Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Mark Salter | 2205 | 99.91% | 1 | 50.00% |
Thomas Gleixner | 2 | 0.09% | 1 | 50.00% |
Total | 2207 | 2 |
// SPDX-License-Identifier: GPL-2.0-only /* * Device State Control Registers driver * * Copyright (C) 2011 Texas Instruments Incorporated * Author: Mark Salter <msalter@redhat.com> */ /* * The Device State Control Registers (DSCR) provide SoC level control over * a number of peripherals. Details vary considerably among the various SoC * parts. In general, the DSCR block will provide one or more configuration * registers often protected by a lock register. One or more key values must * be written to a lock register in order to unlock the configuration register. * The configuration register may be used to enable (and disable in some * cases) SoC pin drivers, peripheral clock sources (internal or pin), etc. * In some cases, a configuration register is write once or the individual * bits are write once. That is, you may be able to enable a device, but * will not be able to disable it. * * In addition to device configuration, the DSCR block may provide registers * which are used to reset SoC peripherals, provide device ID information, * provide MAC addresses, and other miscellaneous functions. */ #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_platform.h> #include <linux/module.h> #include <linux/io.h> #include <linux/delay.h> #include <asm/soc.h> #include <asm/dscr.h> #define MAX_DEVSTATE_IDS 32 #define MAX_DEVCTL_REGS 8 #define MAX_DEVSTAT_REGS 8 #define MAX_LOCKED_REGS 4 #define MAX_SOC_EMACS 2 struct rmii_reset_reg { u32 reg; u32 mask; }; /* * Some registerd may be locked. In order to write to these * registers, the key value must first be written to the lockreg. */ struct locked_reg { u32 reg; /* offset from base */ u32 lockreg; /* offset from base */ u32 key; /* unlock key */ }; /* * This describes a contiguous area of like control bits used to enable/disable * SoC devices. Each controllable device is given an ID which is used by the * individual device drivers to control the device state. These IDs start at * zero and are assigned sequentially to the control bitfield ranges described * by this structure. */ struct devstate_ctl_reg { u32 reg; /* register holding the control bits */ u8 start_id; /* start id of this range */ u8 num_ids; /* number of devices in this range */ u8 enable_only; /* bits are write-once to enable only */ u8 enable; /* value used to enable device */ u8 disable; /* value used to disable device */ u8 shift; /* starting (rightmost) bit in range */ u8 nbits; /* number of bits per device */ }; /* * This describes a region of status bits indicating the state of * various devices. This is used internally to wait for status * change completion when enabling/disabling a device. Status is * optional and not all device controls will have a corresponding * status. */ struct devstate_stat_reg { u32 reg; /* register holding the status bits */ u8 start_id; /* start id of this range */ u8 num_ids; /* number of devices in this range */ u8 enable; /* value indicating enabled state */ u8 disable; /* value indicating disabled state */ u8 shift; /* starting (rightmost) bit in range */ u8 nbits; /* number of bits per device */ }; struct devstate_info { struct devstate_ctl_reg *ctl; struct devstate_stat_reg *stat; }; /* These are callbacks to SOC-specific code. */ struct dscr_ops { void (*init)(struct device_node *node); }; struct dscr_regs { spinlock_t lock; void __iomem *base; u32 kick_reg[2]; u32 kick_key[2]; struct locked_reg locked[MAX_LOCKED_REGS]; struct devstate_info devstate_info[MAX_DEVSTATE_IDS]; struct rmii_reset_reg rmii_resets[MAX_SOC_EMACS]; struct devstate_ctl_reg devctl[MAX_DEVCTL_REGS]; struct devstate_stat_reg devstat[MAX_DEVSTAT_REGS]; }; static struct dscr_regs dscr; static struct locked_reg *find_locked_reg(u32 reg) { int i; for (i = 0; i < MAX_LOCKED_REGS; i++) if (dscr.locked[i].key && reg == dscr.locked[i].reg) return &dscr.locked[i]; return NULL; } /* * Write to a register with one lock */ static void dscr_write_locked1(u32 reg, u32 val, u32 lock, u32 key) { void __iomem *reg_addr = dscr.base + reg; void __iomem *lock_addr = dscr.base + lock; /* * For some registers, the lock is relocked after a short number * of cycles. We have to put the lock write and register write in * the same fetch packet to meet this timing. The .align ensures * the two stw instructions are in the same fetch packet. */ asm volatile ("b .s2 0f\n" "nop 5\n" " .align 5\n" "0:\n" "stw .D1T2 %3,*%2\n" "stw .D1T2 %1,*%0\n" : : "a"(reg_addr), "b"(val), "a"(lock_addr), "b"(key) ); /* in case the hw doesn't reset the lock */ soc_writel(0, lock_addr); } /* * Write to a register protected by two lock registers */ static void dscr_write_locked2(u32 reg, u32 val, u32 lock0, u32 key0, u32 lock1, u32 key1) { soc_writel(key0, dscr.base + lock0); soc_writel(key1, dscr.base + lock1); soc_writel(val, dscr.base + reg); soc_writel(0, dscr.base + lock0); soc_writel(0, dscr.base + lock1); } static void dscr_write(u32 reg, u32 val) { struct locked_reg *lock; lock = find_locked_reg(reg); if (lock) dscr_write_locked1(reg, val, lock->lockreg, lock->key); else if (dscr.kick_key[0]) dscr_write_locked2(reg, val, dscr.kick_reg[0], dscr.kick_key[0], dscr.kick_reg[1], dscr.kick_key[1]); else soc_writel(val, dscr.base + reg); } /* * Drivers can use this interface to enable/disable SoC IP blocks. */ void dscr_set_devstate(int id, enum dscr_devstate_t state) { struct devstate_ctl_reg *ctl; struct devstate_stat_reg *stat; struct devstate_info *info; u32 ctl_val, val; int ctl_shift, ctl_mask; unsigned long flags; if (!dscr.base) return; if (id < 0 || id >= MAX_DEVSTATE_IDS) return; info = &dscr.devstate_info[id]; ctl = info->ctl; stat = info->stat; if (ctl == NULL) return; ctl_shift = ctl->shift + ctl->nbits * (id - ctl->start_id); ctl_mask = ((1 << ctl->nbits) - 1) << ctl_shift; switch (state) { case DSCR_DEVSTATE_ENABLED: ctl_val = ctl->enable << ctl_shift; break; case DSCR_DEVSTATE_DISABLED: if (ctl->enable_only) return; ctl_val = ctl->disable << ctl_shift; break; default: return; } spin_lock_irqsave(&dscr.lock, flags); val = soc_readl(dscr.base + ctl->reg); val &= ~ctl_mask; val |= ctl_val; dscr_write(ctl->reg, val); spin_unlock_irqrestore(&dscr.lock, flags); if (!stat) return; ctl_shift = stat->shift + stat->nbits * (id - stat->start_id); if (state == DSCR_DEVSTATE_ENABLED) ctl_val = stat->enable; else ctl_val = stat->disable; do { val = soc_readl(dscr.base + stat->reg); val >>= ctl_shift; val &= ((1 << stat->nbits) - 1); } while (val != ctl_val); } EXPORT_SYMBOL(dscr_set_devstate); /* * Drivers can use this to reset RMII module. */ void dscr_rmii_reset(int id, int assert) { struct rmii_reset_reg *r; unsigned long flags; u32 val; if (id < 0 || id >= MAX_SOC_EMACS) return; r = &dscr.rmii_resets[id]; if (r->mask == 0) return; spin_lock_irqsave(&dscr.lock, flags); val = soc_readl(dscr.base + r->reg); if (assert) dscr_write(r->reg, val | r->mask); else dscr_write(r->reg, val & ~(r->mask)); spin_unlock_irqrestore(&dscr.lock, flags); } EXPORT_SYMBOL(dscr_rmii_reset); static void __init dscr_parse_devstat(struct device_node *node, void __iomem *base) { u32 val; int err; err = of_property_read_u32_array(node, "ti,dscr-devstat", &val, 1); if (!err) c6x_devstat = soc_readl(base + val); printk(KERN_INFO "DEVSTAT: %08x\n", c6x_devstat); } static void __init dscr_parse_silicon_rev(struct device_node *node, void __iomem *base) { u32 vals[3]; int err; err = of_property_read_u32_array(node, "ti,dscr-silicon-rev", vals, 3); if (!err) { c6x_silicon_rev = soc_readl(base + vals[0]); c6x_silicon_rev >>= vals[1]; c6x_silicon_rev &= vals[2]; } } /* * Some SoCs will have a pair of fuse registers which hold * an ethernet MAC address. The "ti,dscr-mac-fuse-regs" * property is a mapping from fuse register bytes to MAC * address bytes. The expected format is: * * ti,dscr-mac-fuse-regs = <reg0 b3 b2 b1 b0 * reg1 b3 b2 b1 b0> * * reg0 and reg1 are the offsets of the two fuse registers. * b3-b0 positionally represent bytes within the fuse register. * b3 is the most significant byte and b0 is the least. * Allowable values for b3-b0 are: * * 0 = fuse register byte not used in MAC address * 1-6 = index+1 into c6x_fuse_mac[] */ static void __init dscr_parse_mac_fuse(struct device_node *node, void __iomem *base) { u32 vals[10], fuse; int f, i, j, err; err = of_property_read_u32_array(node, "ti,dscr-mac-fuse-regs", vals, 10); if (err) return; for (f = 0; f < 2; f++) { fuse = soc_readl(base + vals[f * 5]); for (j = (f * 5) + 1, i = 24; i >= 0; i -= 8, j++) if (vals[j] && vals[j] <= 6) c6x_fuse_mac[vals[j] - 1] = fuse >> i; } } static void __init dscr_parse_rmii_resets(struct device_node *node, void __iomem *base) { const __be32 *p; int i, size; /* look for RMII reset registers */ p = of_get_property(node, "ti,dscr-rmii-resets", &size); if (p) { /* parse all the reg/mask pairs we can handle */ size /= (sizeof(*p) * 2); if (size > MAX_SOC_EMACS) size = MAX_SOC_EMACS; for (i = 0; i < size; i++) { dscr.rmii_resets[i].reg = be32_to_cpup(p++); dscr.rmii_resets[i].mask = be32_to_cpup(p++); } } } static void __init dscr_parse_privperm(struct device_node *node, void __iomem *base) { u32 vals[2]; int err; err = of_property_read_u32_array(node, "ti,dscr-privperm", vals, 2); if (err) return; dscr_write(vals[0], vals[1]); } /* * SoCs may have "locked" DSCR registers which can only be written * to only after writing a key value to a lock registers. These * regisers can be described with the "ti,dscr-locked-regs" property. * This property provides a list of register descriptions with each * description consisting of three values. * * ti,dscr-locked-regs = <reg0 lockreg0 key0 * ... * regN lockregN keyN>; * * reg is the offset of the locked register * lockreg is the offset of the lock register * key is the unlock key written to lockreg * */ static void __init dscr_parse_locked_regs(struct device_node *node, void __iomem *base) { struct locked_reg *r; const __be32 *p; int i, size; p = of_get_property(node, "ti,dscr-locked-regs", &size); if (p) { /* parse all the register descriptions we can handle */ size /= (sizeof(*p) * 3); if (size > MAX_LOCKED_REGS) size = MAX_LOCKED_REGS; for (i = 0; i < size; i++) { r = &dscr.locked[i]; r->reg = be32_to_cpup(p++); r->lockreg = be32_to_cpup(p++); r->key = be32_to_cpup(p++); } } } /* * SoCs may have DSCR registers which are only write enabled after * writing specific key values to two registers. The two key registers * and the key values can be parsed from a "ti,dscr-kick-regs" * propety with the following layout: * * ti,dscr-kick-regs = <kickreg0 key0 kickreg1 key1> * * kickreg is the offset of the "kick" register * key is the value which unlocks writing for protected regs */ static void __init dscr_parse_kick_regs(struct device_node *node, void __iomem *base) { u32 vals[4]; int err; err = of_property_read_u32_array(node, "ti,dscr-kick-regs", vals, 4); if (!err) { dscr.kick_reg[0] = vals[0]; dscr.kick_key[0] = vals[1]; dscr.kick_reg[1] = vals[2]; dscr.kick_key[1] = vals[3]; } } /* * SoCs may provide controls to enable/disable individual IP blocks. These * controls in the DSCR usually control pin drivers but also may control * clocking and or resets. The device tree is used to describe the bitfields * in registers used to control device state. The number of bits and their * values may vary even within the same register. * * The layout of these bitfields is described by the ti,dscr-devstate-ctl-regs * property. This property is a list where each element describes a contiguous * range of control fields with like properties. Each element of the list * consists of 7 cells with the following values: * * start_id num_ids reg enable disable start_bit nbits * * start_id is device id for the first device control in the range * num_ids is the number of device controls in the range * reg is the offset of the register holding the control bits * enable is the value to enable a device * disable is the value to disable a device (0xffffffff if cannot disable) * start_bit is the bit number of the first bit in the range * nbits is the number of bits per device control */ static void __init dscr_parse_devstate_ctl_regs(struct device_node *node, void __iomem *base) { struct devstate_ctl_reg *r; const __be32 *p; int i, j, size; p = of_get_property(node, "ti,dscr-devstate-ctl-regs", &size); if (p) { /* parse all the ranges we can handle */ size /= (sizeof(*p) * 7); if (size > MAX_DEVCTL_REGS) size = MAX_DEVCTL_REGS; for (i = 0; i < size; i++) { r = &dscr.devctl[i]; r->start_id = be32_to_cpup(p++); r->num_ids = be32_to_cpup(p++); r->reg = be32_to_cpup(p++); r->enable = be32_to_cpup(p++); r->disable = be32_to_cpup(p++); if (r->disable == 0xffffffff) r->enable_only = 1; r->shift = be32_to_cpup(p++); r->nbits = be32_to_cpup(p++); for (j = r->start_id; j < (r->start_id + r->num_ids); j++) dscr.devstate_info[j].ctl = r; } } } /* * SoCs may provide status registers indicating the state (enabled/disabled) of * devices on the SoC. The device tree is used to describe the bitfields in * registers used to provide device status. The number of bits and their * values used to provide status may vary even within the same register. * * The layout of these bitfields is described by the ti,dscr-devstate-stat-regs * property. This property is a list where each element describes a contiguous * range of status fields with like properties. Each element of the list * consists of 7 cells with the following values: * * start_id num_ids reg enable disable start_bit nbits * * start_id is device id for the first device status in the range * num_ids is the number of devices covered by the range * reg is the offset of the register holding the status bits * enable is the value indicating device is enabled * disable is the value indicating device is disabled * start_bit is the bit number of the first bit in the range * nbits is the number of bits per device status */ static void __init dscr_parse_devstate_stat_regs(struct device_node *node, void __iomem *base) { struct devstate_stat_reg *r; const __be32 *p; int i, j, size; p = of_get_property(node, "ti,dscr-devstate-stat-regs", &size); if (p) { /* parse all the ranges we can handle */ size /= (sizeof(*p) * 7); if (size > MAX_DEVSTAT_REGS) size = MAX_DEVSTAT_REGS; for (i = 0; i < size; i++) { r = &dscr.devstat[i]; r->start_id = be32_to_cpup(p++); r->num_ids = be32_to_cpup(p++); r->reg = be32_to_cpup(p++); r->enable = be32_to_cpup(p++); r->disable = be32_to_cpup(p++); r->shift = be32_to_cpup(p++); r->nbits = be32_to_cpup(p++); for (j = r->start_id; j < (r->start_id + r->num_ids); j++) dscr.devstate_info[j].stat = r; } } } static struct of_device_id dscr_ids[] __initdata = { { .compatible = "ti,c64x+dscr" }, {} }; /* * Probe for DSCR area. * * This has to be done early on in case timer or interrupt controller * needs something. e.g. On C6455 SoC, timer must be enabled through * DSCR before it is functional. */ void __init dscr_probe(void) { struct device_node *node; void __iomem *base; spin_lock_init(&dscr.lock); node = of_find_matching_node(NULL, dscr_ids); if (!node) return; base = of_iomap(node, 0); if (!base) { of_node_put(node); return; } dscr.base = base; dscr_parse_devstat(node, base); dscr_parse_silicon_rev(node, base); dscr_parse_mac_fuse(node, base); dscr_parse_rmii_resets(node, base); dscr_parse_locked_regs(node, base); dscr_parse_kick_regs(node, base); dscr_parse_devstate_ctl_regs(node, base); dscr_parse_devstate_stat_regs(node, base); dscr_parse_privperm(node, base); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1