Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David Daney | 3671 | 36.05% | 3 | 5.88% |
Huacai Chen | 2644 | 25.97% | 4 | 7.84% |
Deng-Cheng Zhu | 1720 | 16.89% | 7 | 13.73% |
Zi Shen Lim | 771 | 7.57% | 1 | 1.96% |
Al Cooper | 414 | 4.07% | 4 | 7.84% |
James Hogan | 393 | 3.86% | 6 | 11.76% |
Peter Zijlstra | 168 | 1.65% | 4 | 7.84% |
Matt Redfearn | 124 | 1.22% | 2 | 3.92% |
Stephen Rothwell | 60 | 0.59% | 1 | 1.96% |
Marcin Nowakowski | 48 | 0.47% | 2 | 3.92% |
Steven J. Hill | 27 | 0.27% | 1 | 1.96% |
Paul Burton | 26 | 0.26% | 1 | 1.96% |
Markos Chandras | 23 | 0.23% | 1 | 1.96% |
Kelvin Cheung | 23 | 0.23% | 1 | 1.96% |
Christoph Lameter | 14 | 0.14% | 1 | 1.96% |
Stéphane Eranian | 12 | 0.12% | 1 | 1.96% |
Florian Fainelli | 12 | 0.12% | 1 | 1.96% |
Rabin Vincent | 10 | 0.10% | 1 | 1.96% |
Joe Perches | 4 | 0.04% | 1 | 1.96% |
Andrew Bresticker | 4 | 0.04% | 1 | 1.96% |
Joshua Kinard | 3 | 0.03% | 1 | 1.96% |
Wei Yang | 2 | 0.02% | 1 | 1.96% |
Robert Richter | 2 | 0.02% | 1 | 1.96% |
Thomas Gleixner | 2 | 0.02% | 1 | 1.96% |
Tiezhu Yang | 2 | 0.02% | 1 | 1.96% |
Jiaxun Yang | 2 | 0.02% | 1 | 1.96% |
Adam Buchbinder | 1 | 0.01% | 1 | 1.96% |
Total | 10182 | 51 |
// SPDX-License-Identifier: GPL-2.0-only /* * Linux performance counter support for MIPS. * * Copyright (C) 2010 MIPS Technologies, Inc. * Copyright (C) 2011 Cavium Networks, Inc. * Author: Deng-Cheng Zhu * * This code is based on the implementation for ARM, which is in turn * based on the sparc64 perf event code and the x86 code. Performance * counter access is based on the MIPS Oprofile code. And the callchain * support references the code of MIPS stacktrace.c. */ #include <linux/cpumask.h> #include <linux/interrupt.h> #include <linux/smp.h> #include <linux/kernel.h> #include <linux/perf_event.h> #include <linux/uaccess.h> #include <asm/irq.h> #include <asm/irq_regs.h> #include <asm/stacktrace.h> #include <asm/time.h> /* For perf_irq */ #define MIPS_MAX_HWEVENTS 4 #define MIPS_TCS_PER_COUNTER 2 #define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1) struct cpu_hw_events { /* Array of events on this cpu. */ struct perf_event *events[MIPS_MAX_HWEVENTS]; /* * Set the bit (indexed by the counter number) when the counter * is used for an event. */ unsigned long used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)]; /* * Software copy of the control register for each performance counter. * MIPS CPUs vary in performance counters. They use this differently, * and even may not use it. */ unsigned int saved_ctrl[MIPS_MAX_HWEVENTS]; }; DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .saved_ctrl = {0}, }; /* The description of MIPS performance events. */ struct mips_perf_event { unsigned int event_id; /* * MIPS performance counters are indexed starting from 0. * CNTR_EVEN indicates the indexes of the counters to be used are * even numbers. */ unsigned int cntr_mask; #define CNTR_EVEN 0x55555555 #define CNTR_ODD 0xaaaaaaaa #define CNTR_ALL 0xffffffff enum { T = 0, V = 1, P = 2, } range; }; static struct mips_perf_event raw_event; static DEFINE_MUTEX(raw_event_mutex); #define C(x) PERF_COUNT_HW_CACHE_##x struct mips_pmu { u64 max_period; u64 valid_count; u64 overflow; const char *name; int irq; u64 (*read_counter)(unsigned int idx); void (*write_counter)(unsigned int idx, u64 val); const struct mips_perf_event *(*map_raw_event)(u64 config); const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX]; const struct mips_perf_event (*cache_event_map) [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX]; unsigned int num_counters; }; static int counter_bits; static struct mips_pmu mipspmu; #define M_PERFCTL_EVENT(event) (((event) << MIPS_PERFCTRL_EVENT_S) & \ MIPS_PERFCTRL_EVENT) #define M_PERFCTL_VPEID(vpe) ((vpe) << MIPS_PERFCTRL_VPEID_S) #ifdef CONFIG_CPU_BMIPS5000 #define M_PERFCTL_MT_EN(filter) 0 #else /* !CONFIG_CPU_BMIPS5000 */ #define M_PERFCTL_MT_EN(filter) (filter) #endif /* CONFIG_CPU_BMIPS5000 */ #define M_TC_EN_ALL M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_ALL) #define M_TC_EN_VPE M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_VPE) #define M_TC_EN_TC M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_TC) #define M_PERFCTL_COUNT_EVENT_WHENEVER (MIPS_PERFCTRL_EXL | \ MIPS_PERFCTRL_K | \ MIPS_PERFCTRL_U | \ MIPS_PERFCTRL_S | \ MIPS_PERFCTRL_IE) #ifdef CONFIG_MIPS_MT_SMP #define M_PERFCTL_CONFIG_MASK 0x3fff801f #else #define M_PERFCTL_CONFIG_MASK 0x1f #endif #define CNTR_BIT_MASK(n) (((n) == 64) ? ~0ULL : ((1ULL<<(n))-1)) #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS static DEFINE_RWLOCK(pmuint_rwlock); #if defined(CONFIG_CPU_BMIPS5000) #define vpe_id() (cpu_has_mipsmt_pertccounters ? \ 0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK)) #else #define vpe_id() (cpu_has_mipsmt_pertccounters ? \ 0 : cpu_vpe_id(¤t_cpu_data)) #endif /* Copied from op_model_mipsxx.c */ static unsigned int vpe_shift(void) { if (num_possible_cpus() > 1) return 1; return 0; } static unsigned int counters_total_to_per_cpu(unsigned int counters) { return counters >> vpe_shift(); } #else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */ #define vpe_id() 0 #endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */ static void resume_local_counters(void); static void pause_local_counters(void); static irqreturn_t mipsxx_pmu_handle_irq(int, void *); static int mipsxx_pmu_handle_shared_irq(void); /* 0: Not Loongson-3 * 1: Loongson-3A1000/3B1000/3B1500 * 2: Loongson-3A2000/3A3000 * 3: Loongson-3A4000+ */ #define LOONGSON_PMU_TYPE0 0 #define LOONGSON_PMU_TYPE1 1 #define LOONGSON_PMU_TYPE2 2 #define LOONGSON_PMU_TYPE3 3 static inline int get_loongson3_pmu_type(void) { if (boot_cpu_type() != CPU_LOONGSON64) return LOONGSON_PMU_TYPE0; if ((boot_cpu_data.processor_id & PRID_COMP_MASK) == PRID_COMP_LEGACY) return LOONGSON_PMU_TYPE1; if ((boot_cpu_data.processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64C) return LOONGSON_PMU_TYPE2; if ((boot_cpu_data.processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64G) return LOONGSON_PMU_TYPE3; return LOONGSON_PMU_TYPE0; } static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx) { if (vpe_id() == 1) idx = (idx + 2) & 3; return idx; } static u64 mipsxx_pmu_read_counter(unsigned int idx) { idx = mipsxx_pmu_swizzle_perf_idx(idx); switch (idx) { case 0: /* * The counters are unsigned, we must cast to truncate * off the high bits. */ return (u32)read_c0_perfcntr0(); case 1: return (u32)read_c0_perfcntr1(); case 2: return (u32)read_c0_perfcntr2(); case 3: return (u32)read_c0_perfcntr3(); default: WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx); return 0; } } static u64 mipsxx_pmu_read_counter_64(unsigned int idx) { u64 mask = CNTR_BIT_MASK(counter_bits); idx = mipsxx_pmu_swizzle_perf_idx(idx); switch (idx) { case 0: return read_c0_perfcntr0_64() & mask; case 1: return read_c0_perfcntr1_64() & mask; case 2: return read_c0_perfcntr2_64() & mask; case 3: return read_c0_perfcntr3_64() & mask; default: WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx); return 0; } } static void mipsxx_pmu_write_counter(unsigned int idx, u64 val) { idx = mipsxx_pmu_swizzle_perf_idx(idx); switch (idx) { case 0: write_c0_perfcntr0(val); return; case 1: write_c0_perfcntr1(val); return; case 2: write_c0_perfcntr2(val); return; case 3: write_c0_perfcntr3(val); return; } } static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val) { val &= CNTR_BIT_MASK(counter_bits); idx = mipsxx_pmu_swizzle_perf_idx(idx); switch (idx) { case 0: write_c0_perfcntr0_64(val); return; case 1: write_c0_perfcntr1_64(val); return; case 2: write_c0_perfcntr2_64(val); return; case 3: write_c0_perfcntr3_64(val); return; } } static unsigned int mipsxx_pmu_read_control(unsigned int idx) { idx = mipsxx_pmu_swizzle_perf_idx(idx); switch (idx) { case 0: return read_c0_perfctrl0(); case 1: return read_c0_perfctrl1(); case 2: return read_c0_perfctrl2(); case 3: return read_c0_perfctrl3(); default: WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx); return 0; } } static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val) { idx = mipsxx_pmu_swizzle_perf_idx(idx); switch (idx) { case 0: write_c0_perfctrl0(val); return; case 1: write_c0_perfctrl1(val); return; case 2: write_c0_perfctrl2(val); return; case 3: write_c0_perfctrl3(val); return; } } static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc) { int i; unsigned long cntr_mask; /* * We only need to care the counter mask. The range has been * checked definitely. */ if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2) cntr_mask = (hwc->event_base >> 10) & 0xffff; else cntr_mask = (hwc->event_base >> 8) & 0xffff; for (i = mipspmu.num_counters - 1; i >= 0; i--) { /* * Note that some MIPS perf events can be counted by both * even and odd counters, wheresas many other are only by * even _or_ odd counters. This introduces an issue that * when the former kind of event takes the counter the * latter kind of event wants to use, then the "counter * allocation" for the latter event will fail. In fact if * they can be dynamically swapped, they both feel happy. * But here we leave this issue alone for now. */ if (test_bit(i, &cntr_mask) && !test_and_set_bit(i, cpuc->used_mask)) return i; } return -EAGAIN; } static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx) { struct perf_event *event = container_of(evt, struct perf_event, hw); struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); unsigned int range = evt->event_base >> 24; WARN_ON(idx < 0 || idx >= mipspmu.num_counters); if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2) cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0x3ff) | (evt->config_base & M_PERFCTL_CONFIG_MASK) | /* Make sure interrupt enabled. */ MIPS_PERFCTRL_IE; else cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) | (evt->config_base & M_PERFCTL_CONFIG_MASK) | /* Make sure interrupt enabled. */ MIPS_PERFCTRL_IE; if (IS_ENABLED(CONFIG_CPU_BMIPS5000)) { /* enable the counter for the calling thread */ cpuc->saved_ctrl[idx] |= (1 << (12 + vpe_id())) | BRCM_PERFCTRL_TC; } else if (IS_ENABLED(CONFIG_MIPS_MT_SMP) && range > V) { /* The counter is processor wide. Set it up to count all TCs. */ pr_debug("Enabling perf counter for all TCs\n"); cpuc->saved_ctrl[idx] |= M_TC_EN_ALL; } else { unsigned int cpu, ctrl; /* * Set up the counter for a particular CPU when event->cpu is * a valid CPU number. Otherwise set up the counter for the CPU * scheduling this thread. */ cpu = (event->cpu >= 0) ? event->cpu : smp_processor_id(); ctrl = M_PERFCTL_VPEID(cpu_vpe_id(&cpu_data[cpu])); ctrl |= M_TC_EN_VPE; cpuc->saved_ctrl[idx] |= ctrl; pr_debug("Enabling perf counter for CPU%d\n", cpu); } /* * We do not actually let the counter run. Leave it until start(). */ } static void mipsxx_pmu_disable_event(int idx) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); unsigned long flags; WARN_ON(idx < 0 || idx >= mipspmu.num_counters); local_irq_save(flags); cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) & ~M_PERFCTL_COUNT_EVENT_WHENEVER; mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]); local_irq_restore(flags); } static int mipspmu_event_set_period(struct perf_event *event, struct hw_perf_event *hwc, int idx) { u64 left = local64_read(&hwc->period_left); u64 period = hwc->sample_period; int ret = 0; if (unlikely((left + period) & (1ULL << 63))) { /* left underflowed by more than period. */ left = period; local64_set(&hwc->period_left, left); hwc->last_period = period; ret = 1; } else if (unlikely((left + period) <= period)) { /* left underflowed by less than period. */ left += period; local64_set(&hwc->period_left, left); hwc->last_period = period; ret = 1; } if (left > mipspmu.max_period) { left = mipspmu.max_period; local64_set(&hwc->period_left, left); } local64_set(&hwc->prev_count, mipspmu.overflow - left); if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2) mipsxx_pmu_write_control(idx, M_PERFCTL_EVENT(hwc->event_base & 0x3ff)); mipspmu.write_counter(idx, mipspmu.overflow - left); perf_event_update_userpage(event); return ret; } static void mipspmu_event_update(struct perf_event *event, struct hw_perf_event *hwc, int idx) { u64 prev_raw_count, new_raw_count; u64 delta; again: prev_raw_count = local64_read(&hwc->prev_count); new_raw_count = mipspmu.read_counter(idx); if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, new_raw_count) != prev_raw_count) goto again; delta = new_raw_count - prev_raw_count; local64_add(delta, &event->count); local64_sub(delta, &hwc->period_left); } static void mipspmu_start(struct perf_event *event, int flags) { struct hw_perf_event *hwc = &event->hw; if (flags & PERF_EF_RELOAD) WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); hwc->state = 0; /* Set the period for the event. */ mipspmu_event_set_period(event, hwc, hwc->idx); /* Enable the event. */ mipsxx_pmu_enable_event(hwc, hwc->idx); } static void mipspmu_stop(struct perf_event *event, int flags) { struct hw_perf_event *hwc = &event->hw; if (!(hwc->state & PERF_HES_STOPPED)) { /* We are working on a local event. */ mipsxx_pmu_disable_event(hwc->idx); barrier(); mipspmu_event_update(event, hwc, hwc->idx); hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; } } static int mipspmu_add(struct perf_event *event, int flags) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); struct hw_perf_event *hwc = &event->hw; int idx; int err = 0; perf_pmu_disable(event->pmu); /* To look for a free counter for this event. */ idx = mipsxx_pmu_alloc_counter(cpuc, hwc); if (idx < 0) { err = idx; goto out; } /* * If there is an event in the counter we are going to use then * make sure it is disabled. */ event->hw.idx = idx; mipsxx_pmu_disable_event(idx); cpuc->events[idx] = event; hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; if (flags & PERF_EF_START) mipspmu_start(event, PERF_EF_RELOAD); /* Propagate our changes to the userspace mapping. */ perf_event_update_userpage(event); out: perf_pmu_enable(event->pmu); return err; } static void mipspmu_del(struct perf_event *event, int flags) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); struct hw_perf_event *hwc = &event->hw; int idx = hwc->idx; WARN_ON(idx < 0 || idx >= mipspmu.num_counters); mipspmu_stop(event, PERF_EF_UPDATE); cpuc->events[idx] = NULL; clear_bit(idx, cpuc->used_mask); perf_event_update_userpage(event); } static void mipspmu_read(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; /* Don't read disabled counters! */ if (hwc->idx < 0) return; mipspmu_event_update(event, hwc, hwc->idx); } static void mipspmu_enable(struct pmu *pmu) { #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS write_unlock(&pmuint_rwlock); #endif resume_local_counters(); } /* * MIPS performance counters can be per-TC. The control registers can * not be directly accessed across CPUs. Hence if we want to do global * control, we need cross CPU calls. on_each_cpu() can help us, but we * can not make sure this function is called with interrupts enabled. So * here we pause local counters and then grab a rwlock and leave the * counters on other CPUs alone. If any counter interrupt raises while * we own the write lock, simply pause local counters on that CPU and * spin in the handler. Also we know we won't be switched to another * CPU after pausing local counters and before grabbing the lock. */ static void mipspmu_disable(struct pmu *pmu) { pause_local_counters(); #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS write_lock(&pmuint_rwlock); #endif } static atomic_t active_events = ATOMIC_INIT(0); static DEFINE_MUTEX(pmu_reserve_mutex); static int (*save_perf_irq)(void); static int mipspmu_get_irq(void) { int err; if (mipspmu.irq >= 0) { /* Request my own irq handler. */ err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq, IRQF_PERCPU | IRQF_NOBALANCING | IRQF_NO_THREAD | IRQF_NO_SUSPEND | IRQF_SHARED, "mips_perf_pmu", &mipspmu); if (err) { pr_warn("Unable to request IRQ%d for MIPS performance counters!\n", mipspmu.irq); } } else if (cp0_perfcount_irq < 0) { /* * We are sharing the irq number with the timer interrupt. */ save_perf_irq = perf_irq; perf_irq = mipsxx_pmu_handle_shared_irq; err = 0; } else { pr_warn("The platform hasn't properly defined its interrupt controller\n"); err = -ENOENT; } return err; } static void mipspmu_free_irq(void) { if (mipspmu.irq >= 0) free_irq(mipspmu.irq, &mipspmu); else if (cp0_perfcount_irq < 0) perf_irq = save_perf_irq; } /* * mipsxx/rm9000/loongson2 have different performance counters, they have * specific low-level init routines. */ static void reset_counters(void *arg); static int __hw_perf_event_init(struct perf_event *event); static void hw_perf_event_destroy(struct perf_event *event) { if (atomic_dec_and_mutex_lock(&active_events, &pmu_reserve_mutex)) { /* * We must not call the destroy function with interrupts * disabled. */ on_each_cpu(reset_counters, (void *)(long)mipspmu.num_counters, 1); mipspmu_free_irq(); mutex_unlock(&pmu_reserve_mutex); } } static int mipspmu_event_init(struct perf_event *event) { int err = 0; /* does not support taken branch sampling */ if (has_branch_stack(event)) return -EOPNOTSUPP; switch (event->attr.type) { case PERF_TYPE_RAW: case PERF_TYPE_HARDWARE: case PERF_TYPE_HW_CACHE: break; default: return -ENOENT; } if (event->cpu >= 0 && !cpu_online(event->cpu)) return -ENODEV; if (!atomic_inc_not_zero(&active_events)) { mutex_lock(&pmu_reserve_mutex); if (atomic_read(&active_events) == 0) err = mipspmu_get_irq(); if (!err) atomic_inc(&active_events); mutex_unlock(&pmu_reserve_mutex); } if (err) return err; return __hw_perf_event_init(event); } static struct pmu pmu = { .pmu_enable = mipspmu_enable, .pmu_disable = mipspmu_disable, .event_init = mipspmu_event_init, .add = mipspmu_add, .del = mipspmu_del, .start = mipspmu_start, .stop = mipspmu_stop, .read = mipspmu_read, }; static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev) { /* * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for * event_id. */ #ifdef CONFIG_MIPS_MT_SMP if (num_possible_cpus() > 1) return ((unsigned int)pev->range << 24) | (pev->cntr_mask & 0xffff00) | (pev->event_id & 0xff); else #endif /* CONFIG_MIPS_MT_SMP */ { if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2) return (pev->cntr_mask & 0xfffc00) | (pev->event_id & 0x3ff); else return (pev->cntr_mask & 0xffff00) | (pev->event_id & 0xff); } } static const struct mips_perf_event *mipspmu_map_general_event(int idx) { if ((*mipspmu.general_event_map)[idx].cntr_mask == 0) return ERR_PTR(-EOPNOTSUPP); return &(*mipspmu.general_event_map)[idx]; } static const struct mips_perf_event *mipspmu_map_cache_event(u64 config) { unsigned int cache_type, cache_op, cache_result; const struct mips_perf_event *pev; cache_type = (config >> 0) & 0xff; if (cache_type >= PERF_COUNT_HW_CACHE_MAX) return ERR_PTR(-EINVAL); cache_op = (config >> 8) & 0xff; if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) return ERR_PTR(-EINVAL); cache_result = (config >> 16) & 0xff; if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) return ERR_PTR(-EINVAL); pev = &((*mipspmu.cache_event_map) [cache_type] [cache_op] [cache_result]); if (pev->cntr_mask == 0) return ERR_PTR(-EOPNOTSUPP); return pev; } static int validate_group(struct perf_event *event) { struct perf_event *sibling, *leader = event->group_leader; struct cpu_hw_events fake_cpuc; memset(&fake_cpuc, 0, sizeof(fake_cpuc)); if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0) return -EINVAL; for_each_sibling_event(sibling, leader) { if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0) return -EINVAL; } if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0) return -EINVAL; return 0; } /* This is needed by specific irq handlers in perf_event_*.c */ static void handle_associated_event(struct cpu_hw_events *cpuc, int idx, struct perf_sample_data *data, struct pt_regs *regs) { struct perf_event *event = cpuc->events[idx]; struct hw_perf_event *hwc = &event->hw; mipspmu_event_update(event, hwc, idx); data->period = event->hw.last_period; if (!mipspmu_event_set_period(event, hwc, idx)) return; if (perf_event_overflow(event, data, regs)) mipsxx_pmu_disable_event(idx); } static int __n_counters(void) { if (!cpu_has_perf) return 0; if (!(read_c0_perfctrl0() & MIPS_PERFCTRL_M)) return 1; if (!(read_c0_perfctrl1() & MIPS_PERFCTRL_M)) return 2; if (!(read_c0_perfctrl2() & MIPS_PERFCTRL_M)) return 3; return 4; } static int n_counters(void) { int counters; switch (current_cpu_type()) { case CPU_R10000: counters = 2; break; case CPU_R12000: case CPU_R14000: case CPU_R16000: counters = 4; break; default: counters = __n_counters(); } return counters; } static void loongson3_reset_counters(void *arg) { int counters = (int)(long)arg; switch (counters) { case 4: mipsxx_pmu_write_control(3, 0); mipspmu.write_counter(3, 0); mipsxx_pmu_write_control(3, 127<<5); mipspmu.write_counter(3, 0); mipsxx_pmu_write_control(3, 191<<5); mipspmu.write_counter(3, 0); mipsxx_pmu_write_control(3, 255<<5); mipspmu.write_counter(3, 0); mipsxx_pmu_write_control(3, 319<<5); mipspmu.write_counter(3, 0); mipsxx_pmu_write_control(3, 383<<5); mipspmu.write_counter(3, 0); mipsxx_pmu_write_control(3, 575<<5); mipspmu.write_counter(3, 0); fallthrough; case 3: mipsxx_pmu_write_control(2, 0); mipspmu.write_counter(2, 0); mipsxx_pmu_write_control(2, 127<<5); mipspmu.write_counter(2, 0); mipsxx_pmu_write_control(2, 191<<5); mipspmu.write_counter(2, 0); mipsxx_pmu_write_control(2, 255<<5); mipspmu.write_counter(2, 0); mipsxx_pmu_write_control(2, 319<<5); mipspmu.write_counter(2, 0); mipsxx_pmu_write_control(2, 383<<5); mipspmu.write_counter(2, 0); mipsxx_pmu_write_control(2, 575<<5); mipspmu.write_counter(2, 0); fallthrough; case 2: mipsxx_pmu_write_control(1, 0); mipspmu.write_counter(1, 0); mipsxx_pmu_write_control(1, 127<<5); mipspmu.write_counter(1, 0); mipsxx_pmu_write_control(1, 191<<5); mipspmu.write_counter(1, 0); mipsxx_pmu_write_control(1, 255<<5); mipspmu.write_counter(1, 0); mipsxx_pmu_write_control(1, 319<<5); mipspmu.write_counter(1, 0); mipsxx_pmu_write_control(1, 383<<5); mipspmu.write_counter(1, 0); mipsxx_pmu_write_control(1, 575<<5); mipspmu.write_counter(1, 0); fallthrough; case 1: mipsxx_pmu_write_control(0, 0); mipspmu.write_counter(0, 0); mipsxx_pmu_write_control(0, 127<<5); mipspmu.write_counter(0, 0); mipsxx_pmu_write_control(0, 191<<5); mipspmu.write_counter(0, 0); mipsxx_pmu_write_control(0, 255<<5); mipspmu.write_counter(0, 0); mipsxx_pmu_write_control(0, 319<<5); mipspmu.write_counter(0, 0); mipsxx_pmu_write_control(0, 383<<5); mipspmu.write_counter(0, 0); mipsxx_pmu_write_control(0, 575<<5); mipspmu.write_counter(0, 0); break; } } static void reset_counters(void *arg) { int counters = (int)(long)arg; if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2) { loongson3_reset_counters(arg); return; } switch (counters) { case 4: mipsxx_pmu_write_control(3, 0); mipspmu.write_counter(3, 0); fallthrough; case 3: mipsxx_pmu_write_control(2, 0); mipspmu.write_counter(2, 0); fallthrough; case 2: mipsxx_pmu_write_control(1, 0); mipspmu.write_counter(1, 0); fallthrough; case 1: mipsxx_pmu_write_control(0, 0); mipspmu.write_counter(0, 0); break; } } /* 24K/34K/1004K/interAptiv/loongson1 cores share the same event map. */ static const struct mips_perf_event mipsxxcore_event_map [PERF_COUNT_HW_MAX] = { [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P }, [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T }, [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T }, [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T }, }; /* 74K/proAptiv core has different branch event code. */ static const struct mips_perf_event mipsxxcore_event_map2 [PERF_COUNT_HW_MAX] = { [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P }, [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T }, [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T }, [PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T }, }; static const struct mips_perf_event i6x00_event_map[PERF_COUNT_HW_MAX] = { [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD }, [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD }, /* These only count dcache, not icache */ [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x45, CNTR_EVEN | CNTR_ODD }, [PERF_COUNT_HW_CACHE_MISSES] = { 0x48, CNTR_EVEN | CNTR_ODD }, [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x15, CNTR_EVEN | CNTR_ODD }, [PERF_COUNT_HW_BRANCH_MISSES] = { 0x16, CNTR_EVEN | CNTR_ODD }, }; static const struct mips_perf_event loongson3_event_map1[PERF_COUNT_HW_MAX] = { [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN }, [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, CNTR_ODD }, [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x01, CNTR_EVEN }, [PERF_COUNT_HW_BRANCH_MISSES] = { 0x01, CNTR_ODD }, }; static const struct mips_perf_event loongson3_event_map2[PERF_COUNT_HW_MAX] = { [PERF_COUNT_HW_CPU_CYCLES] = { 0x80, CNTR_ALL }, [PERF_COUNT_HW_INSTRUCTIONS] = { 0x81, CNTR_ALL }, [PERF_COUNT_HW_CACHE_MISSES] = { 0x18, CNTR_ALL }, [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x94, CNTR_ALL }, [PERF_COUNT_HW_BRANCH_MISSES] = { 0x9c, CNTR_ALL }, }; static const struct mips_perf_event loongson3_event_map3[PERF_COUNT_HW_MAX] = { [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_ALL }, [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_ALL }, [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x1c, CNTR_ALL }, [PERF_COUNT_HW_CACHE_MISSES] = { 0x1d, CNTR_ALL }, [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_ALL }, [PERF_COUNT_HW_BRANCH_MISSES] = { 0x08, CNTR_ALL }, }; static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = { [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL }, [PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL }, [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL }, [PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL }, [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL }, [PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL }, [PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL }, }; static const struct mips_perf_event bmips5000_event_map [PERF_COUNT_HW_MAX] = { [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, T }, [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T }, [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T }, }; static const struct mips_perf_event xlp_event_map[PERF_COUNT_HW_MAX] = { [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL }, [PERF_COUNT_HW_INSTRUCTIONS] = { 0x18, CNTR_ALL }, /* PAPI_TOT_INS */ [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */ [PERF_COUNT_HW_CACHE_MISSES] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */ [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x1b, CNTR_ALL }, /* PAPI_BR_CN */ [PERF_COUNT_HW_BRANCH_MISSES] = { 0x1c, CNTR_ALL }, /* PAPI_BR_MSP */ }; /* 24K/34K/1004K/interAptiv/loongson1 cores share the same cache event map. */ static const struct mips_perf_event mipsxxcore_cache_map [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [C(L1D)] = { /* * Like some other architectures (e.g. ARM), the performance * counters don't differentiate between read and write * accesses/misses, so this isn't strictly correct, but it's the * best we can do. Writes and reads get combined. */ [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T }, }, }, [C(L1I)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T }, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = { 0x14, CNTR_EVEN, T }, /* * Note that MIPS has only "hit" events countable for * the prefetch operation. */ }, }, [C(LL)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P }, [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P }, [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P }, }, }, [C(DTLB)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T }, }, }, [C(ITLB)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T }, }, }, [C(BPU)] = { /* Using the same code for *HW_BRANCH* */ [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T }, }, }, }; /* 74K/proAptiv core has completely different cache event map. */ static const struct mips_perf_event mipsxxcore_cache_map2 [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [C(L1D)] = { /* * Like some other architectures (e.g. ARM), the performance * counters don't differentiate between read and write * accesses/misses, so this isn't strictly correct, but it's the * best we can do. Writes and reads get combined. */ [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T }, [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T }, [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T }, }, }, [C(L1I)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T }, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = { 0x34, CNTR_EVEN, T }, /* * Note that MIPS has only "hit" events countable for * the prefetch operation. */ }, }, [C(LL)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P }, [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN, P }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P }, [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN, P }, }, }, /* * 74K core does not have specific DTLB events. proAptiv core has * "speculative" DTLB events which are numbered 0x63 (even/odd) and * not included here. One can use raw events if really needed. */ [C(ITLB)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T }, }, }, [C(BPU)] = { /* Using the same code for *HW_BRANCH* */ [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T }, }, }, }; static const struct mips_perf_event i6x00_cache_map [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [C(L1D)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x46, CNTR_EVEN | CNTR_ODD }, [C(RESULT_MISS)] = { 0x49, CNTR_EVEN | CNTR_ODD }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x47, CNTR_EVEN | CNTR_ODD }, [C(RESULT_MISS)] = { 0x4a, CNTR_EVEN | CNTR_ODD }, }, }, [C(L1I)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x84, CNTR_EVEN | CNTR_ODD }, [C(RESULT_MISS)] = { 0x85, CNTR_EVEN | CNTR_ODD }, }, }, [C(DTLB)] = { /* Can't distinguish read & write */ [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x40, CNTR_EVEN | CNTR_ODD }, [C(RESULT_MISS)] = { 0x41, CNTR_EVEN | CNTR_ODD }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x40, CNTR_EVEN | CNTR_ODD }, [C(RESULT_MISS)] = { 0x41, CNTR_EVEN | CNTR_ODD }, }, }, [C(BPU)] = { /* Conditional branches / mispredicted */ [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x15, CNTR_EVEN | CNTR_ODD }, [C(RESULT_MISS)] = { 0x16, CNTR_EVEN | CNTR_ODD }, }, }, }; static const struct mips_perf_event loongson3_cache_map1 [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [C(L1D)] = { /* * Like some other architectures (e.g. ARM), the performance * counters don't differentiate between read and write * accesses/misses, so this isn't strictly correct, but it's the * best we can do. Writes and reads get combined. */ [C(OP_READ)] = { [C(RESULT_MISS)] = { 0x04, CNTR_ODD }, }, [C(OP_WRITE)] = { [C(RESULT_MISS)] = { 0x04, CNTR_ODD }, }, }, [C(L1I)] = { [C(OP_READ)] = { [C(RESULT_MISS)] = { 0x04, CNTR_EVEN }, }, [C(OP_WRITE)] = { [C(RESULT_MISS)] = { 0x04, CNTR_EVEN }, }, }, [C(DTLB)] = { [C(OP_READ)] = { [C(RESULT_MISS)] = { 0x09, CNTR_ODD }, }, [C(OP_WRITE)] = { [C(RESULT_MISS)] = { 0x09, CNTR_ODD }, }, }, [C(ITLB)] = { [C(OP_READ)] = { [C(RESULT_MISS)] = { 0x0c, CNTR_ODD }, }, [C(OP_WRITE)] = { [C(RESULT_MISS)] = { 0x0c, CNTR_ODD }, }, }, [C(BPU)] = { /* Using the same code for *HW_BRANCH* */ [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x01, CNTR_EVEN }, [C(RESULT_MISS)] = { 0x01, CNTR_ODD }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x01, CNTR_EVEN }, [C(RESULT_MISS)] = { 0x01, CNTR_ODD }, }, }, }; static const struct mips_perf_event loongson3_cache_map2 [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [C(L1D)] = { /* * Like some other architectures (e.g. ARM), the performance * counters don't differentiate between read and write * accesses/misses, so this isn't strictly correct, but it's the * best we can do. Writes and reads get combined. */ [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x156, CNTR_ALL }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x155, CNTR_ALL }, [C(RESULT_MISS)] = { 0x153, CNTR_ALL }, }, }, [C(L1I)] = { [C(OP_READ)] = { [C(RESULT_MISS)] = { 0x18, CNTR_ALL }, }, [C(OP_WRITE)] = { [C(RESULT_MISS)] = { 0x18, CNTR_ALL }, }, }, [C(LL)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x1b6, CNTR_ALL }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x1b7, CNTR_ALL }, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = { 0x1bf, CNTR_ALL }, }, }, [C(DTLB)] = { [C(OP_READ)] = { [C(RESULT_MISS)] = { 0x92, CNTR_ALL }, }, [C(OP_WRITE)] = { [C(RESULT_MISS)] = { 0x92, CNTR_ALL }, }, }, [C(ITLB)] = { [C(OP_READ)] = { [C(RESULT_MISS)] = { 0x1a, CNTR_ALL }, }, [C(OP_WRITE)] = { [C(RESULT_MISS)] = { 0x1a, CNTR_ALL }, }, }, [C(BPU)] = { /* Using the same code for *HW_BRANCH* */ [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x94, CNTR_ALL }, [C(RESULT_MISS)] = { 0x9c, CNTR_ALL }, }, }, }; static const struct mips_perf_event loongson3_cache_map3 [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [C(L1D)] = { /* * Like some other architectures (e.g. ARM), the performance * counters don't differentiate between read and write * accesses/misses, so this isn't strictly correct, but it's the * best we can do. Writes and reads get combined. */ [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x1e, CNTR_ALL }, [C(RESULT_MISS)] = { 0x1f, CNTR_ALL }, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = { 0xaa, CNTR_ALL }, [C(RESULT_MISS)] = { 0xa9, CNTR_ALL }, }, }, [C(L1I)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x1c, CNTR_ALL }, [C(RESULT_MISS)] = { 0x1d, CNTR_ALL }, }, }, [C(LL)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x2e, CNTR_ALL }, [C(RESULT_MISS)] = { 0x2f, CNTR_ALL }, }, }, [C(DTLB)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x14, CNTR_ALL }, [C(RESULT_MISS)] = { 0x1b, CNTR_ALL }, }, }, [C(ITLB)] = { [C(OP_READ)] = { [C(RESULT_MISS)] = { 0x1a, CNTR_ALL }, }, }, [C(BPU)] = { /* Using the same code for *HW_BRANCH* */ [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x02, CNTR_ALL }, [C(RESULT_MISS)] = { 0x08, CNTR_ALL }, }, }, }; /* BMIPS5000 */ static const struct mips_perf_event bmips5000_cache_map [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [C(L1D)] = { /* * Like some other architectures (e.g. ARM), the performance * counters don't differentiate between read and write * accesses/misses, so this isn't strictly correct, but it's the * best we can do. Writes and reads get combined. */ [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 12, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 12, CNTR_ODD, T }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 12, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 12, CNTR_ODD, T }, }, }, [C(L1I)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 10, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 10, CNTR_ODD, T }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 10, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 10, CNTR_ODD, T }, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = { 23, CNTR_EVEN, T }, /* * Note that MIPS has only "hit" events countable for * the prefetch operation. */ }, }, [C(LL)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 28, CNTR_EVEN, P }, [C(RESULT_MISS)] = { 28, CNTR_ODD, P }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 28, CNTR_EVEN, P }, [C(RESULT_MISS)] = { 28, CNTR_ODD, P }, }, }, [C(BPU)] = { /* Using the same code for *HW_BRANCH* */ [C(OP_READ)] = { [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T }, }, [C(OP_WRITE)] = { [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T }, }, }, }; static const struct mips_perf_event octeon_cache_map [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [C(L1D)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x2b, CNTR_ALL }, [C(RESULT_MISS)] = { 0x2e, CNTR_ALL }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x30, CNTR_ALL }, }, }, [C(L1I)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x18, CNTR_ALL }, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = { 0x19, CNTR_ALL }, }, }, [C(DTLB)] = { /* * Only general DTLB misses are counted use the same event for * read and write. */ [C(OP_READ)] = { [C(RESULT_MISS)] = { 0x35, CNTR_ALL }, }, [C(OP_WRITE)] = { [C(RESULT_MISS)] = { 0x35, CNTR_ALL }, }, }, [C(ITLB)] = { [C(OP_READ)] = { [C(RESULT_MISS)] = { 0x37, CNTR_ALL }, }, }, }; static const struct mips_perf_event xlp_cache_map [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [C(L1D)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x31, CNTR_ALL }, /* PAPI_L1_DCR */ [C(RESULT_MISS)] = { 0x30, CNTR_ALL }, /* PAPI_L1_LDM */ }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x2f, CNTR_ALL }, /* PAPI_L1_DCW */ [C(RESULT_MISS)] = { 0x2e, CNTR_ALL }, /* PAPI_L1_STM */ }, }, [C(L1I)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */ [C(RESULT_MISS)] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */ }, }, [C(LL)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x35, CNTR_ALL }, /* PAPI_L2_DCR */ [C(RESULT_MISS)] = { 0x37, CNTR_ALL }, /* PAPI_L2_LDM */ }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x34, CNTR_ALL }, /* PAPI_L2_DCA */ [C(RESULT_MISS)] = { 0x36, CNTR_ALL }, /* PAPI_L2_DCM */ }, }, [C(DTLB)] = { /* * Only general DTLB misses are counted use the same event for * read and write. */ [C(OP_READ)] = { [C(RESULT_MISS)] = { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */ }, [C(OP_WRITE)] = { [C(RESULT_MISS)] = { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */ }, }, [C(ITLB)] = { [C(OP_READ)] = { [C(RESULT_MISS)] = { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */ }, [C(OP_WRITE)] = { [C(RESULT_MISS)] = { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */ }, }, [C(BPU)] = { [C(OP_READ)] = { [C(RESULT_MISS)] = { 0x25, CNTR_ALL }, }, }, }; static int __hw_perf_event_init(struct perf_event *event) { struct perf_event_attr *attr = &event->attr; struct hw_perf_event *hwc = &event->hw; const struct mips_perf_event *pev; int err; /* Returning MIPS event descriptor for generic perf event. */ if (PERF_TYPE_HARDWARE == event->attr.type) { if (event->attr.config >= PERF_COUNT_HW_MAX) return -EINVAL; pev = mipspmu_map_general_event(event->attr.config); } else if (PERF_TYPE_HW_CACHE == event->attr.type) { pev = mipspmu_map_cache_event(event->attr.config); } else if (PERF_TYPE_RAW == event->attr.type) { /* We are working on the global raw event. */ mutex_lock(&raw_event_mutex); pev = mipspmu.map_raw_event(event->attr.config); } else { /* The event type is not (yet) supported. */ return -EOPNOTSUPP; } if (IS_ERR(pev)) { if (PERF_TYPE_RAW == event->attr.type) mutex_unlock(&raw_event_mutex); return PTR_ERR(pev); } /* * We allow max flexibility on how each individual counter shared * by the single CPU operates (the mode exclusion and the range). */ hwc->config_base = MIPS_PERFCTRL_IE; hwc->event_base = mipspmu_perf_event_encode(pev); if (PERF_TYPE_RAW == event->attr.type) mutex_unlock(&raw_event_mutex); if (!attr->exclude_user) hwc->config_base |= MIPS_PERFCTRL_U; if (!attr->exclude_kernel) { hwc->config_base |= MIPS_PERFCTRL_K; /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */ hwc->config_base |= MIPS_PERFCTRL_EXL; } if (!attr->exclude_hv) hwc->config_base |= MIPS_PERFCTRL_S; hwc->config_base &= M_PERFCTL_CONFIG_MASK; /* * The event can belong to another cpu. We do not assign a local * counter for it for now. */ hwc->idx = -1; hwc->config = 0; if (!hwc->sample_period) { hwc->sample_period = mipspmu.max_period; hwc->last_period = hwc->sample_period; local64_set(&hwc->period_left, hwc->sample_period); } err = 0; if (event->group_leader != event) err = validate_group(event); event->destroy = hw_perf_event_destroy; if (err) event->destroy(event); return err; } static void pause_local_counters(void) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); int ctr = mipspmu.num_counters; unsigned long flags; local_irq_save(flags); do { ctr--; cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr); mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] & ~M_PERFCTL_COUNT_EVENT_WHENEVER); } while (ctr > 0); local_irq_restore(flags); } static void resume_local_counters(void) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); int ctr = mipspmu.num_counters; do { ctr--; mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]); } while (ctr > 0); } static int mipsxx_pmu_handle_shared_irq(void) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); struct perf_sample_data data; unsigned int counters = mipspmu.num_counters; u64 counter; int n, handled = IRQ_NONE; struct pt_regs *regs; if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI)) return handled; /* * First we pause the local counters, so that when we are locked * here, the counters are all paused. When it gets locked due to * perf_disable(), the timer interrupt handler will be delayed. * * See also mipsxx_pmu_start(). */ pause_local_counters(); #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS read_lock(&pmuint_rwlock); #endif regs = get_irq_regs(); perf_sample_data_init(&data, 0, 0); for (n = counters - 1; n >= 0; n--) { if (!test_bit(n, cpuc->used_mask)) continue; counter = mipspmu.read_counter(n); if (!(counter & mipspmu.overflow)) continue; handle_associated_event(cpuc, n, &data, regs); handled = IRQ_HANDLED; } #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS read_unlock(&pmuint_rwlock); #endif resume_local_counters(); /* * Do all the work for the pending perf events. We can do this * in here because the performance counter interrupt is a regular * interrupt, not NMI. */ if (handled == IRQ_HANDLED) irq_work_run(); return handled; } static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev) { return mipsxx_pmu_handle_shared_irq(); } /* 24K */ #define IS_BOTH_COUNTERS_24K_EVENT(b) \ ((b) == 0 || (b) == 1 || (b) == 11) /* 34K */ #define IS_BOTH_COUNTERS_34K_EVENT(b) \ ((b) == 0 || (b) == 1 || (b) == 11) #ifdef CONFIG_MIPS_MT_SMP #define IS_RANGE_P_34K_EVENT(r, b) \ ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \ (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 || \ (r) == 176 || ((b) >= 50 && (b) <= 55) || \ ((b) >= 64 && (b) <= 67)) #define IS_RANGE_V_34K_EVENT(r) ((r) == 47) #endif /* 74K */ #define IS_BOTH_COUNTERS_74K_EVENT(b) \ ((b) == 0 || (b) == 1) /* proAptiv */ #define IS_BOTH_COUNTERS_PROAPTIV_EVENT(b) \ ((b) == 0 || (b) == 1) /* P5600 */ #define IS_BOTH_COUNTERS_P5600_EVENT(b) \ ((b) == 0 || (b) == 1) /* 1004K */ #define IS_BOTH_COUNTERS_1004K_EVENT(b) \ ((b) == 0 || (b) == 1 || (b) == 11) #ifdef CONFIG_MIPS_MT_SMP #define IS_RANGE_P_1004K_EVENT(r, b) \ ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \ (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 || \ (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) || \ (r) == 188 || (b) == 61 || (b) == 62 || \ ((b) >= 64 && (b) <= 67)) #define IS_RANGE_V_1004K_EVENT(r) ((r) == 47) #endif /* interAptiv */ #define IS_BOTH_COUNTERS_INTERAPTIV_EVENT(b) \ ((b) == 0 || (b) == 1 || (b) == 11) #ifdef CONFIG_MIPS_MT_SMP /* The P/V/T info is not provided for "(b) == 38" in SUM, assume P. */ #define IS_RANGE_P_INTERAPTIV_EVENT(r, b) \ ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \ (b) == 25 || (b) == 36 || (b) == 38 || (b) == 39 || \ (r) == 44 || (r) == 174 || (r) == 176 || ((b) >= 50 && \ (b) <= 59) || (r) == 188 || (b) == 61 || (b) == 62 || \ ((b) >= 64 && (b) <= 67)) #define IS_RANGE_V_INTERAPTIV_EVENT(r) ((r) == 47 || (r) == 175) #endif /* BMIPS5000 */ #define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b) \ ((b) == 0 || (b) == 1) /* * For most cores the user can use 0-255 raw events, where 0-127 for the events * of even counters, and 128-255 for odd counters. Note that bit 7 is used to * indicate the even/odd bank selector. So, for example, when user wants to take * the Event Num of 15 for odd counters (by referring to the user manual), then * 128 needs to be added to 15 as the input for the event config, i.e., 143 (0x8F) * to be used. * * Some newer cores have even more events, in which case the user can use raw * events 0-511, where 0-255 are for the events of even counters, and 256-511 * are for odd counters, so bit 8 is used to indicate the even/odd bank selector. */ static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config) { /* currently most cores have 7-bit event numbers */ int pmu_type; unsigned int raw_id = config & 0xff; unsigned int base_id = raw_id & 0x7f; switch (current_cpu_type()) { case CPU_24K: if (IS_BOTH_COUNTERS_24K_EVENT(base_id)) raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; else raw_event.cntr_mask = raw_id > 127 ? CNTR_ODD : CNTR_EVEN; #ifdef CONFIG_MIPS_MT_SMP /* * This is actually doing nothing. Non-multithreading * CPUs will not check and calculate the range. */ raw_event.range = P; #endif break; case CPU_34K: if (IS_BOTH_COUNTERS_34K_EVENT(base_id)) raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; else raw_event.cntr_mask = raw_id > 127 ? CNTR_ODD : CNTR_EVEN; #ifdef CONFIG_MIPS_MT_SMP if (IS_RANGE_P_34K_EVENT(raw_id, base_id)) raw_event.range = P; else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id))) raw_event.range = V; else raw_event.range = T; #endif break; case CPU_74K: case CPU_1074K: if (IS_BOTH_COUNTERS_74K_EVENT(base_id)) raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; else raw_event.cntr_mask = raw_id > 127 ? CNTR_ODD : CNTR_EVEN; #ifdef CONFIG_MIPS_MT_SMP raw_event.range = P; #endif break; case CPU_PROAPTIV: if (IS_BOTH_COUNTERS_PROAPTIV_EVENT(base_id)) raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; else raw_event.cntr_mask = raw_id > 127 ? CNTR_ODD : CNTR_EVEN; #ifdef CONFIG_MIPS_MT_SMP raw_event.range = P; #endif break; case CPU_P5600: case CPU_P6600: /* 8-bit event numbers */ raw_id = config & 0x1ff; base_id = raw_id & 0xff; if (IS_BOTH_COUNTERS_P5600_EVENT(base_id)) raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; else raw_event.cntr_mask = raw_id > 255 ? CNTR_ODD : CNTR_EVEN; #ifdef CONFIG_MIPS_MT_SMP raw_event.range = P; #endif break; case CPU_I6400: case CPU_I6500: /* 8-bit event numbers */ base_id = config & 0xff; raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; break; case CPU_1004K: if (IS_BOTH_COUNTERS_1004K_EVENT(base_id)) raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; else raw_event.cntr_mask = raw_id > 127 ? CNTR_ODD : CNTR_EVEN; #ifdef CONFIG_MIPS_MT_SMP if (IS_RANGE_P_1004K_EVENT(raw_id, base_id)) raw_event.range = P; else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id))) raw_event.range = V; else raw_event.range = T; #endif break; case CPU_INTERAPTIV: if (IS_BOTH_COUNTERS_INTERAPTIV_EVENT(base_id)) raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; else raw_event.cntr_mask = raw_id > 127 ? CNTR_ODD : CNTR_EVEN; #ifdef CONFIG_MIPS_MT_SMP if (IS_RANGE_P_INTERAPTIV_EVENT(raw_id, base_id)) raw_event.range = P; else if (unlikely(IS_RANGE_V_INTERAPTIV_EVENT(raw_id))) raw_event.range = V; else raw_event.range = T; #endif break; case CPU_BMIPS5000: if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id)) raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; else raw_event.cntr_mask = raw_id > 127 ? CNTR_ODD : CNTR_EVEN; break; case CPU_LOONGSON64: pmu_type = get_loongson3_pmu_type(); switch (pmu_type) { case LOONGSON_PMU_TYPE1: raw_event.cntr_mask = raw_id > 127 ? CNTR_ODD : CNTR_EVEN; break; case LOONGSON_PMU_TYPE2: base_id = config & 0x3ff; raw_event.cntr_mask = CNTR_ALL; if ((base_id >= 1 && base_id < 28) || (base_id >= 64 && base_id < 90) || (base_id >= 128 && base_id < 164) || (base_id >= 192 && base_id < 200) || (base_id >= 256 && base_id < 275) || (base_id >= 320 && base_id < 361) || (base_id >= 384 && base_id < 574)) break; return ERR_PTR(-EOPNOTSUPP); case LOONGSON_PMU_TYPE3: base_id = raw_id; raw_event.cntr_mask = CNTR_ALL; break; } break; } raw_event.event_id = base_id; return &raw_event; } static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config) { unsigned int raw_id = config & 0xff; unsigned int base_id = raw_id & 0x7f; raw_event.cntr_mask = CNTR_ALL; raw_event.event_id = base_id; if (current_cpu_type() == CPU_CAVIUM_OCTEON2) { if (base_id > 0x42) return ERR_PTR(-EOPNOTSUPP); } else { if (base_id > 0x3a) return ERR_PTR(-EOPNOTSUPP); } switch (base_id) { case 0x00: case 0x0f: case 0x1e: case 0x1f: case 0x2f: case 0x34: case 0x3b ... 0x3f: return ERR_PTR(-EOPNOTSUPP); default: break; } return &raw_event; } static const struct mips_perf_event *xlp_pmu_map_raw_event(u64 config) { unsigned int raw_id = config & 0xff; /* Only 1-63 are defined */ if ((raw_id < 0x01) || (raw_id > 0x3f)) return ERR_PTR(-EOPNOTSUPP); raw_event.cntr_mask = CNTR_ALL; raw_event.event_id = raw_id; return &raw_event; } static int __init init_hw_perf_events(void) { int counters, irq, pmu_type; pr_info("Performance counters: "); counters = n_counters(); if (counters == 0) { pr_cont("No available PMU.\n"); return -ENODEV; } #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS if (!cpu_has_mipsmt_pertccounters) counters = counters_total_to_per_cpu(counters); #endif if (get_c0_perfcount_int) irq = get_c0_perfcount_int(); else if (cp0_perfcount_irq >= 0) irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq; else irq = -1; mipspmu.map_raw_event = mipsxx_pmu_map_raw_event; switch (current_cpu_type()) { case CPU_24K: mipspmu.name = "mips/24K"; mipspmu.general_event_map = &mipsxxcore_event_map; mipspmu.cache_event_map = &mipsxxcore_cache_map; break; case CPU_34K: mipspmu.name = "mips/34K"; mipspmu.general_event_map = &mipsxxcore_event_map; mipspmu.cache_event_map = &mipsxxcore_cache_map; break; case CPU_74K: mipspmu.name = "mips/74K"; mipspmu.general_event_map = &mipsxxcore_event_map2; mipspmu.cache_event_map = &mipsxxcore_cache_map2; break; case CPU_PROAPTIV: mipspmu.name = "mips/proAptiv"; mipspmu.general_event_map = &mipsxxcore_event_map2; mipspmu.cache_event_map = &mipsxxcore_cache_map2; break; case CPU_P5600: mipspmu.name = "mips/P5600"; mipspmu.general_event_map = &mipsxxcore_event_map2; mipspmu.cache_event_map = &mipsxxcore_cache_map2; break; case CPU_P6600: mipspmu.name = "mips/P6600"; mipspmu.general_event_map = &mipsxxcore_event_map2; mipspmu.cache_event_map = &mipsxxcore_cache_map2; break; case CPU_I6400: mipspmu.name = "mips/I6400"; mipspmu.general_event_map = &i6x00_event_map; mipspmu.cache_event_map = &i6x00_cache_map; break; case CPU_I6500: mipspmu.name = "mips/I6500"; mipspmu.general_event_map = &i6x00_event_map; mipspmu.cache_event_map = &i6x00_cache_map; break; case CPU_1004K: mipspmu.name = "mips/1004K"; mipspmu.general_event_map = &mipsxxcore_event_map; mipspmu.cache_event_map = &mipsxxcore_cache_map; break; case CPU_1074K: mipspmu.name = "mips/1074K"; mipspmu.general_event_map = &mipsxxcore_event_map; mipspmu.cache_event_map = &mipsxxcore_cache_map; break; case CPU_INTERAPTIV: mipspmu.name = "mips/interAptiv"; mipspmu.general_event_map = &mipsxxcore_event_map; mipspmu.cache_event_map = &mipsxxcore_cache_map; break; case CPU_LOONGSON32: mipspmu.name = "mips/loongson1"; mipspmu.general_event_map = &mipsxxcore_event_map; mipspmu.cache_event_map = &mipsxxcore_cache_map; break; case CPU_LOONGSON64: mipspmu.name = "mips/loongson3"; pmu_type = get_loongson3_pmu_type(); switch (pmu_type) { case LOONGSON_PMU_TYPE1: counters = 2; mipspmu.general_event_map = &loongson3_event_map1; mipspmu.cache_event_map = &loongson3_cache_map1; break; case LOONGSON_PMU_TYPE2: counters = 4; mipspmu.general_event_map = &loongson3_event_map2; mipspmu.cache_event_map = &loongson3_cache_map2; break; case LOONGSON_PMU_TYPE3: counters = 4; mipspmu.general_event_map = &loongson3_event_map3; mipspmu.cache_event_map = &loongson3_cache_map3; break; } break; case CPU_CAVIUM_OCTEON: case CPU_CAVIUM_OCTEON_PLUS: case CPU_CAVIUM_OCTEON2: mipspmu.name = "octeon"; mipspmu.general_event_map = &octeon_event_map; mipspmu.cache_event_map = &octeon_cache_map; mipspmu.map_raw_event = octeon_pmu_map_raw_event; break; case CPU_BMIPS5000: mipspmu.name = "BMIPS5000"; mipspmu.general_event_map = &bmips5000_event_map; mipspmu.cache_event_map = &bmips5000_cache_map; break; case CPU_XLP: mipspmu.name = "xlp"; mipspmu.general_event_map = &xlp_event_map; mipspmu.cache_event_map = &xlp_cache_map; mipspmu.map_raw_event = xlp_pmu_map_raw_event; break; default: pr_cont("Either hardware does not support performance " "counters, or not yet implemented.\n"); return -ENODEV; } mipspmu.num_counters = counters; mipspmu.irq = irq; if (read_c0_perfctrl0() & MIPS_PERFCTRL_W) { if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2) { counter_bits = 48; mipspmu.max_period = (1ULL << 47) - 1; mipspmu.valid_count = (1ULL << 47) - 1; mipspmu.overflow = 1ULL << 47; } else { counter_bits = 64; mipspmu.max_period = (1ULL << 63) - 1; mipspmu.valid_count = (1ULL << 63) - 1; mipspmu.overflow = 1ULL << 63; } mipspmu.read_counter = mipsxx_pmu_read_counter_64; mipspmu.write_counter = mipsxx_pmu_write_counter_64; } else { counter_bits = 32; mipspmu.max_period = (1ULL << 31) - 1; mipspmu.valid_count = (1ULL << 31) - 1; mipspmu.overflow = 1ULL << 31; mipspmu.read_counter = mipsxx_pmu_read_counter; mipspmu.write_counter = mipsxx_pmu_write_counter; } on_each_cpu(reset_counters, (void *)(long)counters, 1); pr_cont("%s PMU enabled, %d %d-bit counters available to each " "CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq, irq < 0 ? " (share with timer interrupt)" : ""); perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW); return 0; } early_initcall(init_hw_perf_events);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1