Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David Woods | 815 | 36.71% | 1 | 3.45% |
Steve Capper | 738 | 33.24% | 9 | 31.03% |
Punit Agrawal | 271 | 12.21% | 5 | 17.24% |
Anshuman Khandual | 116 | 5.23% | 3 | 10.34% |
Will Deacon | 76 | 3.42% | 1 | 3.45% |
Mike Rapoport | 57 | 2.57% | 1 | 3.45% |
Mike Kravetz | 55 | 2.48% | 2 | 6.90% |
Allen Pais | 34 | 1.53% | 1 | 3.45% |
Linus Torvalds | 20 | 0.90% | 1 | 3.45% |
Christoffer Dall | 10 | 0.45% | 1 | 3.45% |
Mark Salter | 10 | 0.45% | 1 | 3.45% |
Mark Rutland | 8 | 0.36% | 1 | 3.45% |
Huang Shijie | 8 | 0.36% | 1 | 3.45% |
Thomas Gleixner | 2 | 0.09% | 1 | 3.45% |
Total | 2220 | 29 |
// SPDX-License-Identifier: GPL-2.0-only /* * arch/arm64/mm/hugetlbpage.c * * Copyright (C) 2013 Linaro Ltd. * * Based on arch/x86/mm/hugetlbpage.c. */ #include <linux/init.h> #include <linux/fs.h> #include <linux/mm.h> #include <linux/hugetlb.h> #include <linux/pagemap.h> #include <linux/err.h> #include <linux/sysctl.h> #include <asm/mman.h> #include <asm/tlb.h> #include <asm/tlbflush.h> /* * HugeTLB Support Matrix * * --------------------------------------------------- * | Page Size | CONT PTE | PMD | CONT PMD | PUD | * --------------------------------------------------- * | 4K | 64K | 2M | 32M | 1G | * | 16K | 2M | 32M | 1G | | * | 64K | 2M | 512M | 16G | | * --------------------------------------------------- */ /* * Reserve CMA areas for the largest supported gigantic * huge page when requested. Any other smaller gigantic * huge pages could still be served from those areas. */ #ifdef CONFIG_CMA void __init arm64_hugetlb_cma_reserve(void) { int order; #ifdef CONFIG_ARM64_4K_PAGES order = PUD_SHIFT - PAGE_SHIFT; #else order = CONT_PMD_SHIFT + PMD_SHIFT - PAGE_SHIFT; #endif /* * HugeTLB CMA reservation is required for gigantic * huge pages which could not be allocated via the * page allocator. Just warn if there is any change * breaking this assumption. */ WARN_ON(order <= MAX_ORDER); hugetlb_cma_reserve(order); } #endif /* CONFIG_CMA */ #ifdef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION bool arch_hugetlb_migration_supported(struct hstate *h) { size_t pagesize = huge_page_size(h); switch (pagesize) { #ifdef CONFIG_ARM64_4K_PAGES case PUD_SIZE: #endif case PMD_SIZE: case CONT_PMD_SIZE: case CONT_PTE_SIZE: return true; } pr_warn("%s: unrecognized huge page size 0x%lx\n", __func__, pagesize); return false; } #endif int pmd_huge(pmd_t pmd) { return pmd_val(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT); } int pud_huge(pud_t pud) { #ifndef __PAGETABLE_PMD_FOLDED return pud_val(pud) && !(pud_val(pud) & PUD_TABLE_BIT); #else return 0; #endif } /* * Select all bits except the pfn */ static inline pgprot_t pte_pgprot(pte_t pte) { unsigned long pfn = pte_pfn(pte); return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte)); } static int find_num_contig(struct mm_struct *mm, unsigned long addr, pte_t *ptep, size_t *pgsize) { pgd_t *pgdp = pgd_offset(mm, addr); p4d_t *p4dp; pud_t *pudp; pmd_t *pmdp; *pgsize = PAGE_SIZE; p4dp = p4d_offset(pgdp, addr); pudp = pud_offset(p4dp, addr); pmdp = pmd_offset(pudp, addr); if ((pte_t *)pmdp == ptep) { *pgsize = PMD_SIZE; return CONT_PMDS; } return CONT_PTES; } static inline int num_contig_ptes(unsigned long size, size_t *pgsize) { int contig_ptes = 0; *pgsize = size; switch (size) { #ifdef CONFIG_ARM64_4K_PAGES case PUD_SIZE: #endif case PMD_SIZE: contig_ptes = 1; break; case CONT_PMD_SIZE: *pgsize = PMD_SIZE; contig_ptes = CONT_PMDS; break; case CONT_PTE_SIZE: *pgsize = PAGE_SIZE; contig_ptes = CONT_PTES; break; } return contig_ptes; } /* * Changing some bits of contiguous entries requires us to follow a * Break-Before-Make approach, breaking the whole contiguous set * before we can change any entries. See ARM DDI 0487A.k_iss10775, * "Misprogramming of the Contiguous bit", page D4-1762. * * This helper performs the break step. */ static pte_t get_clear_flush(struct mm_struct *mm, unsigned long addr, pte_t *ptep, unsigned long pgsize, unsigned long ncontig) { pte_t orig_pte = huge_ptep_get(ptep); bool valid = pte_valid(orig_pte); unsigned long i, saddr = addr; for (i = 0; i < ncontig; i++, addr += pgsize, ptep++) { pte_t pte = ptep_get_and_clear(mm, addr, ptep); /* * If HW_AFDBM is enabled, then the HW could turn on * the dirty or accessed bit for any page in the set, * so check them all. */ if (pte_dirty(pte)) orig_pte = pte_mkdirty(orig_pte); if (pte_young(pte)) orig_pte = pte_mkyoung(orig_pte); } if (valid) { struct vm_area_struct vma = TLB_FLUSH_VMA(mm, 0); flush_tlb_range(&vma, saddr, addr); } return orig_pte; } /* * Changing some bits of contiguous entries requires us to follow a * Break-Before-Make approach, breaking the whole contiguous set * before we can change any entries. See ARM DDI 0487A.k_iss10775, * "Misprogramming of the Contiguous bit", page D4-1762. * * This helper performs the break step for use cases where the * original pte is not needed. */ static void clear_flush(struct mm_struct *mm, unsigned long addr, pte_t *ptep, unsigned long pgsize, unsigned long ncontig) { struct vm_area_struct vma = TLB_FLUSH_VMA(mm, 0); unsigned long i, saddr = addr; for (i = 0; i < ncontig; i++, addr += pgsize, ptep++) pte_clear(mm, addr, ptep); flush_tlb_range(&vma, saddr, addr); } void set_huge_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte) { size_t pgsize; int i; int ncontig; unsigned long pfn, dpfn; pgprot_t hugeprot; /* * Code needs to be expanded to handle huge swap and migration * entries. Needed for HUGETLB and MEMORY_FAILURE. */ WARN_ON(!pte_present(pte)); if (!pte_cont(pte)) { set_pte_at(mm, addr, ptep, pte); return; } ncontig = find_num_contig(mm, addr, ptep, &pgsize); pfn = pte_pfn(pte); dpfn = pgsize >> PAGE_SHIFT; hugeprot = pte_pgprot(pte); clear_flush(mm, addr, ptep, pgsize, ncontig); for (i = 0; i < ncontig; i++, ptep++, addr += pgsize, pfn += dpfn) set_pte_at(mm, addr, ptep, pfn_pte(pfn, hugeprot)); } void set_huge_swap_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte, unsigned long sz) { int i, ncontig; size_t pgsize; ncontig = num_contig_ptes(sz, &pgsize); for (i = 0; i < ncontig; i++, ptep++) set_pte(ptep, pte); } pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz) { pgd_t *pgdp; p4d_t *p4dp; pud_t *pudp; pmd_t *pmdp; pte_t *ptep = NULL; pgdp = pgd_offset(mm, addr); p4dp = p4d_offset(pgdp, addr); pudp = pud_alloc(mm, p4dp, addr); if (!pudp) return NULL; if (sz == PUD_SIZE) { ptep = (pte_t *)pudp; } else if (sz == (CONT_PTE_SIZE)) { pmdp = pmd_alloc(mm, pudp, addr); if (!pmdp) return NULL; WARN_ON(addr & (sz - 1)); /* * Note that if this code were ever ported to the * 32-bit arm platform then it will cause trouble in * the case where CONFIG_HIGHPTE is set, since there * will be no pte_unmap() to correspond with this * pte_alloc_map(). */ ptep = pte_alloc_map(mm, pmdp, addr); } else if (sz == PMD_SIZE) { if (IS_ENABLED(CONFIG_ARCH_WANT_HUGE_PMD_SHARE) && pud_none(READ_ONCE(*pudp))) ptep = huge_pmd_share(mm, addr, pudp); else ptep = (pte_t *)pmd_alloc(mm, pudp, addr); } else if (sz == (CONT_PMD_SIZE)) { pmdp = pmd_alloc(mm, pudp, addr); WARN_ON(addr & (sz - 1)); return (pte_t *)pmdp; } return ptep; } pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz) { pgd_t *pgdp; p4d_t *p4dp; pud_t *pudp, pud; pmd_t *pmdp, pmd; pgdp = pgd_offset(mm, addr); if (!pgd_present(READ_ONCE(*pgdp))) return NULL; p4dp = p4d_offset(pgdp, addr); if (!p4d_present(READ_ONCE(*p4dp))) return NULL; pudp = pud_offset(p4dp, addr); pud = READ_ONCE(*pudp); if (sz != PUD_SIZE && pud_none(pud)) return NULL; /* hugepage or swap? */ if (pud_huge(pud) || !pud_present(pud)) return (pte_t *)pudp; /* table; check the next level */ if (sz == CONT_PMD_SIZE) addr &= CONT_PMD_MASK; pmdp = pmd_offset(pudp, addr); pmd = READ_ONCE(*pmdp); if (!(sz == PMD_SIZE || sz == CONT_PMD_SIZE) && pmd_none(pmd)) return NULL; if (pmd_huge(pmd) || !pmd_present(pmd)) return (pte_t *)pmdp; if (sz == CONT_PTE_SIZE) return pte_offset_kernel(pmdp, (addr & CONT_PTE_MASK)); return NULL; } pte_t arch_make_huge_pte(pte_t entry, struct vm_area_struct *vma, struct page *page, int writable) { size_t pagesize = huge_page_size(hstate_vma(vma)); if (pagesize == CONT_PTE_SIZE) { entry = pte_mkcont(entry); } else if (pagesize == CONT_PMD_SIZE) { entry = pmd_pte(pmd_mkcont(pte_pmd(entry))); } else if (pagesize != PUD_SIZE && pagesize != PMD_SIZE) { pr_warn("%s: unrecognized huge page size 0x%lx\n", __func__, pagesize); } return entry; } void huge_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep, unsigned long sz) { int i, ncontig; size_t pgsize; ncontig = num_contig_ptes(sz, &pgsize); for (i = 0; i < ncontig; i++, addr += pgsize, ptep++) pte_clear(mm, addr, ptep); } pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { int ncontig; size_t pgsize; pte_t orig_pte = huge_ptep_get(ptep); if (!pte_cont(orig_pte)) return ptep_get_and_clear(mm, addr, ptep); ncontig = find_num_contig(mm, addr, ptep, &pgsize); return get_clear_flush(mm, addr, ptep, pgsize, ncontig); } /* * huge_ptep_set_access_flags will update access flags (dirty, accesssed) * and write permission. * * For a contiguous huge pte range we need to check whether or not write * permission has to change only on the first pte in the set. Then for * all the contiguous ptes we need to check whether or not there is a * discrepancy between dirty or young. */ static int __cont_access_flags_changed(pte_t *ptep, pte_t pte, int ncontig) { int i; if (pte_write(pte) != pte_write(huge_ptep_get(ptep))) return 1; for (i = 0; i < ncontig; i++) { pte_t orig_pte = huge_ptep_get(ptep + i); if (pte_dirty(pte) != pte_dirty(orig_pte)) return 1; if (pte_young(pte) != pte_young(orig_pte)) return 1; } return 0; } int huge_ptep_set_access_flags(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep, pte_t pte, int dirty) { int ncontig, i; size_t pgsize = 0; unsigned long pfn = pte_pfn(pte), dpfn; pgprot_t hugeprot; pte_t orig_pte; if (!pte_cont(pte)) return ptep_set_access_flags(vma, addr, ptep, pte, dirty); ncontig = find_num_contig(vma->vm_mm, addr, ptep, &pgsize); dpfn = pgsize >> PAGE_SHIFT; if (!__cont_access_flags_changed(ptep, pte, ncontig)) return 0; orig_pte = get_clear_flush(vma->vm_mm, addr, ptep, pgsize, ncontig); /* Make sure we don't lose the dirty or young state */ if (pte_dirty(orig_pte)) pte = pte_mkdirty(pte); if (pte_young(orig_pte)) pte = pte_mkyoung(pte); hugeprot = pte_pgprot(pte); for (i = 0; i < ncontig; i++, ptep++, addr += pgsize, pfn += dpfn) set_pte_at(vma->vm_mm, addr, ptep, pfn_pte(pfn, hugeprot)); return 1; } void huge_ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { unsigned long pfn, dpfn; pgprot_t hugeprot; int ncontig, i; size_t pgsize; pte_t pte; if (!pte_cont(READ_ONCE(*ptep))) { ptep_set_wrprotect(mm, addr, ptep); return; } ncontig = find_num_contig(mm, addr, ptep, &pgsize); dpfn = pgsize >> PAGE_SHIFT; pte = get_clear_flush(mm, addr, ptep, pgsize, ncontig); pte = pte_wrprotect(pte); hugeprot = pte_pgprot(pte); pfn = pte_pfn(pte); for (i = 0; i < ncontig; i++, ptep++, addr += pgsize, pfn += dpfn) set_pte_at(mm, addr, ptep, pfn_pte(pfn, hugeprot)); } void huge_ptep_clear_flush(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { size_t pgsize; int ncontig; if (!pte_cont(READ_ONCE(*ptep))) { ptep_clear_flush(vma, addr, ptep); return; } ncontig = find_num_contig(vma->vm_mm, addr, ptep, &pgsize); clear_flush(vma->vm_mm, addr, ptep, pgsize, ncontig); } static int __init hugetlbpage_init(void) { #ifdef CONFIG_ARM64_4K_PAGES hugetlb_add_hstate(PUD_SHIFT - PAGE_SHIFT); #endif hugetlb_add_hstate(CONT_PMD_SHIFT - PAGE_SHIFT); hugetlb_add_hstate(PMD_SHIFT - PAGE_SHIFT); hugetlb_add_hstate(CONT_PTE_SHIFT - PAGE_SHIFT); return 0; } arch_initcall(hugetlbpage_init); bool __init arch_hugetlb_valid_size(unsigned long size) { switch (size) { #ifdef CONFIG_ARM64_4K_PAGES case PUD_SIZE: #endif case CONT_PMD_SIZE: case PMD_SIZE: case CONT_PTE_SIZE: return true; } return false; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1