0) return -ENOENT; vq = sve_vq_from_vl(vcpu->arch.sve_max_vl); reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) - SVE_SIG_REGS_OFFSET; reqlen = KVM_SVE_PREG_SIZE; maxlen = SVE_SIG_PREG_SIZE(vq); } else { return -EINVAL; } sve_state_size = vcpu_sve_state_size(vcpu); if (WARN_ON(!sve_state_size)) return -EINVAL; region->koffset = array_index_nospec(reqoffset, sve_state_size); region->klen = min(maxlen, reqlen); region->upad = reqlen - region->klen; return 0; } static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { int ret; struct sve_state_reg_region region; char __user *uptr = (char __user *)reg->addr; /* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */ if (reg->id == KVM_REG_ARM64_SVE_VLS) return get_sve_vls(vcpu, reg); /* Try to interpret reg ID as an architectural SVE register... */ ret = sve_reg_to_region(®ion, vcpu, reg); if (ret) return ret; if (!kvm_arm_vcpu_sve_finalized(vcpu)) return -EPERM; if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset, region.klen) || clear_user(uptr + region.klen, region.upad)) return -EFAULT; return 0; } static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { int ret; struct sve_state_reg_region region; const char __user *uptr = (const char __user *)reg->addr; /* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */ if (reg->id == KVM_REG_ARM64_SVE_VLS) return set_sve_vls(vcpu, reg); /* Try to interpret reg ID as an architectural SVE register... */ ret = sve_reg_to_region(®ion, vcpu, reg); if (ret) return ret; if (!kvm_arm_vcpu_sve_finalized(vcpu)) return -EPERM; if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr, region.klen)) return -EFAULT; return 0; } int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) { return -EINVAL; } int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) { return -EINVAL; } static int copy_core_reg_indices(const struct kvm_vcpu *vcpu, u64 __user *uindices) { unsigned int i; int n = 0; for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) { u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i; int size = core_reg_size_from_offset(vcpu, i); if (size < 0) continue; switch (size) { case sizeof(__u32): reg |= KVM_REG_SIZE_U32; break; case sizeof(__u64): reg |= KVM_REG_SIZE_U64; break; case sizeof(__uint128_t): reg |= KVM_REG_SIZE_U128; break; default: WARN_ON(1); continue; } if (uindices) { if (put_user(reg, uindices)) return -EFAULT; uindices++; } n++; } return n; } static unsigned long num_core_regs(const struct kvm_vcpu *vcpu) { return copy_core_reg_indices(vcpu, NULL); } /** * ARM64 versions of the TIMER registers, always available on arm64 */ #define NUM_TIMER_REGS 3 static bool is_timer_reg(u64 index) { switch (index) { case KVM_REG_ARM_TIMER_CTL: case KVM_REG_ARM_TIMER_CNT: case KVM_REG_ARM_TIMER_CVAL: return true; } return false; } static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) { if (put_user(KVM_REG_ARM_TIMER_CTL, uindices)) return -EFAULT; uindices++; if (put_user(KVM_REG_ARM_TIMER_CNT, uindices)) return -EFAULT; uindices++; if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices)) return -EFAULT; return 0; } static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { void __user *uaddr = (void __user *)(long)reg->addr; u64 val; int ret; ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id)); if (ret != 0) return -EFAULT; return kvm_arm_timer_set_reg(vcpu, reg->id, val); } static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { void __user *uaddr = (void __user *)(long)reg->addr; u64 val; val = kvm_arm_timer_get_reg(vcpu, reg->id); return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0; } static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu) { const unsigned int slices = vcpu_sve_slices(vcpu); if (!vcpu_has_sve(vcpu)) return 0; /* Policed by KVM_GET_REG_LIST: */ WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu)); return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */) + 1; /* KVM_REG_ARM64_SVE_VLS */ } static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu, u64 __user *uindices) { const unsigned int slices = vcpu_sve_slices(vcpu); u64 reg; unsigned int i, n; int num_regs = 0; if (!vcpu_has_sve(vcpu)) return 0; /* Policed by KVM_GET_REG_LIST: */ WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu)); /* * Enumerate this first, so that userspace can save/restore in * the order reported by KVM_GET_REG_LIST: */ reg = KVM_REG_ARM64_SVE_VLS; if (put_user(reg, uindices++)) return -EFAULT; ++num_regs; for (i = 0; i < slices; i++) { for (n = 0; n < SVE_NUM_ZREGS; n++) { reg = KVM_REG_ARM64_SVE_ZREG(n, i); if (put_user(reg, uindices++)) return -EFAULT; num_regs++; } for (n = 0; n < SVE_NUM_PREGS; n++) { reg = KVM_REG_ARM64_SVE_PREG(n, i); if (put_user(reg, uindices++)) return -EFAULT; num_regs++; } reg = KVM_REG_ARM64_SVE_FFR(i); if (put_user(reg, uindices++)) return -EFAULT; num_regs++; } return num_regs; } /** * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG * * This is for all registers. */ unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu) { unsigned long res = 0; res += num_core_regs(vcpu); res += num_sve_regs(vcpu); res += kvm_arm_num_sys_reg_descs(vcpu); res += kvm_arm_get_fw_num_regs(vcpu); res += NUM_TIMER_REGS; return res; } /** * kvm_arm_copy_reg_indices - get indices of all registers. * * We do core registers right here, then we append system regs. */ int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) { int ret; ret = copy_core_reg_indices(vcpu, uindices); if (ret < 0) return ret; uindices += ret; ret = copy_sve_reg_indices(vcpu, uindices); if (ret < 0) return ret; uindices += ret; ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices); if (ret < 0) return ret; uindices += kvm_arm_get_fw_num_regs(vcpu); ret = copy_timer_indices(vcpu, uindices); if (ret < 0) return ret; uindices += NUM_TIMER_REGS; return kvm_arm_copy_sys_reg_indices(vcpu, uindices); } int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { /* We currently use nothing arch-specific in upper 32 bits */ if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32) return -EINVAL; switch (reg->id & KVM_REG_ARM_COPROC_MASK) { case KVM_REG_ARM_CORE: return get_core_reg(vcpu, reg); case KVM_REG_ARM_FW: return kvm_arm_get_fw_reg(vcpu, reg); case KVM_REG_ARM64_SVE: return get_sve_reg(vcpu, reg); } if (is_timer_reg(reg->id)) return get_timer_reg(vcpu, reg); return kvm_arm_sys_reg_get_reg(vcpu, reg); } int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { /* We currently use nothing arch-specific in upper 32 bits */ if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32) return -EINVAL; switch (reg->id & KVM_REG_ARM_COPROC_MASK) { case KVM_REG_ARM_CORE: return set_core_reg(vcpu, reg); case KVM_REG_ARM_FW: return kvm_arm_set_fw_reg(vcpu, reg); case KVM_REG_ARM64_SVE: return set_sve_reg(vcpu, reg); } if (is_timer_reg(reg->id)) return set_timer_reg(vcpu, reg); return kvm_arm_sys_reg_set_reg(vcpu, reg); } int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { return -EINVAL; } int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { return -EINVAL; } int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, struct kvm_vcpu_events *events) { events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE); events->exception.serror_has_esr = cpus_have_const_cap(ARM64_HAS_RAS_EXTN); if (events->exception.serror_pending && events->exception.serror_has_esr) events->exception.serror_esr = vcpu_get_vsesr(vcpu); /* * We never return a pending ext_dabt here because we deliver it to * the virtual CPU directly when setting the event and it's no longer * 'pending' at this point. */ return 0; } int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, struct kvm_vcpu_events *events) { bool serror_pending = events->exception.serror_pending; bool has_esr = events->exception.serror_has_esr; bool ext_dabt_pending = events->exception.ext_dabt_pending; if (serror_pending && has_esr) { if (!cpus_have_const_cap(ARM64_HAS_RAS_EXTN)) return -EINVAL; if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK)) kvm_set_sei_esr(vcpu, events->exception.serror_esr); else return -EINVAL; } else if (serror_pending) { kvm_inject_vabt(vcpu); } if (ext_dabt_pending) kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu)); return 0; } int __attribute_const__ kvm_target_cpu(void) { unsigned long implementor = read_cpuid_implementor(); unsigned long part_number = read_cpuid_part_number(); switch (implementor) { case ARM_CPU_IMP_ARM: switch (part_number) { case ARM_CPU_PART_AEM_V8: return KVM_ARM_TARGET_AEM_V8; case ARM_CPU_PART_FOUNDATION: return KVM_ARM_TARGET_FOUNDATION_V8; case ARM_CPU_PART_CORTEX_A53: return KVM_ARM_TARGET_CORTEX_A53; case ARM_CPU_PART_CORTEX_A57: return KVM_ARM_TARGET_CORTEX_A57; } break; case ARM_CPU_IMP_APM: switch (part_number) { case APM_CPU_PART_POTENZA: return KVM_ARM_TARGET_XGENE_POTENZA; } break; } /* Return a default generic target */ return KVM_ARM_TARGET_GENERIC_V8; } int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init) { int target = kvm_target_cpu(); if (target < 0) return -ENODEV; memset(init, 0, sizeof(*init)); /* * For now, we don't return any features. * In future, we might use features to return target * specific features available for the preferred * target type. */ init->target = (__u32)target; return 0; } int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) { return -EINVAL; } int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) { return -EINVAL; } int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, struct kvm_translation *tr) { return -EINVAL; } #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \ KVM_GUESTDBG_USE_SW_BP | \ KVM_GUESTDBG_USE_HW | \ KVM_GUESTDBG_SINGLESTEP) /** * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging * @kvm: pointer to the KVM struct * @kvm_guest_debug: the ioctl data buffer * * This sets up and enables the VM for guest debugging. Userspace * passes in a control flag to enable different debug types and * potentially other architecture specific information in the rest of * the structure. */ int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg) { int ret = 0; trace_kvm_set_guest_debug(vcpu, dbg->control); if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) { ret = -EINVAL; goto out; } if (dbg->control & KVM_GUESTDBG_ENABLE) { vcpu->guest_debug = dbg->control; /* Hardware assisted Break and Watch points */ if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) { vcpu->arch.external_debug_state = dbg->arch; } } else { /* If not enabled clear all flags */ vcpu->guest_debug = 0; } out: return ret; } int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr) { int ret; switch (attr->group) { case KVM_ARM_VCPU_PMU_V3_CTRL: ret = kvm_arm_pmu_v3_set_attr(vcpu, attr); break; case KVM_ARM_VCPU_TIMER_CTRL: ret = kvm_arm_timer_set_attr(vcpu, attr); break; case KVM_ARM_VCPU_PVTIME_CTRL: ret = kvm_arm_pvtime_set_attr(vcpu, attr); break; default: ret = -ENXIO; break; } return ret; } int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr) { int ret; switch (attr->group) { case KVM_ARM_VCPU_PMU_V3_CTRL: ret = kvm_arm_pmu_v3_get_attr(vcpu, attr); break; case KVM_ARM_VCPU_TIMER_CTRL: ret = kvm_arm_timer_get_attr(vcpu, attr); break; case KVM_ARM_VCPU_PVTIME_CTRL: ret = kvm_arm_pvtime_get_attr(vcpu, attr); break; default: ret = -ENXIO; break; } return ret; } int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr) { int ret; switch (attr->group) { case KVM_ARM_VCPU_PMU_V3_CTRL: ret = kvm_arm_pmu_v3_has_attr(vcpu, attr); break; case KVM_ARM_VCPU_TIMER_CTRL: ret = kvm_arm_timer_has_attr(vcpu, attr); break; case KVM_ARM_VCPU_PVTIME_CTRL: ret = kvm_arm_pvtime_has_attr(vcpu, attr); break; default: ret = -ENXIO; break; } return ret; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1