Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Christoffer Dall | 788 | 37.35% | 12 | 36.36% |
Marc Zyngier | 704 | 33.36% | 9 | 27.27% |
Eric Auger | 455 | 21.56% | 4 | 12.12% |
Andre Przywara | 150 | 7.11% | 3 | 9.09% |
Jia He | 7 | 0.33% | 1 | 3.03% |
Julien Thierry | 2 | 0.09% | 1 | 3.03% |
Thomas Gleixner | 2 | 0.09% | 1 | 3.03% |
Alexandru Elisei | 1 | 0.05% | 1 | 3.03% |
Ard Biesheuvel | 1 | 0.05% | 1 | 3.03% |
Total | 2110 | 33 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2015, 2016 ARM Ltd. */ #include <linux/irqchip/arm-gic.h> #include <linux/kvm.h> #include <linux/kvm_host.h> #include <kvm/arm_vgic.h> #include <asm/kvm_mmu.h> #include "vgic.h" static inline void vgic_v2_write_lr(int lr, u32 val) { void __iomem *base = kvm_vgic_global_state.vctrl_base; writel_relaxed(val, base + GICH_LR0 + (lr * 4)); } void vgic_v2_init_lrs(void) { int i; for (i = 0; i < kvm_vgic_global_state.nr_lr; i++) vgic_v2_write_lr(i, 0); } void vgic_v2_set_underflow(struct kvm_vcpu *vcpu) { struct vgic_v2_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v2; cpuif->vgic_hcr |= GICH_HCR_UIE; } static bool lr_signals_eoi_mi(u32 lr_val) { return !(lr_val & GICH_LR_STATE) && (lr_val & GICH_LR_EOI) && !(lr_val & GICH_LR_HW); } /* * transfer the content of the LRs back into the corresponding ap_list: * - active bit is transferred as is * - pending bit is * - transferred as is in case of edge sensitive IRQs * - set to the line-level (resample time) for level sensitive IRQs */ void vgic_v2_fold_lr_state(struct kvm_vcpu *vcpu) { struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; struct vgic_v2_cpu_if *cpuif = &vgic_cpu->vgic_v2; int lr; DEBUG_SPINLOCK_BUG_ON(!irqs_disabled()); cpuif->vgic_hcr &= ~GICH_HCR_UIE; for (lr = 0; lr < vgic_cpu->vgic_v2.used_lrs; lr++) { u32 val = cpuif->vgic_lr[lr]; u32 cpuid, intid = val & GICH_LR_VIRTUALID; struct vgic_irq *irq; /* Extract the source vCPU id from the LR */ cpuid = val & GICH_LR_PHYSID_CPUID; cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT; cpuid &= 7; /* Notify fds when the guest EOI'ed a level-triggered SPI */ if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid)) kvm_notify_acked_irq(vcpu->kvm, 0, intid - VGIC_NR_PRIVATE_IRQS); irq = vgic_get_irq(vcpu->kvm, vcpu, intid); raw_spin_lock(&irq->irq_lock); /* Always preserve the active bit */ irq->active = !!(val & GICH_LR_ACTIVE_BIT); if (irq->active && vgic_irq_is_sgi(intid)) irq->active_source = cpuid; /* Edge is the only case where we preserve the pending bit */ if (irq->config == VGIC_CONFIG_EDGE && (val & GICH_LR_PENDING_BIT)) { irq->pending_latch = true; if (vgic_irq_is_sgi(intid)) irq->source |= (1 << cpuid); } /* * Clear soft pending state when level irqs have been acked. */ if (irq->config == VGIC_CONFIG_LEVEL && !(val & GICH_LR_STATE)) irq->pending_latch = false; /* * Level-triggered mapped IRQs are special because we only * observe rising edges as input to the VGIC. * * If the guest never acked the interrupt we have to sample * the physical line and set the line level, because the * device state could have changed or we simply need to * process the still pending interrupt later. * * If this causes us to lower the level, we have to also clear * the physical active state, since we will otherwise never be * told when the interrupt becomes asserted again. */ if (vgic_irq_is_mapped_level(irq) && (val & GICH_LR_PENDING_BIT)) { irq->line_level = vgic_get_phys_line_level(irq); if (!irq->line_level) vgic_irq_set_phys_active(irq, false); } raw_spin_unlock(&irq->irq_lock); vgic_put_irq(vcpu->kvm, irq); } cpuif->used_lrs = 0; } /* * Populates the particular LR with the state of a given IRQ: * - for an edge sensitive IRQ the pending state is cleared in struct vgic_irq * - for a level sensitive IRQ the pending state value is unchanged; * it is dictated directly by the input level * * If @irq describes an SGI with multiple sources, we choose the * lowest-numbered source VCPU and clear that bit in the source bitmap. * * The irq_lock must be held by the caller. */ void vgic_v2_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr) { u32 val = irq->intid; bool allow_pending = true; if (irq->active) { val |= GICH_LR_ACTIVE_BIT; if (vgic_irq_is_sgi(irq->intid)) val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT; if (vgic_irq_is_multi_sgi(irq)) { allow_pending = false; val |= GICH_LR_EOI; } } if (irq->group) val |= GICH_LR_GROUP1; if (irq->hw) { val |= GICH_LR_HW; val |= irq->hwintid << GICH_LR_PHYSID_CPUID_SHIFT; /* * Never set pending+active on a HW interrupt, as the * pending state is kept at the physical distributor * level. */ if (irq->active) allow_pending = false; } else { if (irq->config == VGIC_CONFIG_LEVEL) { val |= GICH_LR_EOI; /* * Software resampling doesn't work very well * if we allow P+A, so let's not do that. */ if (irq->active) allow_pending = false; } } if (allow_pending && irq_is_pending(irq)) { val |= GICH_LR_PENDING_BIT; if (irq->config == VGIC_CONFIG_EDGE) irq->pending_latch = false; if (vgic_irq_is_sgi(irq->intid)) { u32 src = ffs(irq->source); if (WARN_RATELIMIT(!src, "No SGI source for INTID %d\n", irq->intid)) return; val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT; irq->source &= ~(1 << (src - 1)); if (irq->source) { irq->pending_latch = true; val |= GICH_LR_EOI; } } } /* * Level-triggered mapped IRQs are special because we only observe * rising edges as input to the VGIC. We therefore lower the line * level here, so that we can take new virtual IRQs. See * vgic_v2_fold_lr_state for more info. */ if (vgic_irq_is_mapped_level(irq) && (val & GICH_LR_PENDING_BIT)) irq->line_level = false; /* The GICv2 LR only holds five bits of priority. */ val |= (irq->priority >> 3) << GICH_LR_PRIORITY_SHIFT; vcpu->arch.vgic_cpu.vgic_v2.vgic_lr[lr] = val; } void vgic_v2_clear_lr(struct kvm_vcpu *vcpu, int lr) { vcpu->arch.vgic_cpu.vgic_v2.vgic_lr[lr] = 0; } void vgic_v2_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp) { struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2; u32 vmcr; vmcr = (vmcrp->grpen0 << GICH_VMCR_ENABLE_GRP0_SHIFT) & GICH_VMCR_ENABLE_GRP0_MASK; vmcr |= (vmcrp->grpen1 << GICH_VMCR_ENABLE_GRP1_SHIFT) & GICH_VMCR_ENABLE_GRP1_MASK; vmcr |= (vmcrp->ackctl << GICH_VMCR_ACK_CTL_SHIFT) & GICH_VMCR_ACK_CTL_MASK; vmcr |= (vmcrp->fiqen << GICH_VMCR_FIQ_EN_SHIFT) & GICH_VMCR_FIQ_EN_MASK; vmcr |= (vmcrp->cbpr << GICH_VMCR_CBPR_SHIFT) & GICH_VMCR_CBPR_MASK; vmcr |= (vmcrp->eoim << GICH_VMCR_EOI_MODE_SHIFT) & GICH_VMCR_EOI_MODE_MASK; vmcr |= (vmcrp->abpr << GICH_VMCR_ALIAS_BINPOINT_SHIFT) & GICH_VMCR_ALIAS_BINPOINT_MASK; vmcr |= (vmcrp->bpr << GICH_VMCR_BINPOINT_SHIFT) & GICH_VMCR_BINPOINT_MASK; vmcr |= ((vmcrp->pmr >> GICV_PMR_PRIORITY_SHIFT) << GICH_VMCR_PRIMASK_SHIFT) & GICH_VMCR_PRIMASK_MASK; cpu_if->vgic_vmcr = vmcr; } void vgic_v2_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp) { struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2; u32 vmcr; vmcr = cpu_if->vgic_vmcr; vmcrp->grpen0 = (vmcr & GICH_VMCR_ENABLE_GRP0_MASK) >> GICH_VMCR_ENABLE_GRP0_SHIFT; vmcrp->grpen1 = (vmcr & GICH_VMCR_ENABLE_GRP1_MASK) >> GICH_VMCR_ENABLE_GRP1_SHIFT; vmcrp->ackctl = (vmcr & GICH_VMCR_ACK_CTL_MASK) >> GICH_VMCR_ACK_CTL_SHIFT; vmcrp->fiqen = (vmcr & GICH_VMCR_FIQ_EN_MASK) >> GICH_VMCR_FIQ_EN_SHIFT; vmcrp->cbpr = (vmcr & GICH_VMCR_CBPR_MASK) >> GICH_VMCR_CBPR_SHIFT; vmcrp->eoim = (vmcr & GICH_VMCR_EOI_MODE_MASK) >> GICH_VMCR_EOI_MODE_SHIFT; vmcrp->abpr = (vmcr & GICH_VMCR_ALIAS_BINPOINT_MASK) >> GICH_VMCR_ALIAS_BINPOINT_SHIFT; vmcrp->bpr = (vmcr & GICH_VMCR_BINPOINT_MASK) >> GICH_VMCR_BINPOINT_SHIFT; vmcrp->pmr = ((vmcr & GICH_VMCR_PRIMASK_MASK) >> GICH_VMCR_PRIMASK_SHIFT) << GICV_PMR_PRIORITY_SHIFT; } void vgic_v2_enable(struct kvm_vcpu *vcpu) { /* * By forcing VMCR to zero, the GIC will restore the binary * points to their reset values. Anything else resets to zero * anyway. */ vcpu->arch.vgic_cpu.vgic_v2.vgic_vmcr = 0; /* Get the show on the road... */ vcpu->arch.vgic_cpu.vgic_v2.vgic_hcr = GICH_HCR_EN; } /* check for overlapping regions and for regions crossing the end of memory */ static bool vgic_v2_check_base(gpa_t dist_base, gpa_t cpu_base) { if (dist_base + KVM_VGIC_V2_DIST_SIZE < dist_base) return false; if (cpu_base + KVM_VGIC_V2_CPU_SIZE < cpu_base) return false; if (dist_base + KVM_VGIC_V2_DIST_SIZE <= cpu_base) return true; if (cpu_base + KVM_VGIC_V2_CPU_SIZE <= dist_base) return true; return false; } int vgic_v2_map_resources(struct kvm *kvm) { struct vgic_dist *dist = &kvm->arch.vgic; int ret = 0; if (vgic_ready(kvm)) goto out; if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base) || IS_VGIC_ADDR_UNDEF(dist->vgic_cpu_base)) { kvm_err("Need to set vgic cpu and dist addresses first\n"); ret = -ENXIO; goto out; } if (!vgic_v2_check_base(dist->vgic_dist_base, dist->vgic_cpu_base)) { kvm_err("VGIC CPU and dist frames overlap\n"); ret = -EINVAL; goto out; } /* * Initialize the vgic if this hasn't already been done on demand by * accessing the vgic state from userspace. */ ret = vgic_init(kvm); if (ret) { kvm_err("Unable to initialize VGIC dynamic data structures\n"); goto out; } ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V2); if (ret) { kvm_err("Unable to register VGIC MMIO regions\n"); goto out; } if (!static_branch_unlikely(&vgic_v2_cpuif_trap)) { ret = kvm_phys_addr_ioremap(kvm, dist->vgic_cpu_base, kvm_vgic_global_state.vcpu_base, KVM_VGIC_V2_CPU_SIZE, true); if (ret) { kvm_err("Unable to remap VGIC CPU to VCPU\n"); goto out; } } dist->ready = true; out: return ret; } DEFINE_STATIC_KEY_FALSE(vgic_v2_cpuif_trap); /** * vgic_v2_probe - probe for a VGICv2 compatible interrupt controller * @info: pointer to the GIC description * * Returns 0 if the VGICv2 has been probed successfully, returns an error code * otherwise */ int vgic_v2_probe(const struct gic_kvm_info *info) { int ret; u32 vtr; if (!info->vctrl.start) { kvm_err("GICH not present in the firmware table\n"); return -ENXIO; } if (!PAGE_ALIGNED(info->vcpu.start) || !PAGE_ALIGNED(resource_size(&info->vcpu))) { kvm_info("GICV region size/alignment is unsafe, using trapping (reduced performance)\n"); ret = create_hyp_io_mappings(info->vcpu.start, resource_size(&info->vcpu), &kvm_vgic_global_state.vcpu_base_va, &kvm_vgic_global_state.vcpu_hyp_va); if (ret) { kvm_err("Cannot map GICV into hyp\n"); goto out; } static_branch_enable(&vgic_v2_cpuif_trap); } ret = create_hyp_io_mappings(info->vctrl.start, resource_size(&info->vctrl), &kvm_vgic_global_state.vctrl_base, &kvm_vgic_global_state.vctrl_hyp); if (ret) { kvm_err("Cannot map VCTRL into hyp\n"); goto out; } vtr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_VTR); kvm_vgic_global_state.nr_lr = (vtr & 0x3f) + 1; ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2); if (ret) { kvm_err("Cannot register GICv2 KVM device\n"); goto out; } kvm_vgic_global_state.can_emulate_gicv2 = true; kvm_vgic_global_state.vcpu_base = info->vcpu.start; kvm_vgic_global_state.type = VGIC_V2; kvm_vgic_global_state.max_gic_vcpus = VGIC_V2_MAX_CPUS; kvm_debug("vgic-v2@%llx\n", info->vctrl.start); return 0; out: if (kvm_vgic_global_state.vctrl_base) iounmap(kvm_vgic_global_state.vctrl_base); if (kvm_vgic_global_state.vcpu_base_va) iounmap(kvm_vgic_global_state.vcpu_base_va); return ret; } static void save_lrs(struct kvm_vcpu *vcpu, void __iomem *base) { struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2; u64 used_lrs = cpu_if->used_lrs; u64 elrsr; int i; elrsr = readl_relaxed(base + GICH_ELRSR0); if (unlikely(used_lrs > 32)) elrsr |= ((u64)readl_relaxed(base + GICH_ELRSR1)) << 32; for (i = 0; i < used_lrs; i++) { if (elrsr & (1UL << i)) cpu_if->vgic_lr[i] &= ~GICH_LR_STATE; else cpu_if->vgic_lr[i] = readl_relaxed(base + GICH_LR0 + (i * 4)); writel_relaxed(0, base + GICH_LR0 + (i * 4)); } } void vgic_v2_save_state(struct kvm_vcpu *vcpu) { void __iomem *base = kvm_vgic_global_state.vctrl_base; u64 used_lrs = vcpu->arch.vgic_cpu.vgic_v2.used_lrs; if (!base) return; if (used_lrs) { save_lrs(vcpu, base); writel_relaxed(0, base + GICH_HCR); } } void vgic_v2_restore_state(struct kvm_vcpu *vcpu) { struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2; void __iomem *base = kvm_vgic_global_state.vctrl_base; u64 used_lrs = cpu_if->used_lrs; int i; if (!base) return; if (used_lrs) { writel_relaxed(cpu_if->vgic_hcr, base + GICH_HCR); for (i = 0; i < used_lrs; i++) { writel_relaxed(cpu_if->vgic_lr[i], base + GICH_LR0 + (i * 4)); } } } void vgic_v2_load(struct kvm_vcpu *vcpu) { struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2; writel_relaxed(cpu_if->vgic_vmcr, kvm_vgic_global_state.vctrl_base + GICH_VMCR); writel_relaxed(cpu_if->vgic_apr, kvm_vgic_global_state.vctrl_base + GICH_APR); } void vgic_v2_vmcr_sync(struct kvm_vcpu *vcpu) { struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2; cpu_if->vgic_vmcr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_VMCR); } void vgic_v2_put(struct kvm_vcpu *vcpu) { struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2; vgic_v2_vmcr_sync(vcpu); cpu_if->vgic_apr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_APR); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1