Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Paul Burton | 749 | 71.33% | 3 | 15.00% |
Ralf Baechle | 126 | 12.00% | 3 | 15.00% |
Maciej W. Rozycki | 125 | 11.90% | 6 | 30.00% |
Leonid Yegoshin | 32 | 3.05% | 1 | 5.00% |
David Daney | 9 | 0.86% | 2 | 10.00% |
Ingo Molnar | 6 | 0.57% | 2 | 10.00% |
Jesper Juhl | 1 | 0.10% | 1 | 5.00% |
Greg Kroah-Hartman | 1 | 0.10% | 1 | 5.00% |
Linus Torvalds | 1 | 0.10% | 1 | 5.00% |
Total | 1050 | 20 |
// SPDX-License-Identifier: GPL-2.0 #include <linux/err.h> #include <linux/slab.h> #include <linux/mm_types.h> #include <linux/sched/task.h> #include <asm/branch.h> #include <asm/cacheflush.h> #include <asm/fpu_emulator.h> #include <asm/inst.h> #include <asm/mipsregs.h> #include <linux/uaccess.h> /** * struct emuframe - The 'emulation' frame structure * @emul: The instruction to 'emulate'. * @badinst: A break instruction to cause a return to the kernel. * * This structure defines the frames placed within the delay slot emulation * page in response to a call to mips_dsemul(). Each thread may be allocated * only one frame at any given time. The kernel stores within it the * instruction to be 'emulated' followed by a break instruction, then * executes the frame in user mode. The break causes a trap to the kernel * which leads to do_dsemulret() being called unless the instruction in * @emul causes a trap itself, is a branch, or a signal is delivered to * the thread. In these cases the allocated frame will either be reused by * a subsequent delay slot 'emulation', or be freed during signal delivery or * upon thread exit. * * This approach is used because: * * - Actually emulating all instructions isn't feasible. We would need to * be able to handle instructions from all revisions of the MIPS ISA, * all ASEs & all vendor instruction set extensions. This would be a * whole lot of work & continual maintenance burden as new instructions * are introduced, and in the case of some vendor extensions may not * even be possible. Thus we need to take the approach of actually * executing the instruction. * * - We must execute the instruction within user context. If we were to * execute the instruction in kernel mode then it would have access to * kernel resources without very careful checks, leaving us with a * high potential for security or stability issues to arise. * * - We used to place the frame on the users stack, but this requires * that the stack be executable. This is bad for security so the * per-process page is now used instead. * * - The instruction in @emul may be something entirely invalid for a * delay slot. The user may (intentionally or otherwise) place a branch * in a delay slot, or a kernel mode instruction, or something else * which generates an exception. Thus we can't rely upon the break in * @badinst always being hit. For this reason we track the index of the * frame allocated to each thread, allowing us to clean it up at later * points such as signal delivery or thread exit. * * - The user may generate a fake struct emuframe if they wish, invoking * the BRK_MEMU break instruction themselves. We must therefore not * trust that BRK_MEMU means there's actually a valid frame allocated * to the thread, and must not allow the user to do anything they * couldn't already. */ struct emuframe { mips_instruction emul; mips_instruction badinst; }; static const int emupage_frame_count = PAGE_SIZE / sizeof(struct emuframe); static inline __user struct emuframe *dsemul_page(void) { return (__user struct emuframe *)STACK_TOP; } static int alloc_emuframe(void) { mm_context_t *mm_ctx = ¤t->mm->context; int idx; retry: spin_lock(&mm_ctx->bd_emupage_lock); /* Ensure we have an allocation bitmap */ if (!mm_ctx->bd_emupage_allocmap) { mm_ctx->bd_emupage_allocmap = kcalloc(BITS_TO_LONGS(emupage_frame_count), sizeof(unsigned long), GFP_ATOMIC); if (!mm_ctx->bd_emupage_allocmap) { idx = BD_EMUFRAME_NONE; goto out_unlock; } } /* Attempt to allocate a single bit/frame */ idx = bitmap_find_free_region(mm_ctx->bd_emupage_allocmap, emupage_frame_count, 0); if (idx < 0) { /* * Failed to allocate a frame. We'll wait until one becomes * available. We unlock the page so that other threads actually * get the opportunity to free their frames, which means * technically the result of bitmap_full may be incorrect. * However the worst case is that we repeat all this and end up * back here again. */ spin_unlock(&mm_ctx->bd_emupage_lock); if (!wait_event_killable(mm_ctx->bd_emupage_queue, !bitmap_full(mm_ctx->bd_emupage_allocmap, emupage_frame_count))) goto retry; /* Received a fatal signal - just give in */ return BD_EMUFRAME_NONE; } /* Success! */ pr_debug("allocate emuframe %d to %d\n", idx, current->pid); out_unlock: spin_unlock(&mm_ctx->bd_emupage_lock); return idx; } static void free_emuframe(int idx, struct mm_struct *mm) { mm_context_t *mm_ctx = &mm->context; spin_lock(&mm_ctx->bd_emupage_lock); pr_debug("free emuframe %d from %d\n", idx, current->pid); bitmap_clear(mm_ctx->bd_emupage_allocmap, idx, 1); /* If some thread is waiting for a frame, now's its chance */ wake_up(&mm_ctx->bd_emupage_queue); spin_unlock(&mm_ctx->bd_emupage_lock); } static bool within_emuframe(struct pt_regs *regs) { unsigned long base = (unsigned long)dsemul_page(); if (regs->cp0_epc < base) return false; if (regs->cp0_epc >= (base + PAGE_SIZE)) return false; return true; } bool dsemul_thread_cleanup(struct task_struct *tsk) { int fr_idx; /* Clear any allocated frame, retrieving its index */ fr_idx = atomic_xchg(&tsk->thread.bd_emu_frame, BD_EMUFRAME_NONE); /* If no frame was allocated, we're done */ if (fr_idx == BD_EMUFRAME_NONE) return false; task_lock(tsk); /* Free the frame that this thread had allocated */ if (tsk->mm) free_emuframe(fr_idx, tsk->mm); task_unlock(tsk); return true; } bool dsemul_thread_rollback(struct pt_regs *regs) { struct emuframe __user *fr; int fr_idx; /* Do nothing if we're not executing from a frame */ if (!within_emuframe(regs)) return false; /* Find the frame being executed */ fr_idx = atomic_read(¤t->thread.bd_emu_frame); if (fr_idx == BD_EMUFRAME_NONE) return false; fr = &dsemul_page()[fr_idx]; /* * If the PC is at the emul instruction, roll back to the branch. If * PC is at the badinst (break) instruction, we've already emulated the * instruction so progress to the continue PC. If it's anything else * then something is amiss & the user has branched into some other area * of the emupage - we'll free the allocated frame anyway. */ if (msk_isa16_mode(regs->cp0_epc) == (unsigned long)&fr->emul) regs->cp0_epc = current->thread.bd_emu_branch_pc; else if (msk_isa16_mode(regs->cp0_epc) == (unsigned long)&fr->badinst) regs->cp0_epc = current->thread.bd_emu_cont_pc; atomic_set(¤t->thread.bd_emu_frame, BD_EMUFRAME_NONE); free_emuframe(fr_idx, current->mm); return true; } void dsemul_mm_cleanup(struct mm_struct *mm) { mm_context_t *mm_ctx = &mm->context; kfree(mm_ctx->bd_emupage_allocmap); } int mips_dsemul(struct pt_regs *regs, mips_instruction ir, unsigned long branch_pc, unsigned long cont_pc) { int isa16 = get_isa16_mode(regs->cp0_epc); mips_instruction break_math; unsigned long fr_uaddr; struct emuframe fr; int fr_idx, ret; /* NOP is easy */ if (ir == 0) return -1; /* microMIPS instructions */ if (isa16) { union mips_instruction insn = { .word = ir }; /* NOP16 aka MOVE16 $0, $0 */ if ((ir >> 16) == MM_NOP16) return -1; /* ADDIUPC */ if (insn.mm_a_format.opcode == mm_addiupc_op) { unsigned int rs; s32 v; rs = (((insn.mm_a_format.rs + 0xe) & 0xf) + 2); v = regs->cp0_epc & ~3; v += insn.mm_a_format.simmediate << 2; regs->regs[rs] = (long)v; return -1; } } pr_debug("dsemul 0x%08lx cont at 0x%08lx\n", regs->cp0_epc, cont_pc); /* Allocate a frame if we don't already have one */ fr_idx = atomic_read(¤t->thread.bd_emu_frame); if (fr_idx == BD_EMUFRAME_NONE) fr_idx = alloc_emuframe(); if (fr_idx == BD_EMUFRAME_NONE) return SIGBUS; /* Retrieve the appropriately encoded break instruction */ break_math = BREAK_MATH(isa16); /* Write the instructions to the frame */ if (isa16) { union mips_instruction _emul = { .halfword = { ir >> 16, ir } }; union mips_instruction _badinst = { .halfword = { break_math >> 16, break_math } }; fr.emul = _emul.word; fr.badinst = _badinst.word; } else { fr.emul = ir; fr.badinst = break_math; } /* Write the frame to user memory */ fr_uaddr = (unsigned long)&dsemul_page()[fr_idx]; ret = access_process_vm(current, fr_uaddr, &fr, sizeof(fr), FOLL_FORCE | FOLL_WRITE); if (unlikely(ret != sizeof(fr))) { MIPS_FPU_EMU_INC_STATS(errors); free_emuframe(fr_idx, current->mm); return SIGBUS; } /* Record the PC of the branch, PC to continue from & frame index */ current->thread.bd_emu_branch_pc = branch_pc; current->thread.bd_emu_cont_pc = cont_pc; atomic_set(¤t->thread.bd_emu_frame, fr_idx); /* Change user register context to execute the frame */ regs->cp0_epc = fr_uaddr | isa16; return 0; } bool do_dsemulret(struct pt_regs *xcp) { /* Cleanup the allocated frame, returning if there wasn't one */ if (!dsemul_thread_cleanup(current)) { MIPS_FPU_EMU_INC_STATS(errors); return false; } /* Set EPC to return to post-branch instruction */ xcp->cp0_epc = current->thread.bd_emu_cont_pc; pr_debug("dsemulret to 0x%08lx\n", xcp->cp0_epc); MIPS_FPU_EMU_INC_STATS(ds_emul); return true; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1