Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Christoffer Dall | 3442 | 32.11% | 19 | 11.38% |
Marc Zyngier | 2770 | 25.84% | 55 | 32.93% |
Suzuki K. Poulose | 1073 | 10.01% | 21 | 12.57% |
Mike Rapoport | 885 | 8.26% | 1 | 0.60% |
Punit Agrawal | 779 | 7.27% | 11 | 6.59% |
Mario Smarduch | 684 | 6.38% | 4 | 2.40% |
Ard Biesheuvel | 405 | 3.78% | 9 | 5.39% |
Will Deacon | 109 | 1.02% | 6 | 3.59% |
Eric Auger | 103 | 0.96% | 1 | 0.60% |
Catalin Marinas | 87 | 0.81% | 1 | 0.60% |
James Morse | 79 | 0.74% | 4 | 2.40% |
Kai Huang | 37 | 0.35% | 1 | 0.60% |
Sean Christopherson | 33 | 0.31% | 5 | 2.99% |
Tyler Baicar | 32 | 0.30% | 1 | 0.60% |
Mark Salter | 29 | 0.27% | 1 | 0.60% |
Paolo Bonzini | 20 | 0.19% | 4 | 2.40% |
Linus Torvalds | 19 | 0.18% | 1 | 0.60% |
Kim Phillips | 17 | 0.16% | 1 | 0.60% |
Keqian Zhu | 13 | 0.12% | 1 | 0.60% |
Jiang Yi | 13 | 0.12% | 1 | 0.60% |
Eric W. Biedermann | 12 | 0.11% | 1 | 0.60% |
Kristina Martšenko | 11 | 0.10% | 2 | 1.20% |
Marek Majtyka | 9 | 0.08% | 1 | 0.60% |
Jia He | 8 | 0.07% | 1 | 0.60% |
Mark Rutland | 8 | 0.07% | 1 | 0.60% |
Michel Lespinasse | 7 | 0.07% | 1 | 0.60% |
Lan Tianyu | 7 | 0.07% | 1 | 0.60% |
Gavin Shan | 5 | 0.05% | 2 | 1.20% |
Anshuman Khandual | 5 | 0.05% | 1 | 0.60% |
Alexandru Elisei | 4 | 0.04% | 1 | 0.60% |
Fuad Tabba | 3 | 0.03% | 1 | 0.60% |
Andrew Scull | 3 | 0.03% | 1 | 0.60% |
Dan J Williams | 3 | 0.03% | 1 | 0.60% |
Thomas Gleixner | 2 | 0.02% | 1 | 0.60% |
Laszlo Ersek | 1 | 0.01% | 1 | 0.60% |
Steve Capper | 1 | 0.01% | 1 | 0.60% |
Tianjia Zhang | 1 | 0.01% | 1 | 0.60% |
Total | 10719 | 167 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2012 - Virtual Open Systems and Columbia University * Author: Christoffer Dall <c.dall@virtualopensystems.com> */ #include <linux/mman.h> #include <linux/kvm_host.h> #include <linux/io.h> #include <linux/hugetlb.h> #include <linux/sched/signal.h> #include <trace/events/kvm.h> #include <asm/pgalloc.h> #include <asm/cacheflush.h> #include <asm/kvm_arm.h> #include <asm/kvm_mmu.h> #include <asm/kvm_ras.h> #include <asm/kvm_asm.h> #include <asm/kvm_emulate.h> #include <asm/virt.h> #include "trace.h" static pgd_t *boot_hyp_pgd; static pgd_t *hyp_pgd; static pgd_t *merged_hyp_pgd; static DEFINE_MUTEX(kvm_hyp_pgd_mutex); static unsigned long hyp_idmap_start; static unsigned long hyp_idmap_end; static phys_addr_t hyp_idmap_vector; static unsigned long io_map_base; #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t)) #define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0) #define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1) static bool is_iomap(unsigned long flags) { return flags & KVM_S2PTE_FLAG_IS_IOMAP; } static bool memslot_is_logging(struct kvm_memory_slot *memslot) { return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY); } /** * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8 * @kvm: pointer to kvm structure. * * Interface to HYP function to flush all VM TLB entries */ void kvm_flush_remote_tlbs(struct kvm *kvm) { kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu); } static void kvm_tlb_flush_vmid_ipa(struct kvm_s2_mmu *mmu, phys_addr_t ipa, int level) { kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ipa, level); } /* * D-Cache management functions. They take the page table entries by * value, as they are flushing the cache using the kernel mapping (or * kmap on 32bit). */ static void kvm_flush_dcache_pte(pte_t pte) { __kvm_flush_dcache_pte(pte); } static void kvm_flush_dcache_pmd(pmd_t pmd) { __kvm_flush_dcache_pmd(pmd); } static void kvm_flush_dcache_pud(pud_t pud) { __kvm_flush_dcache_pud(pud); } static bool kvm_is_device_pfn(unsigned long pfn) { return !pfn_valid(pfn); } /** * stage2_dissolve_pmd() - clear and flush huge PMD entry * @mmu: pointer to mmu structure to operate on * @addr: IPA * @pmd: pmd pointer for IPA * * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. */ static void stage2_dissolve_pmd(struct kvm_s2_mmu *mmu, phys_addr_t addr, pmd_t *pmd) { if (!pmd_thp_or_huge(*pmd)) return; pmd_clear(pmd); kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PMD_LEVEL); put_page(virt_to_page(pmd)); } /** * stage2_dissolve_pud() - clear and flush huge PUD entry * @mmu: pointer to mmu structure to operate on * @addr: IPA * @pud: pud pointer for IPA * * Function clears a PUD entry, flushes addr 1st and 2nd stage TLBs. */ static void stage2_dissolve_pud(struct kvm_s2_mmu *mmu, phys_addr_t addr, pud_t *pudp) { struct kvm *kvm = mmu->kvm; if (!stage2_pud_huge(kvm, *pudp)) return; stage2_pud_clear(kvm, pudp); kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PUD_LEVEL); put_page(virt_to_page(pudp)); } static void clear_stage2_pgd_entry(struct kvm_s2_mmu *mmu, pgd_t *pgd, phys_addr_t addr) { struct kvm *kvm = mmu->kvm; p4d_t *p4d_table __maybe_unused = stage2_p4d_offset(kvm, pgd, 0UL); stage2_pgd_clear(kvm, pgd); kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT); stage2_p4d_free(kvm, p4d_table); put_page(virt_to_page(pgd)); } static void clear_stage2_p4d_entry(struct kvm_s2_mmu *mmu, p4d_t *p4d, phys_addr_t addr) { struct kvm *kvm = mmu->kvm; pud_t *pud_table __maybe_unused = stage2_pud_offset(kvm, p4d, 0); stage2_p4d_clear(kvm, p4d); kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT); stage2_pud_free(kvm, pud_table); put_page(virt_to_page(p4d)); } static void clear_stage2_pud_entry(struct kvm_s2_mmu *mmu, pud_t *pud, phys_addr_t addr) { struct kvm *kvm = mmu->kvm; pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(kvm, pud, 0); VM_BUG_ON(stage2_pud_huge(kvm, *pud)); stage2_pud_clear(kvm, pud); kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT); stage2_pmd_free(kvm, pmd_table); put_page(virt_to_page(pud)); } static void clear_stage2_pmd_entry(struct kvm_s2_mmu *mmu, pmd_t *pmd, phys_addr_t addr) { pte_t *pte_table = pte_offset_kernel(pmd, 0); VM_BUG_ON(pmd_thp_or_huge(*pmd)); pmd_clear(pmd); kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT); free_page((unsigned long)pte_table); put_page(virt_to_page(pmd)); } static inline void kvm_set_pte(pte_t *ptep, pte_t new_pte) { WRITE_ONCE(*ptep, new_pte); dsb(ishst); } static inline void kvm_set_pmd(pmd_t *pmdp, pmd_t new_pmd) { WRITE_ONCE(*pmdp, new_pmd); dsb(ishst); } static inline void kvm_pmd_populate(pmd_t *pmdp, pte_t *ptep) { kvm_set_pmd(pmdp, kvm_mk_pmd(ptep)); } static inline void kvm_pud_populate(pud_t *pudp, pmd_t *pmdp) { WRITE_ONCE(*pudp, kvm_mk_pud(pmdp)); dsb(ishst); } static inline void kvm_p4d_populate(p4d_t *p4dp, pud_t *pudp) { WRITE_ONCE(*p4dp, kvm_mk_p4d(pudp)); dsb(ishst); } static inline void kvm_pgd_populate(pgd_t *pgdp, p4d_t *p4dp) { #ifndef __PAGETABLE_P4D_FOLDED WRITE_ONCE(*pgdp, kvm_mk_pgd(p4dp)); dsb(ishst); #endif } /* * Unmapping vs dcache management: * * If a guest maps certain memory pages as uncached, all writes will * bypass the data cache and go directly to RAM. However, the CPUs * can still speculate reads (not writes) and fill cache lines with * data. * * Those cache lines will be *clean* cache lines though, so a * clean+invalidate operation is equivalent to an invalidate * operation, because no cache lines are marked dirty. * * Those clean cache lines could be filled prior to an uncached write * by the guest, and the cache coherent IO subsystem would therefore * end up writing old data to disk. * * This is why right after unmapping a page/section and invalidating * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure * the IO subsystem will never hit in the cache. * * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as * we then fully enforce cacheability of RAM, no matter what the guest * does. */ static void unmap_stage2_ptes(struct kvm_s2_mmu *mmu, pmd_t *pmd, phys_addr_t addr, phys_addr_t end) { phys_addr_t start_addr = addr; pte_t *pte, *start_pte; start_pte = pte = pte_offset_kernel(pmd, addr); do { if (!pte_none(*pte)) { pte_t old_pte = *pte; kvm_set_pte(pte, __pte(0)); kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PTE_LEVEL); /* No need to invalidate the cache for device mappings */ if (!kvm_is_device_pfn(pte_pfn(old_pte))) kvm_flush_dcache_pte(old_pte); put_page(virt_to_page(pte)); } } while (pte++, addr += PAGE_SIZE, addr != end); if (stage2_pte_table_empty(mmu->kvm, start_pte)) clear_stage2_pmd_entry(mmu, pmd, start_addr); } static void unmap_stage2_pmds(struct kvm_s2_mmu *mmu, pud_t *pud, phys_addr_t addr, phys_addr_t end) { struct kvm *kvm = mmu->kvm; phys_addr_t next, start_addr = addr; pmd_t *pmd, *start_pmd; start_pmd = pmd = stage2_pmd_offset(kvm, pud, addr); do { next = stage2_pmd_addr_end(kvm, addr, end); if (!pmd_none(*pmd)) { if (pmd_thp_or_huge(*pmd)) { pmd_t old_pmd = *pmd; pmd_clear(pmd); kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PMD_LEVEL); kvm_flush_dcache_pmd(old_pmd); put_page(virt_to_page(pmd)); } else { unmap_stage2_ptes(mmu, pmd, addr, next); } } } while (pmd++, addr = next, addr != end); if (stage2_pmd_table_empty(kvm, start_pmd)) clear_stage2_pud_entry(mmu, pud, start_addr); } static void unmap_stage2_puds(struct kvm_s2_mmu *mmu, p4d_t *p4d, phys_addr_t addr, phys_addr_t end) { struct kvm *kvm = mmu->kvm; phys_addr_t next, start_addr = addr; pud_t *pud, *start_pud; start_pud = pud = stage2_pud_offset(kvm, p4d, addr); do { next = stage2_pud_addr_end(kvm, addr, end); if (!stage2_pud_none(kvm, *pud)) { if (stage2_pud_huge(kvm, *pud)) { pud_t old_pud = *pud; stage2_pud_clear(kvm, pud); kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PUD_LEVEL); kvm_flush_dcache_pud(old_pud); put_page(virt_to_page(pud)); } else { unmap_stage2_pmds(mmu, pud, addr, next); } } } while (pud++, addr = next, addr != end); if (stage2_pud_table_empty(kvm, start_pud)) clear_stage2_p4d_entry(mmu, p4d, start_addr); } static void unmap_stage2_p4ds(struct kvm_s2_mmu *mmu, pgd_t *pgd, phys_addr_t addr, phys_addr_t end) { struct kvm *kvm = mmu->kvm; phys_addr_t next, start_addr = addr; p4d_t *p4d, *start_p4d; start_p4d = p4d = stage2_p4d_offset(kvm, pgd, addr); do { next = stage2_p4d_addr_end(kvm, addr, end); if (!stage2_p4d_none(kvm, *p4d)) unmap_stage2_puds(mmu, p4d, addr, next); } while (p4d++, addr = next, addr != end); if (stage2_p4d_table_empty(kvm, start_p4d)) clear_stage2_pgd_entry(mmu, pgd, start_addr); } /** * unmap_stage2_range -- Clear stage2 page table entries to unmap a range * @kvm: The VM pointer * @start: The intermediate physical base address of the range to unmap * @size: The size of the area to unmap * * Clear a range of stage-2 mappings, lowering the various ref-counts. Must * be called while holding mmu_lock (unless for freeing the stage2 pgd before * destroying the VM), otherwise another faulting VCPU may come in and mess * with things behind our backs. */ static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size, bool may_block) { struct kvm *kvm = mmu->kvm; pgd_t *pgd; phys_addr_t addr = start, end = start + size; phys_addr_t next; assert_spin_locked(&kvm->mmu_lock); WARN_ON(size & ~PAGE_MASK); pgd = mmu->pgd + stage2_pgd_index(kvm, addr); do { /* * Make sure the page table is still active, as another thread * could have possibly freed the page table, while we released * the lock. */ if (!READ_ONCE(mmu->pgd)) break; next = stage2_pgd_addr_end(kvm, addr, end); if (!stage2_pgd_none(kvm, *pgd)) unmap_stage2_p4ds(mmu, pgd, addr, next); /* * If the range is too large, release the kvm->mmu_lock * to prevent starvation and lockup detector warnings. */ if (may_block && next != end) cond_resched_lock(&kvm->mmu_lock); } while (pgd++, addr = next, addr != end); } static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size) { __unmap_stage2_range(mmu, start, size, true); } static void stage2_flush_ptes(struct kvm_s2_mmu *mmu, pmd_t *pmd, phys_addr_t addr, phys_addr_t end) { pte_t *pte; pte = pte_offset_kernel(pmd, addr); do { if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte))) kvm_flush_dcache_pte(*pte); } while (pte++, addr += PAGE_SIZE, addr != end); } static void stage2_flush_pmds(struct kvm_s2_mmu *mmu, pud_t *pud, phys_addr_t addr, phys_addr_t end) { struct kvm *kvm = mmu->kvm; pmd_t *pmd; phys_addr_t next; pmd = stage2_pmd_offset(kvm, pud, addr); do { next = stage2_pmd_addr_end(kvm, addr, end); if (!pmd_none(*pmd)) { if (pmd_thp_or_huge(*pmd)) kvm_flush_dcache_pmd(*pmd); else stage2_flush_ptes(mmu, pmd, addr, next); } } while (pmd++, addr = next, addr != end); } static void stage2_flush_puds(struct kvm_s2_mmu *mmu, p4d_t *p4d, phys_addr_t addr, phys_addr_t end) { struct kvm *kvm = mmu->kvm; pud_t *pud; phys_addr_t next; pud = stage2_pud_offset(kvm, p4d, addr); do { next = stage2_pud_addr_end(kvm, addr, end); if (!stage2_pud_none(kvm, *pud)) { if (stage2_pud_huge(kvm, *pud)) kvm_flush_dcache_pud(*pud); else stage2_flush_pmds(mmu, pud, addr, next); } } while (pud++, addr = next, addr != end); } static void stage2_flush_p4ds(struct kvm_s2_mmu *mmu, pgd_t *pgd, phys_addr_t addr, phys_addr_t end) { struct kvm *kvm = mmu->kvm; p4d_t *p4d; phys_addr_t next; p4d = stage2_p4d_offset(kvm, pgd, addr); do { next = stage2_p4d_addr_end(kvm, addr, end); if (!stage2_p4d_none(kvm, *p4d)) stage2_flush_puds(mmu, p4d, addr, next); } while (p4d++, addr = next, addr != end); } static void stage2_flush_memslot(struct kvm *kvm, struct kvm_memory_slot *memslot) { struct kvm_s2_mmu *mmu = &kvm->arch.mmu; phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; phys_addr_t end = addr + PAGE_SIZE * memslot->npages; phys_addr_t next; pgd_t *pgd; pgd = mmu->pgd + stage2_pgd_index(kvm, addr); do { next = stage2_pgd_addr_end(kvm, addr, end); if (!stage2_pgd_none(kvm, *pgd)) stage2_flush_p4ds(mmu, pgd, addr, next); if (next != end) cond_resched_lock(&kvm->mmu_lock); } while (pgd++, addr = next, addr != end); } /** * stage2_flush_vm - Invalidate cache for pages mapped in stage 2 * @kvm: The struct kvm pointer * * Go through the stage 2 page tables and invalidate any cache lines * backing memory already mapped to the VM. */ static void stage2_flush_vm(struct kvm *kvm) { struct kvm_memslots *slots; struct kvm_memory_slot *memslot; int idx; idx = srcu_read_lock(&kvm->srcu); spin_lock(&kvm->mmu_lock); slots = kvm_memslots(kvm); kvm_for_each_memslot(memslot, slots) stage2_flush_memslot(kvm, memslot); spin_unlock(&kvm->mmu_lock); srcu_read_unlock(&kvm->srcu, idx); } static void clear_hyp_pgd_entry(pgd_t *pgd) { p4d_t *p4d_table __maybe_unused = p4d_offset(pgd, 0UL); pgd_clear(pgd); p4d_free(NULL, p4d_table); put_page(virt_to_page(pgd)); } static void clear_hyp_p4d_entry(p4d_t *p4d) { pud_t *pud_table __maybe_unused = pud_offset(p4d, 0UL); VM_BUG_ON(p4d_huge(*p4d)); p4d_clear(p4d); pud_free(NULL, pud_table); put_page(virt_to_page(p4d)); } static void clear_hyp_pud_entry(pud_t *pud) { pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0); VM_BUG_ON(pud_huge(*pud)); pud_clear(pud); pmd_free(NULL, pmd_table); put_page(virt_to_page(pud)); } static void clear_hyp_pmd_entry(pmd_t *pmd) { pte_t *pte_table = pte_offset_kernel(pmd, 0); VM_BUG_ON(pmd_thp_or_huge(*pmd)); pmd_clear(pmd); pte_free_kernel(NULL, pte_table); put_page(virt_to_page(pmd)); } static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end) { pte_t *pte, *start_pte; start_pte = pte = pte_offset_kernel(pmd, addr); do { if (!pte_none(*pte)) { kvm_set_pte(pte, __pte(0)); put_page(virt_to_page(pte)); } } while (pte++, addr += PAGE_SIZE, addr != end); if (hyp_pte_table_empty(start_pte)) clear_hyp_pmd_entry(pmd); } static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end) { phys_addr_t next; pmd_t *pmd, *start_pmd; start_pmd = pmd = pmd_offset(pud, addr); do { next = pmd_addr_end(addr, end); /* Hyp doesn't use huge pmds */ if (!pmd_none(*pmd)) unmap_hyp_ptes(pmd, addr, next); } while (pmd++, addr = next, addr != end); if (hyp_pmd_table_empty(start_pmd)) clear_hyp_pud_entry(pud); } static void unmap_hyp_puds(p4d_t *p4d, phys_addr_t addr, phys_addr_t end) { phys_addr_t next; pud_t *pud, *start_pud; start_pud = pud = pud_offset(p4d, addr); do { next = pud_addr_end(addr, end); /* Hyp doesn't use huge puds */ if (!pud_none(*pud)) unmap_hyp_pmds(pud, addr, next); } while (pud++, addr = next, addr != end); if (hyp_pud_table_empty(start_pud)) clear_hyp_p4d_entry(p4d); } static void unmap_hyp_p4ds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end) { phys_addr_t next; p4d_t *p4d, *start_p4d; start_p4d = p4d = p4d_offset(pgd, addr); do { next = p4d_addr_end(addr, end); /* Hyp doesn't use huge p4ds */ if (!p4d_none(*p4d)) unmap_hyp_puds(p4d, addr, next); } while (p4d++, addr = next, addr != end); if (hyp_p4d_table_empty(start_p4d)) clear_hyp_pgd_entry(pgd); } static unsigned int kvm_pgd_index(unsigned long addr, unsigned int ptrs_per_pgd) { return (addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1); } static void __unmap_hyp_range(pgd_t *pgdp, unsigned long ptrs_per_pgd, phys_addr_t start, u64 size) { pgd_t *pgd; phys_addr_t addr = start, end = start + size; phys_addr_t next; /* * We don't unmap anything from HYP, except at the hyp tear down. * Hence, we don't have to invalidate the TLBs here. */ pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd); do { next = pgd_addr_end(addr, end); if (!pgd_none(*pgd)) unmap_hyp_p4ds(pgd, addr, next); } while (pgd++, addr = next, addr != end); } static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size) { __unmap_hyp_range(pgdp, PTRS_PER_PGD, start, size); } static void unmap_hyp_idmap_range(pgd_t *pgdp, phys_addr_t start, u64 size) { __unmap_hyp_range(pgdp, __kvm_idmap_ptrs_per_pgd(), start, size); } /** * free_hyp_pgds - free Hyp-mode page tables * * Assumes hyp_pgd is a page table used strictly in Hyp-mode and * therefore contains either mappings in the kernel memory area (above * PAGE_OFFSET), or device mappings in the idmap range. * * boot_hyp_pgd should only map the idmap range, and is only used in * the extended idmap case. */ void free_hyp_pgds(void) { pgd_t *id_pgd; mutex_lock(&kvm_hyp_pgd_mutex); id_pgd = boot_hyp_pgd ? boot_hyp_pgd : hyp_pgd; if (id_pgd) { /* In case we never called hyp_mmu_init() */ if (!io_map_base) io_map_base = hyp_idmap_start; unmap_hyp_idmap_range(id_pgd, io_map_base, hyp_idmap_start + PAGE_SIZE - io_map_base); } if (boot_hyp_pgd) { free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order); boot_hyp_pgd = NULL; } if (hyp_pgd) { unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET), (uintptr_t)high_memory - PAGE_OFFSET); free_pages((unsigned long)hyp_pgd, hyp_pgd_order); hyp_pgd = NULL; } if (merged_hyp_pgd) { clear_page(merged_hyp_pgd); free_page((unsigned long)merged_hyp_pgd); merged_hyp_pgd = NULL; } mutex_unlock(&kvm_hyp_pgd_mutex); } static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start, unsigned long end, unsigned long pfn, pgprot_t prot) { pte_t *pte; unsigned long addr; addr = start; do { pte = pte_offset_kernel(pmd, addr); kvm_set_pte(pte, kvm_pfn_pte(pfn, prot)); get_page(virt_to_page(pte)); pfn++; } while (addr += PAGE_SIZE, addr != end); } static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start, unsigned long end, unsigned long pfn, pgprot_t prot) { pmd_t *pmd; pte_t *pte; unsigned long addr, next; addr = start; do { pmd = pmd_offset(pud, addr); BUG_ON(pmd_sect(*pmd)); if (pmd_none(*pmd)) { pte = pte_alloc_one_kernel(NULL); if (!pte) { kvm_err("Cannot allocate Hyp pte\n"); return -ENOMEM; } kvm_pmd_populate(pmd, pte); get_page(virt_to_page(pmd)); } next = pmd_addr_end(addr, end); create_hyp_pte_mappings(pmd, addr, next, pfn, prot); pfn += (next - addr) >> PAGE_SHIFT; } while (addr = next, addr != end); return 0; } static int create_hyp_pud_mappings(p4d_t *p4d, unsigned long start, unsigned long end, unsigned long pfn, pgprot_t prot) { pud_t *pud; pmd_t *pmd; unsigned long addr, next; int ret; addr = start; do { pud = pud_offset(p4d, addr); if (pud_none_or_clear_bad(pud)) { pmd = pmd_alloc_one(NULL, addr); if (!pmd) { kvm_err("Cannot allocate Hyp pmd\n"); return -ENOMEM; } kvm_pud_populate(pud, pmd); get_page(virt_to_page(pud)); } next = pud_addr_end(addr, end); ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot); if (ret) return ret; pfn += (next - addr) >> PAGE_SHIFT; } while (addr = next, addr != end); return 0; } static int create_hyp_p4d_mappings(pgd_t *pgd, unsigned long start, unsigned long end, unsigned long pfn, pgprot_t prot) { p4d_t *p4d; pud_t *pud; unsigned long addr, next; int ret; addr = start; do { p4d = p4d_offset(pgd, addr); if (p4d_none(*p4d)) { pud = pud_alloc_one(NULL, addr); if (!pud) { kvm_err("Cannot allocate Hyp pud\n"); return -ENOMEM; } kvm_p4d_populate(p4d, pud); get_page(virt_to_page(p4d)); } next = p4d_addr_end(addr, end); ret = create_hyp_pud_mappings(p4d, addr, next, pfn, prot); if (ret) return ret; pfn += (next - addr) >> PAGE_SHIFT; } while (addr = next, addr != end); return 0; } static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd, unsigned long start, unsigned long end, unsigned long pfn, pgprot_t prot) { pgd_t *pgd; p4d_t *p4d; unsigned long addr, next; int err = 0; mutex_lock(&kvm_hyp_pgd_mutex); addr = start & PAGE_MASK; end = PAGE_ALIGN(end); do { pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd); if (pgd_none(*pgd)) { p4d = p4d_alloc_one(NULL, addr); if (!p4d) { kvm_err("Cannot allocate Hyp p4d\n"); err = -ENOMEM; goto out; } kvm_pgd_populate(pgd, p4d); get_page(virt_to_page(pgd)); } next = pgd_addr_end(addr, end); err = create_hyp_p4d_mappings(pgd, addr, next, pfn, prot); if (err) goto out; pfn += (next - addr) >> PAGE_SHIFT; } while (addr = next, addr != end); out: mutex_unlock(&kvm_hyp_pgd_mutex); return err; } static phys_addr_t kvm_kaddr_to_phys(void *kaddr) { if (!is_vmalloc_addr(kaddr)) { BUG_ON(!virt_addr_valid(kaddr)); return __pa(kaddr); } else { return page_to_phys(vmalloc_to_page(kaddr)) + offset_in_page(kaddr); } } /** * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode * @from: The virtual kernel start address of the range * @to: The virtual kernel end address of the range (exclusive) * @prot: The protection to be applied to this range * * The same virtual address as the kernel virtual address is also used * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying * physical pages. */ int create_hyp_mappings(void *from, void *to, pgprot_t prot) { phys_addr_t phys_addr; unsigned long virt_addr; unsigned long start = kern_hyp_va((unsigned long)from); unsigned long end = kern_hyp_va((unsigned long)to); if (is_kernel_in_hyp_mode()) return 0; start = start & PAGE_MASK; end = PAGE_ALIGN(end); for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) { int err; phys_addr = kvm_kaddr_to_phys(from + virt_addr - start); err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD, virt_addr, virt_addr + PAGE_SIZE, __phys_to_pfn(phys_addr), prot); if (err) return err; } return 0; } static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size, unsigned long *haddr, pgprot_t prot) { pgd_t *pgd = hyp_pgd; unsigned long base; int ret = 0; mutex_lock(&kvm_hyp_pgd_mutex); /* * This assumes that we have enough space below the idmap * page to allocate our VAs. If not, the check below will * kick. A potential alternative would be to detect that * overflow and switch to an allocation above the idmap. * * The allocated size is always a multiple of PAGE_SIZE. */ size = PAGE_ALIGN(size + offset_in_page(phys_addr)); base = io_map_base - size; /* * Verify that BIT(VA_BITS - 1) hasn't been flipped by * allocating the new area, as it would indicate we've * overflowed the idmap/IO address range. */ if ((base ^ io_map_base) & BIT(VA_BITS - 1)) ret = -ENOMEM; else io_map_base = base; mutex_unlock(&kvm_hyp_pgd_mutex); if (ret) goto out; if (__kvm_cpu_uses_extended_idmap()) pgd = boot_hyp_pgd; ret = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(), base, base + size, __phys_to_pfn(phys_addr), prot); if (ret) goto out; *haddr = base + offset_in_page(phys_addr); out: return ret; } /** * create_hyp_io_mappings - Map IO into both kernel and HYP * @phys_addr: The physical start address which gets mapped * @size: Size of the region being mapped * @kaddr: Kernel VA for this mapping * @haddr: HYP VA for this mapping */ int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size, void __iomem **kaddr, void __iomem **haddr) { unsigned long addr; int ret; *kaddr = ioremap(phys_addr, size); if (!*kaddr) return -ENOMEM; if (is_kernel_in_hyp_mode()) { *haddr = *kaddr; return 0; } ret = __create_hyp_private_mapping(phys_addr, size, &addr, PAGE_HYP_DEVICE); if (ret) { iounmap(*kaddr); *kaddr = NULL; *haddr = NULL; return ret; } *haddr = (void __iomem *)addr; return 0; } /** * create_hyp_exec_mappings - Map an executable range into HYP * @phys_addr: The physical start address which gets mapped * @size: Size of the region being mapped * @haddr: HYP VA for this mapping */ int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size, void **haddr) { unsigned long addr; int ret; BUG_ON(is_kernel_in_hyp_mode()); ret = __create_hyp_private_mapping(phys_addr, size, &addr, PAGE_HYP_EXEC); if (ret) { *haddr = NULL; return ret; } *haddr = (void *)addr; return 0; } /** * kvm_init_stage2_mmu - Initialise a S2 MMU strucrure * @kvm: The pointer to the KVM structure * @mmu: The pointer to the s2 MMU structure * * Allocates only the stage-2 HW PGD level table(s) of size defined by * stage2_pgd_size(mmu->kvm). * * Note we don't need locking here as this is only called when the VM is * created, which can only be done once. */ int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu) { phys_addr_t pgd_phys; pgd_t *pgd; int cpu; if (mmu->pgd != NULL) { kvm_err("kvm_arch already initialized?\n"); return -EINVAL; } /* Allocate the HW PGD, making sure that each page gets its own refcount */ pgd = alloc_pages_exact(stage2_pgd_size(kvm), GFP_KERNEL | __GFP_ZERO); if (!pgd) return -ENOMEM; pgd_phys = virt_to_phys(pgd); if (WARN_ON(pgd_phys & ~kvm_vttbr_baddr_mask(kvm))) return -EINVAL; mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran)); if (!mmu->last_vcpu_ran) { free_pages_exact(pgd, stage2_pgd_size(kvm)); return -ENOMEM; } for_each_possible_cpu(cpu) *per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1; mmu->kvm = kvm; mmu->pgd = pgd; mmu->pgd_phys = pgd_phys; mmu->vmid.vmid_gen = 0; return 0; } static void stage2_unmap_memslot(struct kvm *kvm, struct kvm_memory_slot *memslot) { hva_t hva = memslot->userspace_addr; phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; phys_addr_t size = PAGE_SIZE * memslot->npages; hva_t reg_end = hva + size; /* * A memory region could potentially cover multiple VMAs, and any holes * between them, so iterate over all of them to find out if we should * unmap any of them. * * +--------------------------------------------+ * +---------------+----------------+ +----------------+ * | : VMA 1 | VMA 2 | | VMA 3 : | * +---------------+----------------+ +----------------+ * | memory region | * +--------------------------------------------+ */ do { struct vm_area_struct *vma = find_vma(current->mm, hva); hva_t vm_start, vm_end; if (!vma || vma->vm_start >= reg_end) break; /* * Take the intersection of this VMA with the memory region */ vm_start = max(hva, vma->vm_start); vm_end = min(reg_end, vma->vm_end); if (!(vma->vm_flags & VM_PFNMAP)) { gpa_t gpa = addr + (vm_start - memslot->userspace_addr); unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start); } hva = vm_end; } while (hva < reg_end); } /** * stage2_unmap_vm - Unmap Stage-2 RAM mappings * @kvm: The struct kvm pointer * * Go through the memregions and unmap any regular RAM * backing memory already mapped to the VM. */ void stage2_unmap_vm(struct kvm *kvm) { struct kvm_memslots *slots; struct kvm_memory_slot *memslot; int idx; idx = srcu_read_lock(&kvm->srcu); mmap_read_lock(current->mm); spin_lock(&kvm->mmu_lock); slots = kvm_memslots(kvm); kvm_for_each_memslot(memslot, slots) stage2_unmap_memslot(kvm, memslot); spin_unlock(&kvm->mmu_lock); mmap_read_unlock(current->mm); srcu_read_unlock(&kvm->srcu, idx); } void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu) { struct kvm *kvm = mmu->kvm; void *pgd = NULL; spin_lock(&kvm->mmu_lock); if (mmu->pgd) { unmap_stage2_range(mmu, 0, kvm_phys_size(kvm)); pgd = READ_ONCE(mmu->pgd); mmu->pgd = NULL; } spin_unlock(&kvm->mmu_lock); /* Free the HW pgd, one page at a time */ if (pgd) { free_pages_exact(pgd, stage2_pgd_size(kvm)); free_percpu(mmu->last_vcpu_ran); } } static p4d_t *stage2_get_p4d(struct kvm_s2_mmu *mmu, struct kvm_mmu_memory_cache *cache, phys_addr_t addr) { struct kvm *kvm = mmu->kvm; pgd_t *pgd; p4d_t *p4d; pgd = mmu->pgd + stage2_pgd_index(kvm, addr); if (stage2_pgd_none(kvm, *pgd)) { if (!cache) return NULL; p4d = kvm_mmu_memory_cache_alloc(cache); stage2_pgd_populate(kvm, pgd, p4d); get_page(virt_to_page(pgd)); } return stage2_p4d_offset(kvm, pgd, addr); } static pud_t *stage2_get_pud(struct kvm_s2_mmu *mmu, struct kvm_mmu_memory_cache *cache, phys_addr_t addr) { struct kvm *kvm = mmu->kvm; p4d_t *p4d; pud_t *pud; p4d = stage2_get_p4d(mmu, cache, addr); if (stage2_p4d_none(kvm, *p4d)) { if (!cache) return NULL; pud = kvm_mmu_memory_cache_alloc(cache); stage2_p4d_populate(kvm, p4d, pud); get_page(virt_to_page(p4d)); } return stage2_pud_offset(kvm, p4d, addr); } static pmd_t *stage2_get_pmd(struct kvm_s2_mmu *mmu, struct kvm_mmu_memory_cache *cache, phys_addr_t addr) { struct kvm *kvm = mmu->kvm; pud_t *pud; pmd_t *pmd; pud = stage2_get_pud(mmu, cache, addr); if (!pud || stage2_pud_huge(kvm, *pud)) return NULL; if (stage2_pud_none(kvm, *pud)) { if (!cache) return NULL; pmd = kvm_mmu_memory_cache_alloc(cache); stage2_pud_populate(kvm, pud, pmd); get_page(virt_to_page(pud)); } return stage2_pmd_offset(kvm, pud, addr); } static int stage2_set_pmd_huge(struct kvm_s2_mmu *mmu, struct kvm_mmu_memory_cache *cache, phys_addr_t addr, const pmd_t *new_pmd) { pmd_t *pmd, old_pmd; retry: pmd = stage2_get_pmd(mmu, cache, addr); VM_BUG_ON(!pmd); old_pmd = *pmd; /* * Multiple vcpus faulting on the same PMD entry, can * lead to them sequentially updating the PMD with the * same value. Following the break-before-make * (pmd_clear() followed by tlb_flush()) process can * hinder forward progress due to refaults generated * on missing translations. * * Skip updating the page table if the entry is * unchanged. */ if (pmd_val(old_pmd) == pmd_val(*new_pmd)) return 0; if (pmd_present(old_pmd)) { /* * If we already have PTE level mapping for this block, * we must unmap it to avoid inconsistent TLB state and * leaking the table page. We could end up in this situation * if the memory slot was marked for dirty logging and was * reverted, leaving PTE level mappings for the pages accessed * during the period. So, unmap the PTE level mapping for this * block and retry, as we could have released the upper level * table in the process. * * Normal THP split/merge follows mmu_notifier callbacks and do * get handled accordingly. */ if (!pmd_thp_or_huge(old_pmd)) { unmap_stage2_range(mmu, addr & S2_PMD_MASK, S2_PMD_SIZE); goto retry; } /* * Mapping in huge pages should only happen through a * fault. If a page is merged into a transparent huge * page, the individual subpages of that huge page * should be unmapped through MMU notifiers before we * get here. * * Merging of CompoundPages is not supported; they * should become splitting first, unmapped, merged, * and mapped back in on-demand. */ WARN_ON_ONCE(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd)); pmd_clear(pmd); kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PMD_LEVEL); } else { get_page(virt_to_page(pmd)); } kvm_set_pmd(pmd, *new_pmd); return 0; } static int stage2_set_pud_huge(struct kvm_s2_mmu *mmu, struct kvm_mmu_memory_cache *cache, phys_addr_t addr, const pud_t *new_pudp) { struct kvm *kvm = mmu->kvm; pud_t *pudp, old_pud; retry: pudp = stage2_get_pud(mmu, cache, addr); VM_BUG_ON(!pudp); old_pud = *pudp; /* * A large number of vcpus faulting on the same stage 2 entry, * can lead to a refault due to the stage2_pud_clear()/tlb_flush(). * Skip updating the page tables if there is no change. */ if (pud_val(old_pud) == pud_val(*new_pudp)) return 0; if (stage2_pud_present(kvm, old_pud)) { /* * If we already have table level mapping for this block, unmap * the range for this block and retry. */ if (!stage2_pud_huge(kvm, old_pud)) { unmap_stage2_range(mmu, addr & S2_PUD_MASK, S2_PUD_SIZE); goto retry; } WARN_ON_ONCE(kvm_pud_pfn(old_pud) != kvm_pud_pfn(*new_pudp)); stage2_pud_clear(kvm, pudp); kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PUD_LEVEL); } else { get_page(virt_to_page(pudp)); } kvm_set_pud(pudp, *new_pudp); return 0; } /* * stage2_get_leaf_entry - walk the stage2 VM page tables and return * true if a valid and present leaf-entry is found. A pointer to the * leaf-entry is returned in the appropriate level variable - pudpp, * pmdpp, ptepp. */ static bool stage2_get_leaf_entry(struct kvm_s2_mmu *mmu, phys_addr_t addr, pud_t **pudpp, pmd_t **pmdpp, pte_t **ptepp) { struct kvm *kvm = mmu->kvm; pud_t *pudp; pmd_t *pmdp; pte_t *ptep; *pudpp = NULL; *pmdpp = NULL; *ptepp = NULL; pudp = stage2_get_pud(mmu, NULL, addr); if (!pudp || stage2_pud_none(kvm, *pudp) || !stage2_pud_present(kvm, *pudp)) return false; if (stage2_pud_huge(kvm, *pudp)) { *pudpp = pudp; return true; } pmdp = stage2_pmd_offset(kvm, pudp, addr); if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp)) return false; if (pmd_thp_or_huge(*pmdp)) { *pmdpp = pmdp; return true; } ptep = pte_offset_kernel(pmdp, addr); if (!ptep || pte_none(*ptep) || !pte_present(*ptep)) return false; *ptepp = ptep; return true; } static bool stage2_is_exec(struct kvm_s2_mmu *mmu, phys_addr_t addr, unsigned long sz) { pud_t *pudp; pmd_t *pmdp; pte_t *ptep; bool found; found = stage2_get_leaf_entry(mmu, addr, &pudp, &pmdp, &ptep); if (!found) return false; if (pudp) return sz <= PUD_SIZE && kvm_s2pud_exec(pudp); else if (pmdp) return sz <= PMD_SIZE && kvm_s2pmd_exec(pmdp); else return sz == PAGE_SIZE && kvm_s2pte_exec(ptep); } static int stage2_set_pte(struct kvm_s2_mmu *mmu, struct kvm_mmu_memory_cache *cache, phys_addr_t addr, const pte_t *new_pte, unsigned long flags) { struct kvm *kvm = mmu->kvm; pud_t *pud; pmd_t *pmd; pte_t *pte, old_pte; bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP; bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE; VM_BUG_ON(logging_active && !cache); /* Create stage-2 page table mapping - Levels 0 and 1 */ pud = stage2_get_pud(mmu, cache, addr); if (!pud) { /* * Ignore calls from kvm_set_spte_hva for unallocated * address ranges. */ return 0; } /* * While dirty page logging - dissolve huge PUD, then continue * on to allocate page. */ if (logging_active) stage2_dissolve_pud(mmu, addr, pud); if (stage2_pud_none(kvm, *pud)) { if (!cache) return 0; /* ignore calls from kvm_set_spte_hva */ pmd = kvm_mmu_memory_cache_alloc(cache); stage2_pud_populate(kvm, pud, pmd); get_page(virt_to_page(pud)); } pmd = stage2_pmd_offset(kvm, pud, addr); if (!pmd) { /* * Ignore calls from kvm_set_spte_hva for unallocated * address ranges. */ return 0; } /* * While dirty page logging - dissolve huge PMD, then continue on to * allocate page. */ if (logging_active) stage2_dissolve_pmd(mmu, addr, pmd); /* Create stage-2 page mappings - Level 2 */ if (pmd_none(*pmd)) { if (!cache) return 0; /* ignore calls from kvm_set_spte_hva */ pte = kvm_mmu_memory_cache_alloc(cache); kvm_pmd_populate(pmd, pte); get_page(virt_to_page(pmd)); } pte = pte_offset_kernel(pmd, addr); if (iomap && pte_present(*pte)) return -EFAULT; /* Create 2nd stage page table mapping - Level 3 */ old_pte = *pte; if (pte_present(old_pte)) { /* Skip page table update if there is no change */ if (pte_val(old_pte) == pte_val(*new_pte)) return 0; kvm_set_pte(pte, __pte(0)); kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PTE_LEVEL); } else { get_page(virt_to_page(pte)); } kvm_set_pte(pte, *new_pte); return 0; } #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG static int stage2_ptep_test_and_clear_young(pte_t *pte) { if (pte_young(*pte)) { *pte = pte_mkold(*pte); return 1; } return 0; } #else static int stage2_ptep_test_and_clear_young(pte_t *pte) { return __ptep_test_and_clear_young(pte); } #endif static int stage2_pmdp_test_and_clear_young(pmd_t *pmd) { return stage2_ptep_test_and_clear_young((pte_t *)pmd); } static int stage2_pudp_test_and_clear_young(pud_t *pud) { return stage2_ptep_test_and_clear_young((pte_t *)pud); } /** * kvm_phys_addr_ioremap - map a device range to guest IPA * * @kvm: The KVM pointer * @guest_ipa: The IPA at which to insert the mapping * @pa: The physical address of the device * @size: The size of the mapping */ int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, phys_addr_t pa, unsigned long size, bool writable) { phys_addr_t addr, end; int ret = 0; unsigned long pfn; struct kvm_mmu_memory_cache cache = { 0, __GFP_ZERO, NULL, }; end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK; pfn = __phys_to_pfn(pa); for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) { pte_t pte = kvm_pfn_pte(pfn, PAGE_S2_DEVICE); if (writable) pte = kvm_s2pte_mkwrite(pte); ret = kvm_mmu_topup_memory_cache(&cache, kvm_mmu_cache_min_pages(kvm)); if (ret) goto out; spin_lock(&kvm->mmu_lock); ret = stage2_set_pte(&kvm->arch.mmu, &cache, addr, &pte, KVM_S2PTE_FLAG_IS_IOMAP); spin_unlock(&kvm->mmu_lock); if (ret) goto out; pfn++; } out: kvm_mmu_free_memory_cache(&cache); return ret; } /** * stage2_wp_ptes - write protect PMD range * @pmd: pointer to pmd entry * @addr: range start address * @end: range end address */ static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end) { pte_t *pte; pte = pte_offset_kernel(pmd, addr); do { if (!pte_none(*pte)) { if (!kvm_s2pte_readonly(pte)) kvm_set_s2pte_readonly(pte); } } while (pte++, addr += PAGE_SIZE, addr != end); } /** * stage2_wp_pmds - write protect PUD range * kvm: kvm instance for the VM * @pud: pointer to pud entry * @addr: range start address * @end: range end address */ static void stage2_wp_pmds(struct kvm_s2_mmu *mmu, pud_t *pud, phys_addr_t addr, phys_addr_t end) { struct kvm *kvm = mmu->kvm; pmd_t *pmd; phys_addr_t next; pmd = stage2_pmd_offset(kvm, pud, addr); do { next = stage2_pmd_addr_end(kvm, addr, end); if (!pmd_none(*pmd)) { if (pmd_thp_or_huge(*pmd)) { if (!kvm_s2pmd_readonly(pmd)) kvm_set_s2pmd_readonly(pmd); } else { stage2_wp_ptes(pmd, addr, next); } } } while (pmd++, addr = next, addr != end); } /** * stage2_wp_puds - write protect P4D range * @p4d: pointer to p4d entry * @addr: range start address * @end: range end address */ static void stage2_wp_puds(struct kvm_s2_mmu *mmu, p4d_t *p4d, phys_addr_t addr, phys_addr_t end) { struct kvm *kvm = mmu->kvm; pud_t *pud; phys_addr_t next; pud = stage2_pud_offset(kvm, p4d, addr); do { next = stage2_pud_addr_end(kvm, addr, end); if (!stage2_pud_none(kvm, *pud)) { if (stage2_pud_huge(kvm, *pud)) { if (!kvm_s2pud_readonly(pud)) kvm_set_s2pud_readonly(pud); } else { stage2_wp_pmds(mmu, pud, addr, next); } } } while (pud++, addr = next, addr != end); } /** * stage2_wp_p4ds - write protect PGD range * @pgd: pointer to pgd entry * @addr: range start address * @end: range end address */ static void stage2_wp_p4ds(struct kvm_s2_mmu *mmu, pgd_t *pgd, phys_addr_t addr, phys_addr_t end) { struct kvm *kvm = mmu->kvm; p4d_t *p4d; phys_addr_t next; p4d = stage2_p4d_offset(kvm, pgd, addr); do { next = stage2_p4d_addr_end(kvm, addr, end); if (!stage2_p4d_none(kvm, *p4d)) stage2_wp_puds(mmu, p4d, addr, next); } while (p4d++, addr = next, addr != end); } /** * stage2_wp_range() - write protect stage2 memory region range * @kvm: The KVM pointer * @addr: Start address of range * @end: End address of range */ static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end) { struct kvm *kvm = mmu->kvm; pgd_t *pgd; phys_addr_t next; pgd = mmu->pgd + stage2_pgd_index(kvm, addr); do { /* * Release kvm_mmu_lock periodically if the memory region is * large. Otherwise, we may see kernel panics with * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR, * CONFIG_LOCKDEP. Additionally, holding the lock too long * will also starve other vCPUs. We have to also make sure * that the page tables are not freed while we released * the lock. */ cond_resched_lock(&kvm->mmu_lock); if (!READ_ONCE(mmu->pgd)) break; next = stage2_pgd_addr_end(kvm, addr, end); if (stage2_pgd_present(kvm, *pgd)) stage2_wp_p4ds(mmu, pgd, addr, next); } while (pgd++, addr = next, addr != end); } /** * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot * @kvm: The KVM pointer * @slot: The memory slot to write protect * * Called to start logging dirty pages after memory region * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns * all present PUD, PMD and PTEs are write protected in the memory region. * Afterwards read of dirty page log can be called. * * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired, * serializing operations for VM memory regions. */ void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot) { struct kvm_memslots *slots = kvm_memslots(kvm); struct kvm_memory_slot *memslot = id_to_memslot(slots, slot); phys_addr_t start, end; if (WARN_ON_ONCE(!memslot)) return; start = memslot->base_gfn << PAGE_SHIFT; end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT; spin_lock(&kvm->mmu_lock); stage2_wp_range(&kvm->arch.mmu, start, end); spin_unlock(&kvm->mmu_lock); kvm_flush_remote_tlbs(kvm); } /** * kvm_mmu_write_protect_pt_masked() - write protect dirty pages * @kvm: The KVM pointer * @slot: The memory slot associated with mask * @gfn_offset: The gfn offset in memory slot * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory * slot to be write protected * * Walks bits set in mask write protects the associated pte's. Caller must * acquire kvm_mmu_lock. */ static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, struct kvm_memory_slot *slot, gfn_t gfn_offset, unsigned long mask) { phys_addr_t base_gfn = slot->base_gfn + gfn_offset; phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT; phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT; stage2_wp_range(&kvm->arch.mmu, start, end); } /* * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected * dirty pages. * * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to * enable dirty logging for them. */ void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, struct kvm_memory_slot *slot, gfn_t gfn_offset, unsigned long mask) { kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); } static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size) { __clean_dcache_guest_page(pfn, size); } static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size) { __invalidate_icache_guest_page(pfn, size); } static void kvm_send_hwpoison_signal(unsigned long address, short lsb) { send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current); } static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot, unsigned long hva, unsigned long map_size) { gpa_t gpa_start; hva_t uaddr_start, uaddr_end; size_t size; /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */ if (map_size == PAGE_SIZE) return true; size = memslot->npages * PAGE_SIZE; gpa_start = memslot->base_gfn << PAGE_SHIFT; uaddr_start = memslot->userspace_addr; uaddr_end = uaddr_start + size; /* * Pages belonging to memslots that don't have the same alignment * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2 * PMD/PUD entries, because we'll end up mapping the wrong pages. * * Consider a layout like the following: * * memslot->userspace_addr: * +-----+--------------------+--------------------+---+ * |abcde|fgh Stage-1 block | Stage-1 block tv|xyz| * +-----+--------------------+--------------------+---+ * * memslot->base_gfn << PAGE_SHIFT: * +---+--------------------+--------------------+-----+ * |abc|def Stage-2 block | Stage-2 block |tvxyz| * +---+--------------------+--------------------+-----+ * * If we create those stage-2 blocks, we'll end up with this incorrect * mapping: * d -> f * e -> g * f -> h */ if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1))) return false; /* * Next, let's make sure we're not trying to map anything not covered * by the memslot. This means we have to prohibit block size mappings * for the beginning and end of a non-block aligned and non-block sized * memory slot (illustrated by the head and tail parts of the * userspace view above containing pages 'abcde' and 'xyz', * respectively). * * Note that it doesn't matter if we do the check using the * userspace_addr or the base_gfn, as both are equally aligned (per * the check above) and equally sized. */ return (hva & ~(map_size - 1)) >= uaddr_start && (hva & ~(map_size - 1)) + map_size <= uaddr_end; } /* * Check if the given hva is backed by a transparent huge page (THP) and * whether it can be mapped using block mapping in stage2. If so, adjust * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently * supported. This will need to be updated to support other THP sizes. * * Returns the size of the mapping. */ static unsigned long transparent_hugepage_adjust(struct kvm_memory_slot *memslot, unsigned long hva, kvm_pfn_t *pfnp, phys_addr_t *ipap) { kvm_pfn_t pfn = *pfnp; /* * Make sure the adjustment is done only for THP pages. Also make * sure that the HVA and IPA are sufficiently aligned and that the * block map is contained within the memslot. */ if (kvm_is_transparent_hugepage(pfn) && fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) { /* * The address we faulted on is backed by a transparent huge * page. However, because we map the compound huge page and * not the individual tail page, we need to transfer the * refcount to the head page. We have to be careful that the * THP doesn't start to split while we are adjusting the * refcounts. * * We are sure this doesn't happen, because mmu_notifier_retry * was successful and we are holding the mmu_lock, so if this * THP is trying to split, it will be blocked in the mmu * notifier before touching any of the pages, specifically * before being able to call __split_huge_page_refcount(). * * We can therefore safely transfer the refcount from PG_tail * to PG_head and switch the pfn from a tail page to the head * page accordingly. */ *ipap &= PMD_MASK; kvm_release_pfn_clean(pfn); pfn &= ~(PTRS_PER_PMD - 1); kvm_get_pfn(pfn); *pfnp = pfn; return PMD_SIZE; } /* Use page mapping if we cannot use block mapping. */ return PAGE_SIZE; } static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, struct kvm_memory_slot *memslot, unsigned long hva, unsigned long fault_status) { int ret; bool write_fault, writable, force_pte = false; bool exec_fault, needs_exec; unsigned long mmu_seq; gfn_t gfn = fault_ipa >> PAGE_SHIFT; struct kvm *kvm = vcpu->kvm; struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; struct vm_area_struct *vma; short vma_shift; kvm_pfn_t pfn; pgprot_t mem_type = PAGE_S2; bool logging_active = memslot_is_logging(memslot); unsigned long vma_pagesize, flags = 0; struct kvm_s2_mmu *mmu = vcpu->arch.hw_mmu; write_fault = kvm_is_write_fault(vcpu); exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu); VM_BUG_ON(write_fault && exec_fault); if (fault_status == FSC_PERM && !write_fault && !exec_fault) { kvm_err("Unexpected L2 read permission error\n"); return -EFAULT; } /* Let's check if we will get back a huge page backed by hugetlbfs */ mmap_read_lock(current->mm); vma = find_vma_intersection(current->mm, hva, hva + 1); if (unlikely(!vma)) { kvm_err("Failed to find VMA for hva 0x%lx\n", hva); mmap_read_unlock(current->mm); return -EFAULT; } if (is_vm_hugetlb_page(vma)) vma_shift = huge_page_shift(hstate_vma(vma)); else vma_shift = PAGE_SHIFT; vma_pagesize = 1ULL << vma_shift; if (logging_active || (vma->vm_flags & VM_PFNMAP) || !fault_supports_stage2_huge_mapping(memslot, hva, vma_pagesize)) { force_pte = true; vma_pagesize = PAGE_SIZE; vma_shift = PAGE_SHIFT; } /* * The stage2 has a minimum of 2 level table (For arm64 see * kvm_arm_setup_stage2()). Hence, we are guaranteed that we can * use PMD_SIZE huge mappings (even when the PMD is folded into PGD). * As for PUD huge maps, we must make sure that we have at least * 3 levels, i.e, PMD is not folded. */ if (vma_pagesize == PMD_SIZE || (vma_pagesize == PUD_SIZE && kvm_stage2_has_pmd(kvm))) gfn = (fault_ipa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT; mmap_read_unlock(current->mm); /* We need minimum second+third level pages */ ret = kvm_mmu_topup_memory_cache(memcache, kvm_mmu_cache_min_pages(kvm)); if (ret) return ret; mmu_seq = vcpu->kvm->mmu_notifier_seq; /* * Ensure the read of mmu_notifier_seq happens before we call * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk * the page we just got a reference to gets unmapped before we have a * chance to grab the mmu_lock, which ensure that if the page gets * unmapped afterwards, the call to kvm_unmap_hva will take it away * from us again properly. This smp_rmb() interacts with the smp_wmb() * in kvm_mmu_notifier_invalidate_<page|range_end>. */ smp_rmb(); pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable); if (pfn == KVM_PFN_ERR_HWPOISON) { kvm_send_hwpoison_signal(hva, vma_shift); return 0; } if (is_error_noslot_pfn(pfn)) return -EFAULT; if (kvm_is_device_pfn(pfn)) { mem_type = PAGE_S2_DEVICE; flags |= KVM_S2PTE_FLAG_IS_IOMAP; } else if (logging_active) { /* * Faults on pages in a memslot with logging enabled * should not be mapped with huge pages (it introduces churn * and performance degradation), so force a pte mapping. */ flags |= KVM_S2_FLAG_LOGGING_ACTIVE; /* * Only actually map the page as writable if this was a write * fault. */ if (!write_fault) writable = false; } if (exec_fault && is_iomap(flags)) return -ENOEXEC; spin_lock(&kvm->mmu_lock); if (mmu_notifier_retry(kvm, mmu_seq)) goto out_unlock; /* * If we are not forced to use page mapping, check if we are * backed by a THP and thus use block mapping if possible. */ if (vma_pagesize == PAGE_SIZE && !force_pte) vma_pagesize = transparent_hugepage_adjust(memslot, hva, &pfn, &fault_ipa); if (writable) kvm_set_pfn_dirty(pfn); if (fault_status != FSC_PERM && !is_iomap(flags)) clean_dcache_guest_page(pfn, vma_pagesize); if (exec_fault) invalidate_icache_guest_page(pfn, vma_pagesize); /* * If we took an execution fault we have made the * icache/dcache coherent above and should now let the s2 * mapping be executable. * * Write faults (!exec_fault && FSC_PERM) are orthogonal to * execute permissions, and we preserve whatever we have. */ needs_exec = exec_fault || (fault_status == FSC_PERM && stage2_is_exec(mmu, fault_ipa, vma_pagesize)); /* * If PUD_SIZE == PMD_SIZE, there is no real PUD level, and * all we have is a 2-level page table. Trying to map a PUD in * this case would be fatally wrong. */ if (PUD_SIZE != PMD_SIZE && vma_pagesize == PUD_SIZE) { pud_t new_pud = kvm_pfn_pud(pfn, mem_type); new_pud = kvm_pud_mkhuge(new_pud); if (writable) new_pud = kvm_s2pud_mkwrite(new_pud); if (needs_exec) new_pud = kvm_s2pud_mkexec(new_pud); ret = stage2_set_pud_huge(mmu, memcache, fault_ipa, &new_pud); } else if (vma_pagesize == PMD_SIZE) { pmd_t new_pmd = kvm_pfn_pmd(pfn, mem_type); new_pmd = kvm_pmd_mkhuge(new_pmd); if (writable) new_pmd = kvm_s2pmd_mkwrite(new_pmd); if (needs_exec) new_pmd = kvm_s2pmd_mkexec(new_pmd); ret = stage2_set_pmd_huge(mmu, memcache, fault_ipa, &new_pmd); } else { pte_t new_pte = kvm_pfn_pte(pfn, mem_type); if (writable) { new_pte = kvm_s2pte_mkwrite(new_pte); mark_page_dirty(kvm, gfn); } if (needs_exec) new_pte = kvm_s2pte_mkexec(new_pte); ret = stage2_set_pte(mmu, memcache, fault_ipa, &new_pte, flags); } out_unlock: spin_unlock(&kvm->mmu_lock); kvm_set_pfn_accessed(pfn); kvm_release_pfn_clean(pfn); return ret; } /* * Resolve the access fault by making the page young again. * Note that because the faulting entry is guaranteed not to be * cached in the TLB, we don't need to invalidate anything. * Only the HW Access Flag updates are supported for Stage 2 (no DBM), * so there is no need for atomic (pte|pmd)_mkyoung operations. */ static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa) { pud_t *pud; pmd_t *pmd; pte_t *pte; kvm_pfn_t pfn; bool pfn_valid = false; trace_kvm_access_fault(fault_ipa); spin_lock(&vcpu->kvm->mmu_lock); if (!stage2_get_leaf_entry(vcpu->arch.hw_mmu, fault_ipa, &pud, &pmd, &pte)) goto out; if (pud) { /* HugeTLB */ *pud = kvm_s2pud_mkyoung(*pud); pfn = kvm_pud_pfn(*pud); pfn_valid = true; } else if (pmd) { /* THP, HugeTLB */ *pmd = pmd_mkyoung(*pmd); pfn = pmd_pfn(*pmd); pfn_valid = true; } else { *pte = pte_mkyoung(*pte); /* Just a page... */ pfn = pte_pfn(*pte); pfn_valid = true; } out: spin_unlock(&vcpu->kvm->mmu_lock); if (pfn_valid) kvm_set_pfn_accessed(pfn); } /** * kvm_handle_guest_abort - handles all 2nd stage aborts * @vcpu: the VCPU pointer * * Any abort that gets to the host is almost guaranteed to be caused by a * missing second stage translation table entry, which can mean that either the * guest simply needs more memory and we must allocate an appropriate page or it * can mean that the guest tried to access I/O memory, which is emulated by user * space. The distinction is based on the IPA causing the fault and whether this * memory region has been registered as standard RAM by user space. */ int kvm_handle_guest_abort(struct kvm_vcpu *vcpu) { unsigned long fault_status; phys_addr_t fault_ipa; struct kvm_memory_slot *memslot; unsigned long hva; bool is_iabt, write_fault, writable; gfn_t gfn; int ret, idx; fault_status = kvm_vcpu_trap_get_fault_type(vcpu); fault_ipa = kvm_vcpu_get_fault_ipa(vcpu); is_iabt = kvm_vcpu_trap_is_iabt(vcpu); /* Synchronous External Abort? */ if (kvm_vcpu_abt_issea(vcpu)) { /* * For RAS the host kernel may handle this abort. * There is no need to pass the error into the guest. */ if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu))) kvm_inject_vabt(vcpu); return 1; } trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu), kvm_vcpu_get_hfar(vcpu), fault_ipa); /* Check the stage-2 fault is trans. fault or write fault */ if (fault_status != FSC_FAULT && fault_status != FSC_PERM && fault_status != FSC_ACCESS) { kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n", kvm_vcpu_trap_get_class(vcpu), (unsigned long)kvm_vcpu_trap_get_fault(vcpu), (unsigned long)kvm_vcpu_get_esr(vcpu)); return -EFAULT; } idx = srcu_read_lock(&vcpu->kvm->srcu); gfn = fault_ipa >> PAGE_SHIFT; memslot = gfn_to_memslot(vcpu->kvm, gfn); hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable); write_fault = kvm_is_write_fault(vcpu); if (kvm_is_error_hva(hva) || (write_fault && !writable)) { /* * The guest has put either its instructions or its page-tables * somewhere it shouldn't have. Userspace won't be able to do * anything about this (there's no syndrome for a start), so * re-inject the abort back into the guest. */ if (is_iabt) { ret = -ENOEXEC; goto out; } if (kvm_vcpu_abt_iss1tw(vcpu)) { kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu)); ret = 1; goto out_unlock; } /* * Check for a cache maintenance operation. Since we * ended-up here, we know it is outside of any memory * slot. But we can't find out if that is for a device, * or if the guest is just being stupid. The only thing * we know for sure is that this range cannot be cached. * * So let's assume that the guest is just being * cautious, and skip the instruction. */ if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) { kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu)); ret = 1; goto out_unlock; } /* * The IPA is reported as [MAX:12], so we need to * complement it with the bottom 12 bits from the * faulting VA. This is always 12 bits, irrespective * of the page size. */ fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1); ret = io_mem_abort(vcpu, fault_ipa); goto out_unlock; } /* Userspace should not be able to register out-of-bounds IPAs */ VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm)); if (fault_status == FSC_ACCESS) { handle_access_fault(vcpu, fault_ipa); ret = 1; goto out_unlock; } ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status); if (ret == 0) ret = 1; out: if (ret == -ENOEXEC) { kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu)); ret = 1; } out_unlock: srcu_read_unlock(&vcpu->kvm->srcu, idx); return ret; } static int handle_hva_to_gpa(struct kvm *kvm, unsigned long start, unsigned long end, int (*handler)(struct kvm *kvm, gpa_t gpa, u64 size, void *data), void *data) { struct kvm_memslots *slots; struct kvm_memory_slot *memslot; int ret = 0; slots = kvm_memslots(kvm); /* we only care about the pages that the guest sees */ kvm_for_each_memslot(memslot, slots) { unsigned long hva_start, hva_end; gfn_t gpa; hva_start = max(start, memslot->userspace_addr); hva_end = min(end, memslot->userspace_addr + (memslot->npages << PAGE_SHIFT)); if (hva_start >= hva_end) continue; gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT; ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data); } return ret; } static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data) { unsigned flags = *(unsigned *)data; bool may_block = flags & MMU_NOTIFIER_RANGE_BLOCKABLE; __unmap_stage2_range(&kvm->arch.mmu, gpa, size, may_block); return 0; } int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end, unsigned flags) { if (!kvm->arch.mmu.pgd) return 0; trace_kvm_unmap_hva_range(start, end); handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, &flags); return 0; } static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data) { pte_t *pte = (pte_t *)data; WARN_ON(size != PAGE_SIZE); /* * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE * flag clear because MMU notifiers will have unmapped a huge PMD before * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and * therefore stage2_set_pte() never needs to clear out a huge PMD * through this calling path. */ stage2_set_pte(&kvm->arch.mmu, NULL, gpa, pte, 0); return 0; } int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) { unsigned long end = hva + PAGE_SIZE; kvm_pfn_t pfn = pte_pfn(pte); pte_t stage2_pte; if (!kvm->arch.mmu.pgd) return 0; trace_kvm_set_spte_hva(hva); /* * We've moved a page around, probably through CoW, so let's treat it * just like a translation fault and clean the cache to the PoC. */ clean_dcache_guest_page(pfn, PAGE_SIZE); stage2_pte = kvm_pfn_pte(pfn, PAGE_S2); handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte); return 0; } static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data) { pud_t *pud; pmd_t *pmd; pte_t *pte; WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE); if (!stage2_get_leaf_entry(&kvm->arch.mmu, gpa, &pud, &pmd, &pte)) return 0; if (pud) return stage2_pudp_test_and_clear_young(pud); else if (pmd) return stage2_pmdp_test_and_clear_young(pmd); else return stage2_ptep_test_and_clear_young(pte); } static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data) { pud_t *pud; pmd_t *pmd; pte_t *pte; WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE); if (!stage2_get_leaf_entry(&kvm->arch.mmu, gpa, &pud, &pmd, &pte)) return 0; if (pud) return kvm_s2pud_young(*pud); else if (pmd) return pmd_young(*pmd); else return pte_young(*pte); } int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end) { if (!kvm->arch.mmu.pgd) return 0; trace_kvm_age_hva(start, end); return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL); } int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) { if (!kvm->arch.mmu.pgd) return 0; trace_kvm_test_age_hva(hva); return handle_hva_to_gpa(kvm, hva, hva + PAGE_SIZE, kvm_test_age_hva_handler, NULL); } void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu) { kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache); } phys_addr_t kvm_mmu_get_httbr(void) { if (__kvm_cpu_uses_extended_idmap()) return virt_to_phys(merged_hyp_pgd); else return virt_to_phys(hyp_pgd); } phys_addr_t kvm_get_idmap_vector(void) { return hyp_idmap_vector; } static int kvm_map_idmap_text(pgd_t *pgd) { int err; /* Create the idmap in the boot page tables */ err = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(), hyp_idmap_start, hyp_idmap_end, __phys_to_pfn(hyp_idmap_start), PAGE_HYP_EXEC); if (err) kvm_err("Failed to idmap %lx-%lx\n", hyp_idmap_start, hyp_idmap_end); return err; } int kvm_mmu_init(void) { int err; hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start); hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE); hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end); hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE); hyp_idmap_vector = __pa_symbol(__kvm_hyp_init); /* * We rely on the linker script to ensure at build time that the HYP * init code does not cross a page boundary. */ BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK); kvm_debug("IDMAP page: %lx\n", hyp_idmap_start); kvm_debug("HYP VA range: %lx:%lx\n", kern_hyp_va(PAGE_OFFSET), kern_hyp_va((unsigned long)high_memory - 1)); if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) && hyp_idmap_start < kern_hyp_va((unsigned long)high_memory - 1) && hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) { /* * The idmap page is intersecting with the VA space, * it is not safe to continue further. */ kvm_err("IDMAP intersecting with HYP VA, unable to continue\n"); err = -EINVAL; goto out; } hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order); if (!hyp_pgd) { kvm_err("Hyp mode PGD not allocated\n"); err = -ENOMEM; goto out; } if (__kvm_cpu_uses_extended_idmap()) { boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order); if (!boot_hyp_pgd) { kvm_err("Hyp boot PGD not allocated\n"); err = -ENOMEM; goto out; } err = kvm_map_idmap_text(boot_hyp_pgd); if (err) goto out; merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); if (!merged_hyp_pgd) { kvm_err("Failed to allocate extra HYP pgd\n"); goto out; } __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd, hyp_idmap_start); } else { err = kvm_map_idmap_text(hyp_pgd); if (err) goto out; } io_map_base = hyp_idmap_start; return 0; out: free_hyp_pgds(); return err; } void kvm_arch_commit_memory_region(struct kvm *kvm, const struct kvm_userspace_memory_region *mem, struct kvm_memory_slot *old, const struct kvm_memory_slot *new, enum kvm_mr_change change) { /* * At this point memslot has been committed and there is an * allocated dirty_bitmap[], dirty pages will be tracked while the * memory slot is write protected. */ if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { /* * If we're with initial-all-set, we don't need to write * protect any pages because they're all reported as dirty. * Huge pages and normal pages will be write protect gradually. */ if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) { kvm_mmu_wp_memory_region(kvm, mem->slot); } } } int kvm_arch_prepare_memory_region(struct kvm *kvm, struct kvm_memory_slot *memslot, const struct kvm_userspace_memory_region *mem, enum kvm_mr_change change) { hva_t hva = mem->userspace_addr; hva_t reg_end = hva + mem->memory_size; bool writable = !(mem->flags & KVM_MEM_READONLY); int ret = 0; if (change != KVM_MR_CREATE && change != KVM_MR_MOVE && change != KVM_MR_FLAGS_ONLY) return 0; /* * Prevent userspace from creating a memory region outside of the IPA * space addressable by the KVM guest IPA space. */ if (memslot->base_gfn + memslot->npages >= (kvm_phys_size(kvm) >> PAGE_SHIFT)) return -EFAULT; mmap_read_lock(current->mm); /* * A memory region could potentially cover multiple VMAs, and any holes * between them, so iterate over all of them to find out if we can map * any of them right now. * * +--------------------------------------------+ * +---------------+----------------+ +----------------+ * | : VMA 1 | VMA 2 | | VMA 3 : | * +---------------+----------------+ +----------------+ * | memory region | * +--------------------------------------------+ */ do { struct vm_area_struct *vma = find_vma(current->mm, hva); hva_t vm_start, vm_end; if (!vma || vma->vm_start >= reg_end) break; /* * Take the intersection of this VMA with the memory region */ vm_start = max(hva, vma->vm_start); vm_end = min(reg_end, vma->vm_end); if (vma->vm_flags & VM_PFNMAP) { gpa_t gpa = mem->guest_phys_addr + (vm_start - mem->userspace_addr); phys_addr_t pa; pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT; pa += vm_start - vma->vm_start; /* IO region dirty page logging not allowed */ if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) { ret = -EINVAL; goto out; } ret = kvm_phys_addr_ioremap(kvm, gpa, pa, vm_end - vm_start, writable); if (ret) break; } hva = vm_end; } while (hva < reg_end); if (change == KVM_MR_FLAGS_ONLY) goto out; spin_lock(&kvm->mmu_lock); if (ret) unmap_stage2_range(&kvm->arch.mmu, mem->guest_phys_addr, mem->memory_size); else stage2_flush_memslot(kvm, memslot); spin_unlock(&kvm->mmu_lock); out: mmap_read_unlock(current->mm); return ret; } void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) { } void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) { } void kvm_arch_flush_shadow_all(struct kvm *kvm) { kvm_free_stage2_pgd(&kvm->arch.mmu); } void kvm_arch_flush_shadow_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) { gpa_t gpa = slot->base_gfn << PAGE_SHIFT; phys_addr_t size = slot->npages << PAGE_SHIFT; spin_lock(&kvm->mmu_lock); unmap_stage2_range(&kvm->arch.mmu, gpa, size); spin_unlock(&kvm->mmu_lock); } /* * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). * * Main problems: * - S/W ops are local to a CPU (not broadcast) * - We have line migration behind our back (speculation) * - System caches don't support S/W at all (damn!) * * In the face of the above, the best we can do is to try and convert * S/W ops to VA ops. Because the guest is not allowed to infer the * S/W to PA mapping, it can only use S/W to nuke the whole cache, * which is a rather good thing for us. * * Also, it is only used when turning caches on/off ("The expected * usage of the cache maintenance instructions that operate by set/way * is associated with the cache maintenance instructions associated * with the powerdown and powerup of caches, if this is required by * the implementation."). * * We use the following policy: * * - If we trap a S/W operation, we enable VM trapping to detect * caches being turned on/off, and do a full clean. * * - We flush the caches on both caches being turned on and off. * * - Once the caches are enabled, we stop trapping VM ops. */ void kvm_set_way_flush(struct kvm_vcpu *vcpu) { unsigned long hcr = *vcpu_hcr(vcpu); /* * If this is the first time we do a S/W operation * (i.e. HCR_TVM not set) flush the whole memory, and set the * VM trapping. * * Otherwise, rely on the VM trapping to wait for the MMU + * Caches to be turned off. At that point, we'll be able to * clean the caches again. */ if (!(hcr & HCR_TVM)) { trace_kvm_set_way_flush(*vcpu_pc(vcpu), vcpu_has_cache_enabled(vcpu)); stage2_flush_vm(vcpu->kvm); *vcpu_hcr(vcpu) = hcr | HCR_TVM; } } void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled) { bool now_enabled = vcpu_has_cache_enabled(vcpu); /* * If switching the MMU+caches on, need to invalidate the caches. * If switching it off, need to clean the caches. * Clean + invalidate does the trick always. */ if (now_enabled != was_enabled) stage2_flush_vm(vcpu->kvm); /* Caches are now on, stop trapping VM ops (until a S/W op) */ if (now_enabled) *vcpu_hcr(vcpu) &= ~HCR_TVM; trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1