Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David Daney | 1452 | 73.78% | 1 | 7.69% |
Maneesh Soni | 452 | 22.97% | 3 | 23.08% |
Marcin Nowakowski | 27 | 1.37% | 2 | 15.38% |
Masami Hiramatsu | 26 | 1.32% | 3 | 23.08% |
Christoph Lameter | 6 | 0.30% | 1 | 7.69% |
Ralf Baechle | 2 | 0.10% | 1 | 7.69% |
Thomas Gleixner | 2 | 0.10% | 1 | 7.69% |
Christoph Hellwig | 1 | 0.05% | 1 | 7.69% |
Total | 1968 | 13 |
// SPDX-License-Identifier: GPL-2.0-only /* * Kernel Probes (KProbes) * arch/mips/kernel/kprobes.c * * Copyright 2006 Sony Corp. * Copyright 2010 Cavium Networks * * Some portions copied from the powerpc version. * * Copyright (C) IBM Corporation, 2002, 2004 */ #include <linux/kprobes.h> #include <linux/preempt.h> #include <linux/uaccess.h> #include <linux/kdebug.h> #include <linux/slab.h> #include <asm/ptrace.h> #include <asm/branch.h> #include <asm/break.h> #include "probes-common.h" static const union mips_instruction breakpoint_insn = { .b_format = { .opcode = spec_op, .code = BRK_KPROBE_BP, .func = break_op } }; static const union mips_instruction breakpoint2_insn = { .b_format = { .opcode = spec_op, .code = BRK_KPROBE_SSTEPBP, .func = break_op } }; DEFINE_PER_CPU(struct kprobe *, current_kprobe); DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); static int __kprobes insn_has_delayslot(union mips_instruction insn) { return __insn_has_delay_slot(insn); } /* * insn_has_ll_or_sc function checks whether instruction is ll or sc * one; putting breakpoint on top of atomic ll/sc pair is bad idea; * so we need to prevent it and refuse kprobes insertion for such * instructions; cannot do much about breakpoint in the middle of * ll/sc pair; it is upto user to avoid those places */ static int __kprobes insn_has_ll_or_sc(union mips_instruction insn) { int ret = 0; switch (insn.i_format.opcode) { case ll_op: case lld_op: case sc_op: case scd_op: ret = 1; break; default: break; } return ret; } int __kprobes arch_prepare_kprobe(struct kprobe *p) { union mips_instruction insn; union mips_instruction prev_insn; int ret = 0; insn = p->addr[0]; if (insn_has_ll_or_sc(insn)) { pr_notice("Kprobes for ll and sc instructions are not" "supported\n"); ret = -EINVAL; goto out; } if (copy_from_kernel_nofault(&prev_insn, p->addr - 1, sizeof(mips_instruction)) == 0 && insn_has_delayslot(prev_insn)) { pr_notice("Kprobes for branch delayslot are not supported\n"); ret = -EINVAL; goto out; } if (__insn_is_compact_branch(insn)) { pr_notice("Kprobes for compact branches are not supported\n"); ret = -EINVAL; goto out; } /* insn: must be on special executable page on mips. */ p->ainsn.insn = get_insn_slot(); if (!p->ainsn.insn) { ret = -ENOMEM; goto out; } /* * In the kprobe->ainsn.insn[] array we store the original * instruction at index zero and a break trap instruction at * index one. * * On MIPS arch if the instruction at probed address is a * branch instruction, we need to execute the instruction at * Branch Delayslot (BD) at the time of probe hit. As MIPS also * doesn't have single stepping support, the BD instruction can * not be executed in-line and it would be executed on SSOL slot * using a normal breakpoint instruction in the next slot. * So, read the instruction and save it for later execution. */ if (insn_has_delayslot(insn)) memcpy(&p->ainsn.insn[0], p->addr + 1, sizeof(kprobe_opcode_t)); else memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t)); p->ainsn.insn[1] = breakpoint2_insn; p->opcode = *p->addr; out: return ret; } void __kprobes arch_arm_kprobe(struct kprobe *p) { *p->addr = breakpoint_insn; flush_insn_slot(p); } void __kprobes arch_disarm_kprobe(struct kprobe *p) { *p->addr = p->opcode; flush_insn_slot(p); } void __kprobes arch_remove_kprobe(struct kprobe *p) { if (p->ainsn.insn) { free_insn_slot(p->ainsn.insn, 0); p->ainsn.insn = NULL; } } static void save_previous_kprobe(struct kprobe_ctlblk *kcb) { kcb->prev_kprobe.kp = kprobe_running(); kcb->prev_kprobe.status = kcb->kprobe_status; kcb->prev_kprobe.old_SR = kcb->kprobe_old_SR; kcb->prev_kprobe.saved_SR = kcb->kprobe_saved_SR; kcb->prev_kprobe.saved_epc = kcb->kprobe_saved_epc; } static void restore_previous_kprobe(struct kprobe_ctlblk *kcb) { __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); kcb->kprobe_status = kcb->prev_kprobe.status; kcb->kprobe_old_SR = kcb->prev_kprobe.old_SR; kcb->kprobe_saved_SR = kcb->prev_kprobe.saved_SR; kcb->kprobe_saved_epc = kcb->prev_kprobe.saved_epc; } static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb) { __this_cpu_write(current_kprobe, p); kcb->kprobe_saved_SR = kcb->kprobe_old_SR = (regs->cp0_status & ST0_IE); kcb->kprobe_saved_epc = regs->cp0_epc; } /** * evaluate_branch_instrucion - * * Evaluate the branch instruction at probed address during probe hit. The * result of evaluation would be the updated epc. The insturction in delayslot * would actually be single stepped using a normal breakpoint) on SSOL slot. * * The result is also saved in the kprobe control block for later use, * in case we need to execute the delayslot instruction. The latter will be * false for NOP instruction in dealyslot and the branch-likely instructions * when the branch is taken. And for those cases we set a flag as * SKIP_DELAYSLOT in the kprobe control block */ static int evaluate_branch_instruction(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb) { union mips_instruction insn = p->opcode; long epc; int ret = 0; epc = regs->cp0_epc; if (epc & 3) goto unaligned; if (p->ainsn.insn->word == 0) kcb->flags |= SKIP_DELAYSLOT; else kcb->flags &= ~SKIP_DELAYSLOT; ret = __compute_return_epc_for_insn(regs, insn); if (ret < 0) return ret; if (ret == BRANCH_LIKELY_TAKEN) kcb->flags |= SKIP_DELAYSLOT; kcb->target_epc = regs->cp0_epc; return 0; unaligned: pr_notice("%s: unaligned epc - sending SIGBUS.\n", current->comm); force_sig(SIGBUS); return -EFAULT; } static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb) { int ret = 0; regs->cp0_status &= ~ST0_IE; /* single step inline if the instruction is a break */ if (p->opcode.word == breakpoint_insn.word || p->opcode.word == breakpoint2_insn.word) regs->cp0_epc = (unsigned long)p->addr; else if (insn_has_delayslot(p->opcode)) { ret = evaluate_branch_instruction(p, regs, kcb); if (ret < 0) { pr_notice("Kprobes: Error in evaluating branch\n"); return; } } regs->cp0_epc = (unsigned long)&p->ainsn.insn[0]; } /* * Called after single-stepping. p->addr is the address of the * instruction whose first byte has been replaced by the "break 0" * instruction. To avoid the SMP problems that can occur when we * temporarily put back the original opcode to single-step, we * single-stepped a copy of the instruction. The address of this * copy is p->ainsn.insn. * * This function prepares to return from the post-single-step * breakpoint trap. In case of branch instructions, the target * epc to be restored. */ static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb) { if (insn_has_delayslot(p->opcode)) regs->cp0_epc = kcb->target_epc; else { unsigned long orig_epc = kcb->kprobe_saved_epc; regs->cp0_epc = orig_epc + 4; } } static int __kprobes kprobe_handler(struct pt_regs *regs) { struct kprobe *p; int ret = 0; kprobe_opcode_t *addr; struct kprobe_ctlblk *kcb; addr = (kprobe_opcode_t *) regs->cp0_epc; /* * We don't want to be preempted for the entire * duration of kprobe processing */ preempt_disable(); kcb = get_kprobe_ctlblk(); /* Check we're not actually recursing */ if (kprobe_running()) { p = get_kprobe(addr); if (p) { if (kcb->kprobe_status == KPROBE_HIT_SS && p->ainsn.insn->word == breakpoint_insn.word) { regs->cp0_status &= ~ST0_IE; regs->cp0_status |= kcb->kprobe_saved_SR; goto no_kprobe; } /* * We have reentered the kprobe_handler(), since * another probe was hit while within the handler. * We here save the original kprobes variables and * just single step on the instruction of the new probe * without calling any user handlers. */ save_previous_kprobe(kcb); set_current_kprobe(p, regs, kcb); kprobes_inc_nmissed_count(p); prepare_singlestep(p, regs, kcb); kcb->kprobe_status = KPROBE_REENTER; if (kcb->flags & SKIP_DELAYSLOT) { resume_execution(p, regs, kcb); restore_previous_kprobe(kcb); preempt_enable_no_resched(); } return 1; } else if (addr->word != breakpoint_insn.word) { /* * The breakpoint instruction was removed by * another cpu right after we hit, no further * handling of this interrupt is appropriate */ ret = 1; } goto no_kprobe; } p = get_kprobe(addr); if (!p) { if (addr->word != breakpoint_insn.word) { /* * The breakpoint instruction was removed right * after we hit it. Another cpu has removed * either a probepoint or a debugger breakpoint * at this address. In either case, no further * handling of this interrupt is appropriate. */ ret = 1; } /* Not one of ours: let kernel handle it */ goto no_kprobe; } set_current_kprobe(p, regs, kcb); kcb->kprobe_status = KPROBE_HIT_ACTIVE; if (p->pre_handler && p->pre_handler(p, regs)) { /* handler has already set things up, so skip ss setup */ reset_current_kprobe(); preempt_enable_no_resched(); return 1; } prepare_singlestep(p, regs, kcb); if (kcb->flags & SKIP_DELAYSLOT) { kcb->kprobe_status = KPROBE_HIT_SSDONE; if (p->post_handler) p->post_handler(p, regs, 0); resume_execution(p, regs, kcb); preempt_enable_no_resched(); } else kcb->kprobe_status = KPROBE_HIT_SS; return 1; no_kprobe: preempt_enable_no_resched(); return ret; } static inline int post_kprobe_handler(struct pt_regs *regs) { struct kprobe *cur = kprobe_running(); struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); if (!cur) return 0; if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { kcb->kprobe_status = KPROBE_HIT_SSDONE; cur->post_handler(cur, regs, 0); } resume_execution(cur, regs, kcb); regs->cp0_status |= kcb->kprobe_saved_SR; /* Restore back the original saved kprobes variables and continue. */ if (kcb->kprobe_status == KPROBE_REENTER) { restore_previous_kprobe(kcb); goto out; } reset_current_kprobe(); out: preempt_enable_no_resched(); return 1; } int kprobe_fault_handler(struct pt_regs *regs, int trapnr) { struct kprobe *cur = kprobe_running(); struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) return 1; if (kcb->kprobe_status & KPROBE_HIT_SS) { resume_execution(cur, regs, kcb); regs->cp0_status |= kcb->kprobe_old_SR; reset_current_kprobe(); preempt_enable_no_resched(); } return 0; } /* * Wrapper routine for handling exceptions. */ int __kprobes kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, void *data) { struct die_args *args = (struct die_args *)data; int ret = NOTIFY_DONE; switch (val) { case DIE_BREAK: if (kprobe_handler(args->regs)) ret = NOTIFY_STOP; break; case DIE_SSTEPBP: if (post_kprobe_handler(args->regs)) ret = NOTIFY_STOP; break; case DIE_PAGE_FAULT: /* kprobe_running() needs smp_processor_id() */ preempt_disable(); if (kprobe_running() && kprobe_fault_handler(args->regs, args->trapnr)) ret = NOTIFY_STOP; preempt_enable(); break; default: break; } return ret; } /* * Function return probe trampoline: * - init_kprobes() establishes a probepoint here * - When the probed function returns, this probe causes the * handlers to fire */ static void __used kretprobe_trampoline_holder(void) { asm volatile( ".set push\n\t" /* Keep the assembler from reordering and placing JR here. */ ".set noreorder\n\t" "nop\n\t" ".global kretprobe_trampoline\n" "kretprobe_trampoline:\n\t" "nop\n\t" ".set pop" : : : "memory"); } void kretprobe_trampoline(void); void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) { ri->ret_addr = (kprobe_opcode_t *) regs->regs[31]; /* Replace the return addr with trampoline addr */ regs->regs[31] = (unsigned long)kretprobe_trampoline; } /* * Called when the probe at kretprobe trampoline is hit */ static int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs) { struct kretprobe_instance *ri = NULL; struct hlist_head *head, empty_rp; struct hlist_node *tmp; unsigned long flags, orig_ret_address = 0; unsigned long trampoline_address = (unsigned long)kretprobe_trampoline; INIT_HLIST_HEAD(&empty_rp); kretprobe_hash_lock(current, &head, &flags); /* * It is possible to have multiple instances associated with a given * task either because an multiple functions in the call path * have a return probe installed on them, and/or more than one return * return probe was registered for a target function. * * We can handle this because: * - instances are always inserted at the head of the list * - when multiple return probes are registered for the same * function, the first instance's ret_addr will point to the * real return address, and all the rest will point to * kretprobe_trampoline */ hlist_for_each_entry_safe(ri, tmp, head, hlist) { if (ri->task != current) /* another task is sharing our hash bucket */ continue; if (ri->rp && ri->rp->handler) ri->rp->handler(ri, regs); orig_ret_address = (unsigned long)ri->ret_addr; recycle_rp_inst(ri, &empty_rp); if (orig_ret_address != trampoline_address) /* * This is the real return address. Any other * instances associated with this task are for * other calls deeper on the call stack */ break; } kretprobe_assert(ri, orig_ret_address, trampoline_address); instruction_pointer(regs) = orig_ret_address; kretprobe_hash_unlock(current, &flags); hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { hlist_del(&ri->hlist); kfree(ri); } /* * By returning a non-zero value, we are telling * kprobe_handler() that we don't want the post_handler * to run (and have re-enabled preemption) */ return 1; } int __kprobes arch_trampoline_kprobe(struct kprobe *p) { if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline) return 1; return 0; } static struct kprobe trampoline_p = { .addr = (kprobe_opcode_t *)kretprobe_trampoline, .pre_handler = trampoline_probe_handler }; int __init arch_init_kprobes(void) { return register_kprobe(&trampoline_p); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1