Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David Daney | 2051 | 88.10% | 2 | 16.67% |
Aaro Koskinen | 188 | 8.08% | 3 | 25.00% |
Steven J. Hill | 69 | 2.96% | 1 | 8.33% |
Ralf Baechle | 13 | 0.56% | 2 | 16.67% |
Matt Turner | 3 | 0.13% | 1 | 8.33% |
Paul Gortmaker | 2 | 0.09% | 1 | 8.33% |
Pankaj Bharadiya | 1 | 0.04% | 1 | 8.33% |
Andrea Gelmini | 1 | 0.04% | 1 | 8.33% |
Total | 2328 | 12 |
/***********************license start*************** * Author: Cavium Networks * * Contact: support@caviumnetworks.com * This file is part of the OCTEON SDK * * Copyright (c) 2003-2008 Cavium Networks * * This file is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, Version 2, as * published by the Free Software Foundation. * * This file is distributed in the hope that it will be useful, but * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or * NONINFRINGEMENT. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with this file; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * or visit http://www.gnu.org/licenses/. * * This file may also be available under a different license from Cavium. * Contact Cavium Networks for more information ***********************license end**************************************/ /* * Simple allocate only memory allocator. Used to allocate memory at * application start time. */ #include <linux/export.h> #include <linux/kernel.h> #include <asm/octeon/cvmx.h> #include <asm/octeon/cvmx-spinlock.h> #include <asm/octeon/cvmx-bootmem.h> /*#define DEBUG */ static struct cvmx_bootmem_desc *cvmx_bootmem_desc; /* See header file for descriptions of functions */ /** * This macro returns a member of the * cvmx_bootmem_named_block_desc_t structure. These members can't * be directly addressed as they might be in memory not directly * reachable. In the case where bootmem is compiled with * LINUX_HOST, the structure itself might be located on a remote * Octeon. The argument "field" is the member name of the * cvmx_bootmem_named_block_desc_t to read. Regardless of the type * of the field, the return type is always a uint64_t. The "addr" * parameter is the physical address of the structure. */ #define CVMX_BOOTMEM_NAMED_GET_FIELD(addr, field) \ __cvmx_bootmem_desc_get(addr, \ offsetof(struct cvmx_bootmem_named_block_desc, field), \ sizeof_field(struct cvmx_bootmem_named_block_desc, field)) /** * This function is the implementation of the get macros defined * for individual structure members. The argument are generated * by the macros inorder to read only the needed memory. * * @param base 64bit physical address of the complete structure * @param offset Offset from the beginning of the structure to the member being * accessed. * @param size Size of the structure member. * * @return Value of the structure member promoted into a uint64_t. */ static inline uint64_t __cvmx_bootmem_desc_get(uint64_t base, int offset, int size) { base = (1ull << 63) | (base + offset); switch (size) { case 4: return cvmx_read64_uint32(base); case 8: return cvmx_read64_uint64(base); default: return 0; } } /* * Wrapper functions are provided for reading/writing the size and * next block values as these may not be directly addressible (in 32 * bit applications, for instance.) Offsets of data elements in * bootmem list, must match cvmx_bootmem_block_header_t. */ #define NEXT_OFFSET 0 #define SIZE_OFFSET 8 static void cvmx_bootmem_phy_set_size(uint64_t addr, uint64_t size) { cvmx_write64_uint64((addr + SIZE_OFFSET) | (1ull << 63), size); } static void cvmx_bootmem_phy_set_next(uint64_t addr, uint64_t next) { cvmx_write64_uint64((addr + NEXT_OFFSET) | (1ull << 63), next); } static uint64_t cvmx_bootmem_phy_get_size(uint64_t addr) { return cvmx_read64_uint64((addr + SIZE_OFFSET) | (1ull << 63)); } static uint64_t cvmx_bootmem_phy_get_next(uint64_t addr) { return cvmx_read64_uint64((addr + NEXT_OFFSET) | (1ull << 63)); } /** * Allocate a block of memory from the free list that was * passed to the application by the bootloader within a specified * address range. This is an allocate-only algorithm, so * freeing memory is not possible. Allocation will fail if * memory cannot be allocated in the requested range. * * @size: Size in bytes of block to allocate * @min_addr: defines the minimum address of the range * @max_addr: defines the maximum address of the range * @alignment: Alignment required - must be power of 2 * Returns pointer to block of memory, NULL on error */ static void *cvmx_bootmem_alloc_range(uint64_t size, uint64_t alignment, uint64_t min_addr, uint64_t max_addr) { int64_t address; address = cvmx_bootmem_phy_alloc(size, min_addr, max_addr, alignment, 0); if (address > 0) return cvmx_phys_to_ptr(address); else return NULL; } void *cvmx_bootmem_alloc_address(uint64_t size, uint64_t address, uint64_t alignment) { return cvmx_bootmem_alloc_range(size, alignment, address, address + size); } void *cvmx_bootmem_alloc_named_range(uint64_t size, uint64_t min_addr, uint64_t max_addr, uint64_t align, char *name) { int64_t addr; addr = cvmx_bootmem_phy_named_block_alloc(size, min_addr, max_addr, align, name, 0); if (addr >= 0) return cvmx_phys_to_ptr(addr); else return NULL; } void *cvmx_bootmem_alloc_named(uint64_t size, uint64_t alignment, char *name) { return cvmx_bootmem_alloc_named_range(size, 0, 0, alignment, name); } EXPORT_SYMBOL(cvmx_bootmem_alloc_named); void cvmx_bootmem_lock(void) { cvmx_spinlock_lock((cvmx_spinlock_t *) &(cvmx_bootmem_desc->lock)); } void cvmx_bootmem_unlock(void) { cvmx_spinlock_unlock((cvmx_spinlock_t *) &(cvmx_bootmem_desc->lock)); } int cvmx_bootmem_init(void *mem_desc_ptr) { /* Here we set the global pointer to the bootmem descriptor * block. This pointer will be used directly, so we will set * it up to be directly usable by the application. It is set * up as follows for the various runtime/ABI combinations: * * Linux 64 bit: Set XKPHYS bit * Linux 32 bit: use mmap to create mapping, use virtual address * CVMX 64 bit: use physical address directly * CVMX 32 bit: use physical address directly * * Note that the CVMX environment assumes the use of 1-1 TLB * mappings so that the physical addresses can be used * directly */ if (!cvmx_bootmem_desc) { #if defined(CVMX_ABI_64) /* Set XKPHYS bit */ cvmx_bootmem_desc = cvmx_phys_to_ptr(CAST64(mem_desc_ptr)); #else cvmx_bootmem_desc = (struct cvmx_bootmem_desc *) mem_desc_ptr; #endif } return 0; } /* * The cvmx_bootmem_phy* functions below return 64 bit physical * addresses, and expose more features that the cvmx_bootmem_functions * above. These are required for full memory space access in 32 bit * applications, as well as for using some advance features. Most * applications should not need to use these. */ int64_t cvmx_bootmem_phy_alloc(uint64_t req_size, uint64_t address_min, uint64_t address_max, uint64_t alignment, uint32_t flags) { uint64_t head_addr; uint64_t ent_addr; /* points to previous list entry, NULL current entry is head of list */ uint64_t prev_addr = 0; uint64_t new_ent_addr = 0; uint64_t desired_min_addr; #ifdef DEBUG cvmx_dprintf("cvmx_bootmem_phy_alloc: req_size: 0x%llx, " "min_addr: 0x%llx, max_addr: 0x%llx, align: 0x%llx\n", (unsigned long long)req_size, (unsigned long long)address_min, (unsigned long long)address_max, (unsigned long long)alignment); #endif if (cvmx_bootmem_desc->major_version > 3) { cvmx_dprintf("ERROR: Incompatible bootmem descriptor " "version: %d.%d at addr: %p\n", (int)cvmx_bootmem_desc->major_version, (int)cvmx_bootmem_desc->minor_version, cvmx_bootmem_desc); goto error_out; } /* * Do a variety of checks to validate the arguments. The * allocator code will later assume that these checks have * been made. We validate that the requested constraints are * not self-contradictory before we look through the list of * available memory. */ /* 0 is not a valid req_size for this allocator */ if (!req_size) goto error_out; /* Round req_size up to mult of minimum alignment bytes */ req_size = (req_size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) & ~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1); /* * Convert !0 address_min and 0 address_max to special case of * range that specifies an exact memory block to allocate. Do * this before other checks and adjustments so that this * tranformation will be validated. */ if (address_min && !address_max) address_max = address_min + req_size; else if (!address_min && !address_max) address_max = ~0ull; /* If no limits given, use max limits */ /* * Enforce minimum alignment (this also keeps the minimum free block * req_size the same as the alignment req_size. */ if (alignment < CVMX_BOOTMEM_ALIGNMENT_SIZE) alignment = CVMX_BOOTMEM_ALIGNMENT_SIZE; /* * Adjust address minimum based on requested alignment (round * up to meet alignment). Do this here so we can reject * impossible requests up front. (NOP for address_min == 0) */ if (alignment) address_min = ALIGN(address_min, alignment); /* * Reject inconsistent args. We have adjusted these, so this * may fail due to our internal changes even if this check * would pass for the values the user supplied. */ if (req_size > address_max - address_min) goto error_out; /* Walk through the list entries - first fit found is returned */ if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) cvmx_bootmem_lock(); head_addr = cvmx_bootmem_desc->head_addr; ent_addr = head_addr; for (; ent_addr; prev_addr = ent_addr, ent_addr = cvmx_bootmem_phy_get_next(ent_addr)) { uint64_t usable_base, usable_max; uint64_t ent_size = cvmx_bootmem_phy_get_size(ent_addr); if (cvmx_bootmem_phy_get_next(ent_addr) && ent_addr > cvmx_bootmem_phy_get_next(ent_addr)) { cvmx_dprintf("Internal bootmem_alloc() error: ent: " "0x%llx, next: 0x%llx\n", (unsigned long long)ent_addr, (unsigned long long) cvmx_bootmem_phy_get_next(ent_addr)); goto error_out; } /* * Determine if this is an entry that can satisify the * request Check to make sure entry is large enough to * satisfy request. */ usable_base = ALIGN(max(address_min, ent_addr), alignment); usable_max = min(address_max, ent_addr + ent_size); /* * We should be able to allocate block at address * usable_base. */ desired_min_addr = usable_base; /* * Determine if request can be satisfied from the * current entry. */ if (!((ent_addr + ent_size) > usable_base && ent_addr < address_max && req_size <= usable_max - usable_base)) continue; /* * We have found an entry that has room to satisfy the * request, so allocate it from this entry. If end * CVMX_BOOTMEM_FLAG_END_ALLOC set, then allocate from * the end of this block rather than the beginning. */ if (flags & CVMX_BOOTMEM_FLAG_END_ALLOC) { desired_min_addr = usable_max - req_size; /* * Align desired address down to required * alignment. */ desired_min_addr &= ~(alignment - 1); } /* Match at start of entry */ if (desired_min_addr == ent_addr) { if (req_size < ent_size) { /* * big enough to create a new block * from top portion of block. */ new_ent_addr = ent_addr + req_size; cvmx_bootmem_phy_set_next(new_ent_addr, cvmx_bootmem_phy_get_next(ent_addr)); cvmx_bootmem_phy_set_size(new_ent_addr, ent_size - req_size); /* * Adjust next pointer as following * code uses this. */ cvmx_bootmem_phy_set_next(ent_addr, new_ent_addr); } /* * adjust prev ptr or head to remove this * entry from list. */ if (prev_addr) cvmx_bootmem_phy_set_next(prev_addr, cvmx_bootmem_phy_get_next(ent_addr)); else /* * head of list being returned, so * update head ptr. */ cvmx_bootmem_desc->head_addr = cvmx_bootmem_phy_get_next(ent_addr); if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) cvmx_bootmem_unlock(); return desired_min_addr; } /* * block returned doesn't start at beginning of entry, * so we know that we will be splitting a block off * the front of this one. Create a new block from the * beginning, add to list, and go to top of loop * again. * * create new block from high portion of * block, so that top block starts at desired * addr. */ new_ent_addr = desired_min_addr; cvmx_bootmem_phy_set_next(new_ent_addr, cvmx_bootmem_phy_get_next (ent_addr)); cvmx_bootmem_phy_set_size(new_ent_addr, cvmx_bootmem_phy_get_size (ent_addr) - (desired_min_addr - ent_addr)); cvmx_bootmem_phy_set_size(ent_addr, desired_min_addr - ent_addr); cvmx_bootmem_phy_set_next(ent_addr, new_ent_addr); /* Loop again to handle actual alloc from new block */ } error_out: /* We didn't find anything, so return error */ if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) cvmx_bootmem_unlock(); return -1; } int __cvmx_bootmem_phy_free(uint64_t phy_addr, uint64_t size, uint32_t flags) { uint64_t cur_addr; uint64_t prev_addr = 0; /* zero is invalid */ int retval = 0; #ifdef DEBUG cvmx_dprintf("__cvmx_bootmem_phy_free addr: 0x%llx, size: 0x%llx\n", (unsigned long long)phy_addr, (unsigned long long)size); #endif if (cvmx_bootmem_desc->major_version > 3) { cvmx_dprintf("ERROR: Incompatible bootmem descriptor " "version: %d.%d at addr: %p\n", (int)cvmx_bootmem_desc->major_version, (int)cvmx_bootmem_desc->minor_version, cvmx_bootmem_desc); return 0; } /* 0 is not a valid size for this allocator */ if (!size) return 0; if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) cvmx_bootmem_lock(); cur_addr = cvmx_bootmem_desc->head_addr; if (cur_addr == 0 || phy_addr < cur_addr) { /* add at front of list - special case with changing head ptr */ if (cur_addr && phy_addr + size > cur_addr) goto bootmem_free_done; /* error, overlapping section */ else if (phy_addr + size == cur_addr) { /* Add to front of existing first block */ cvmx_bootmem_phy_set_next(phy_addr, cvmx_bootmem_phy_get_next (cur_addr)); cvmx_bootmem_phy_set_size(phy_addr, cvmx_bootmem_phy_get_size (cur_addr) + size); cvmx_bootmem_desc->head_addr = phy_addr; } else { /* New block before first block. OK if cur_addr is 0 */ cvmx_bootmem_phy_set_next(phy_addr, cur_addr); cvmx_bootmem_phy_set_size(phy_addr, size); cvmx_bootmem_desc->head_addr = phy_addr; } retval = 1; goto bootmem_free_done; } /* Find place in list to add block */ while (cur_addr && phy_addr > cur_addr) { prev_addr = cur_addr; cur_addr = cvmx_bootmem_phy_get_next(cur_addr); } if (!cur_addr) { /* * We have reached the end of the list, add on to end, * checking to see if we need to combine with last * block */ if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) == phy_addr) { cvmx_bootmem_phy_set_size(prev_addr, cvmx_bootmem_phy_get_size (prev_addr) + size); } else { cvmx_bootmem_phy_set_next(prev_addr, phy_addr); cvmx_bootmem_phy_set_size(phy_addr, size); cvmx_bootmem_phy_set_next(phy_addr, 0); } retval = 1; goto bootmem_free_done; } else { /* * insert between prev and cur nodes, checking for * merge with either/both. */ if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) == phy_addr) { /* Merge with previous */ cvmx_bootmem_phy_set_size(prev_addr, cvmx_bootmem_phy_get_size (prev_addr) + size); if (phy_addr + size == cur_addr) { /* Also merge with current */ cvmx_bootmem_phy_set_size(prev_addr, cvmx_bootmem_phy_get_size(cur_addr) + cvmx_bootmem_phy_get_size(prev_addr)); cvmx_bootmem_phy_set_next(prev_addr, cvmx_bootmem_phy_get_next(cur_addr)); } retval = 1; goto bootmem_free_done; } else if (phy_addr + size == cur_addr) { /* Merge with current */ cvmx_bootmem_phy_set_size(phy_addr, cvmx_bootmem_phy_get_size (cur_addr) + size); cvmx_bootmem_phy_set_next(phy_addr, cvmx_bootmem_phy_get_next (cur_addr)); cvmx_bootmem_phy_set_next(prev_addr, phy_addr); retval = 1; goto bootmem_free_done; } /* It is a standalone block, add in between prev and cur */ cvmx_bootmem_phy_set_size(phy_addr, size); cvmx_bootmem_phy_set_next(phy_addr, cur_addr); cvmx_bootmem_phy_set_next(prev_addr, phy_addr); } retval = 1; bootmem_free_done: if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) cvmx_bootmem_unlock(); return retval; } /** * Finds a named memory block by name. * Also used for finding an unused entry in the named block table. * * @name: Name of memory block to find. If NULL pointer given, then * finds unused descriptor, if available. * * @flags: Flags to control options for the allocation. * * Returns Pointer to memory block descriptor, NULL if not found. * If NULL returned when name parameter is NULL, then no memory * block descriptors are available. */ static struct cvmx_bootmem_named_block_desc * cvmx_bootmem_phy_named_block_find(char *name, uint32_t flags) { unsigned int i; struct cvmx_bootmem_named_block_desc *named_block_array_ptr; #ifdef DEBUG cvmx_dprintf("cvmx_bootmem_phy_named_block_find: %s\n", name); #endif /* * Lock the structure to make sure that it is not being * changed while we are examining it. */ if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) cvmx_bootmem_lock(); /* Use XKPHYS for 64 bit linux */ named_block_array_ptr = (struct cvmx_bootmem_named_block_desc *) cvmx_phys_to_ptr(cvmx_bootmem_desc->named_block_array_addr); #ifdef DEBUG cvmx_dprintf ("cvmx_bootmem_phy_named_block_find: named_block_array_ptr: %p\n", named_block_array_ptr); #endif if (cvmx_bootmem_desc->major_version == 3) { for (i = 0; i < cvmx_bootmem_desc->named_block_num_blocks; i++) { if ((name && named_block_array_ptr[i].size && !strncmp(name, named_block_array_ptr[i].name, cvmx_bootmem_desc->named_block_name_len - 1)) || (!name && !named_block_array_ptr[i].size)) { if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) cvmx_bootmem_unlock(); return &(named_block_array_ptr[i]); } } } else { cvmx_dprintf("ERROR: Incompatible bootmem descriptor " "version: %d.%d at addr: %p\n", (int)cvmx_bootmem_desc->major_version, (int)cvmx_bootmem_desc->minor_version, cvmx_bootmem_desc); } if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) cvmx_bootmem_unlock(); return NULL; } void *cvmx_bootmem_alloc_named_range_once(uint64_t size, uint64_t min_addr, uint64_t max_addr, uint64_t align, char *name, void (*init) (void *)) { int64_t addr; void *ptr; uint64_t named_block_desc_addr; named_block_desc_addr = (uint64_t) cvmx_bootmem_phy_named_block_find(name, (uint32_t)CVMX_BOOTMEM_FLAG_NO_LOCKING); if (named_block_desc_addr) { addr = CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_desc_addr, base_addr); return cvmx_phys_to_ptr(addr); } addr = cvmx_bootmem_phy_named_block_alloc(size, min_addr, max_addr, align, name, (uint32_t)CVMX_BOOTMEM_FLAG_NO_LOCKING); if (addr < 0) return NULL; ptr = cvmx_phys_to_ptr(addr); if (init) init(ptr); else memset(ptr, 0, size); return ptr; } EXPORT_SYMBOL(cvmx_bootmem_alloc_named_range_once); struct cvmx_bootmem_named_block_desc *cvmx_bootmem_find_named_block(char *name) { return cvmx_bootmem_phy_named_block_find(name, 0); } EXPORT_SYMBOL(cvmx_bootmem_find_named_block); /** * Frees a named block. * * @name: name of block to free * @flags: flags for passing options * * Returns 0 on failure * 1 on success */ static int cvmx_bootmem_phy_named_block_free(char *name, uint32_t flags) { struct cvmx_bootmem_named_block_desc *named_block_ptr; if (cvmx_bootmem_desc->major_version != 3) { cvmx_dprintf("ERROR: Incompatible bootmem descriptor version: " "%d.%d at addr: %p\n", (int)cvmx_bootmem_desc->major_version, (int)cvmx_bootmem_desc->minor_version, cvmx_bootmem_desc); return 0; } #ifdef DEBUG cvmx_dprintf("cvmx_bootmem_phy_named_block_free: %s\n", name); #endif /* * Take lock here, as name lookup/block free/name free need to * be atomic. */ cvmx_bootmem_lock(); named_block_ptr = cvmx_bootmem_phy_named_block_find(name, CVMX_BOOTMEM_FLAG_NO_LOCKING); if (named_block_ptr) { #ifdef DEBUG cvmx_dprintf("cvmx_bootmem_phy_named_block_free: " "%s, base: 0x%llx, size: 0x%llx\n", name, (unsigned long long)named_block_ptr->base_addr, (unsigned long long)named_block_ptr->size); #endif __cvmx_bootmem_phy_free(named_block_ptr->base_addr, named_block_ptr->size, CVMX_BOOTMEM_FLAG_NO_LOCKING); named_block_ptr->size = 0; /* Set size to zero to indicate block not used. */ } cvmx_bootmem_unlock(); return named_block_ptr != NULL; /* 0 on failure, 1 on success */ } int cvmx_bootmem_free_named(char *name) { return cvmx_bootmem_phy_named_block_free(name, 0); } int64_t cvmx_bootmem_phy_named_block_alloc(uint64_t size, uint64_t min_addr, uint64_t max_addr, uint64_t alignment, char *name, uint32_t flags) { int64_t addr_allocated; struct cvmx_bootmem_named_block_desc *named_block_desc_ptr; #ifdef DEBUG cvmx_dprintf("cvmx_bootmem_phy_named_block_alloc: size: 0x%llx, min: " "0x%llx, max: 0x%llx, align: 0x%llx, name: %s\n", (unsigned long long)size, (unsigned long long)min_addr, (unsigned long long)max_addr, (unsigned long long)alignment, name); #endif if (cvmx_bootmem_desc->major_version != 3) { cvmx_dprintf("ERROR: Incompatible bootmem descriptor version: " "%d.%d at addr: %p\n", (int)cvmx_bootmem_desc->major_version, (int)cvmx_bootmem_desc->minor_version, cvmx_bootmem_desc); return -1; } /* * Take lock here, as name lookup/block alloc/name add need to * be atomic. */ if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) cvmx_spinlock_lock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock)); /* Get pointer to first available named block descriptor */ named_block_desc_ptr = cvmx_bootmem_phy_named_block_find(NULL, flags | CVMX_BOOTMEM_FLAG_NO_LOCKING); /* * Check to see if name already in use, return error if name * not available or no more room for blocks. */ if (cvmx_bootmem_phy_named_block_find(name, flags | CVMX_BOOTMEM_FLAG_NO_LOCKING) || !named_block_desc_ptr) { if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) cvmx_spinlock_unlock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock)); return -1; } /* * Round size up to mult of minimum alignment bytes We need * the actual size allocated to allow for blocks to be * coalesced when they are freed. The alloc routine does the * same rounding up on all allocations. */ size = ALIGN(size, CVMX_BOOTMEM_ALIGNMENT_SIZE); addr_allocated = cvmx_bootmem_phy_alloc(size, min_addr, max_addr, alignment, flags | CVMX_BOOTMEM_FLAG_NO_LOCKING); if (addr_allocated >= 0) { named_block_desc_ptr->base_addr = addr_allocated; named_block_desc_ptr->size = size; strncpy(named_block_desc_ptr->name, name, cvmx_bootmem_desc->named_block_name_len); named_block_desc_ptr->name[cvmx_bootmem_desc->named_block_name_len - 1] = 0; } if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) cvmx_spinlock_unlock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock)); return addr_allocated; } struct cvmx_bootmem_desc *cvmx_bootmem_get_desc(void) { return cvmx_bootmem_desc; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1