Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ralf Baechle | 3196 | 38.82% | 45 | 26.32% |
Linus Torvalds | 841 | 10.21% | 1 | 0.58% |
Huacai Chen | 800 | 9.72% | 11 | 6.43% |
Andrew Morton | 742 | 9.01% | 2 | 1.17% |
James Hogan | 520 | 6.32% | 15 | 8.77% |
Chris Dearman | 274 | 3.33% | 3 | 1.75% |
Fuxin Zhang | 266 | 3.23% | 1 | 0.58% |
David Daney | 234 | 2.84% | 2 | 1.17% |
Leonid Yegoshin | 195 | 2.37% | 6 | 3.51% |
Kevin Cernekee | 164 | 1.99% | 3 | 1.75% |
Paul Burton | 136 | 1.65% | 14 | 8.19% |
Kamal Dasu | 128 | 1.55% | 1 | 0.58% |
Markos Chandras | 86 | 1.04% | 6 | 3.51% |
Maciej W. Rozycki | 83 | 1.01% | 4 | 2.34% |
Atsushi Nemoto | 82 | 1.00% | 7 | 4.09% |
Steven J. Hill | 77 | 0.94% | 4 | 2.34% |
Sergei Shtylyov | 57 | 0.69% | 1 | 0.58% |
Thomas Bogendoerfer | 50 | 0.61% | 2 | 1.17% |
Florian Fainelli | 45 | 0.55% | 4 | 2.34% |
Jiaxun Yang | 44 | 0.53% | 2 | 1.17% |
Aaro Koskinen | 37 | 0.45% | 1 | 0.58% |
Yoichi Yuasa | 27 | 0.33% | 4 | 2.34% |
Joshua Kinard | 26 | 0.32% | 3 | 1.75% |
Thiemo Seufer | 19 | 0.23% | 5 | 2.92% |
Neil Brown | 13 | 0.16% | 1 | 0.58% |
Christoph Hellwig | 11 | 0.13% | 2 | 1.17% |
Manuel Lauss | 10 | 0.12% | 3 | 1.75% |
Douglas Leung | 10 | 0.12% | 1 | 0.58% |
Sanjay Lal | 10 | 0.12% | 1 | 0.58% |
Jayachandran C | 8 | 0.10% | 2 | 1.17% |
Serge Semin | 7 | 0.09% | 1 | 0.58% |
Deng-Cheng Zhu | 6 | 0.07% | 1 | 0.58% |
Liangliang Huang | 6 | 0.07% | 1 | 0.58% |
David S. Miller | 4 | 0.05% | 1 | 0.58% |
Nigel Stephens | 3 | 0.04% | 1 | 0.58% |
Shane McDonald | 3 | 0.04% | 1 | 0.58% |
Mike Rapoport | 3 | 0.04% | 1 | 0.58% |
Oleksij Rempel | 2 | 0.02% | 1 | 0.58% |
Shinya Kuribayashi | 2 | 0.02% | 1 | 0.58% |
Ingo Molnar | 2 | 0.02% | 1 | 0.58% |
Kirill A. Shutemov | 1 | 0.01% | 1 | 0.58% |
Paul Gortmaker | 1 | 0.01% | 1 | 0.58% |
Joe Perches | 1 | 0.01% | 1 | 0.58% |
Justin P. Mattock | 1 | 0.01% | 1 | 0.58% |
Total | 8233 | 171 |
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1996 David S. Miller (davem@davemloft.net) * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org) * Copyright (C) 1999, 2000 Silicon Graphics, Inc. */ #include <linux/cpu_pm.h> #include <linux/hardirq.h> #include <linux/init.h> #include <linux/highmem.h> #include <linux/kernel.h> #include <linux/linkage.h> #include <linux/preempt.h> #include <linux/sched.h> #include <linux/smp.h> #include <linux/mm.h> #include <linux/export.h> #include <linux/bitops.h> #include <asm/bcache.h> #include <asm/bootinfo.h> #include <asm/cache.h> #include <asm/cacheops.h> #include <asm/cpu.h> #include <asm/cpu-features.h> #include <asm/cpu-type.h> #include <asm/io.h> #include <asm/page.h> #include <asm/r4kcache.h> #include <asm/sections.h> #include <asm/mmu_context.h> #include <asm/war.h> #include <asm/cacheflush.h> /* for run_uncached() */ #include <asm/traps.h> #include <asm/dma-coherence.h> #include <asm/mips-cps.h> /* * Bits describing what cache ops an SMP callback function may perform. * * R4K_HIT - Virtual user or kernel address based cache operations. The * active_mm must be checked before using user addresses, falling * back to kmap. * R4K_INDEX - Index based cache operations. */ #define R4K_HIT BIT(0) #define R4K_INDEX BIT(1) /** * r4k_op_needs_ipi() - Decide if a cache op needs to be done on every core. * @type: Type of cache operations (R4K_HIT or R4K_INDEX). * * Decides whether a cache op needs to be performed on every core in the system. * This may change depending on the @type of cache operation, as well as the set * of online CPUs, so preemption should be disabled by the caller to prevent CPU * hotplug from changing the result. * * Returns: 1 if the cache operation @type should be done on every core in * the system. * 0 if the cache operation @type is globalized and only needs to * be performed on a simple CPU. */ static inline bool r4k_op_needs_ipi(unsigned int type) { /* The MIPS Coherence Manager (CM) globalizes address-based cache ops */ if (type == R4K_HIT && mips_cm_present()) return false; /* * Hardware doesn't globalize the required cache ops, so SMP calls may * be needed, but only if there are foreign CPUs (non-siblings with * separate caches). */ /* cpu_foreign_map[] undeclared when !CONFIG_SMP */ #ifdef CONFIG_SMP return !cpumask_empty(&cpu_foreign_map[0]); #else return false; #endif } /* * Special Variant of smp_call_function for use by cache functions: * * o No return value * o collapses to normal function call on UP kernels * o collapses to normal function call on systems with a single shared * primary cache. * o doesn't disable interrupts on the local CPU */ static inline void r4k_on_each_cpu(unsigned int type, void (*func)(void *info), void *info) { preempt_disable(); if (r4k_op_needs_ipi(type)) smp_call_function_many(&cpu_foreign_map[smp_processor_id()], func, info, 1); func(info); preempt_enable(); } /* * Must die. */ static unsigned long icache_size __read_mostly; static unsigned long dcache_size __read_mostly; static unsigned long vcache_size __read_mostly; static unsigned long scache_size __read_mostly; /* * Dummy cache handling routines for machines without boardcaches */ static void cache_noop(void) {} static struct bcache_ops no_sc_ops = { .bc_enable = (void *)cache_noop, .bc_disable = (void *)cache_noop, .bc_wback_inv = (void *)cache_noop, .bc_inv = (void *)cache_noop }; struct bcache_ops *bcops = &no_sc_ops; #define cpu_is_r4600_v1_x() ((read_c0_prid() & 0xfffffff0) == 0x00002010) #define cpu_is_r4600_v2_x() ((read_c0_prid() & 0xfffffff0) == 0x00002020) #define R4600_HIT_CACHEOP_WAR_IMPL \ do { \ if (R4600_V2_HIT_CACHEOP_WAR && cpu_is_r4600_v2_x()) \ *(volatile unsigned long *)CKSEG1; \ if (R4600_V1_HIT_CACHEOP_WAR) \ __asm__ __volatile__("nop;nop;nop;nop"); \ } while (0) static void (*r4k_blast_dcache_page)(unsigned long addr); static inline void r4k_blast_dcache_page_dc32(unsigned long addr) { R4600_HIT_CACHEOP_WAR_IMPL; blast_dcache32_page(addr); } static inline void r4k_blast_dcache_page_dc64(unsigned long addr) { blast_dcache64_page(addr); } static inline void r4k_blast_dcache_page_dc128(unsigned long addr) { blast_dcache128_page(addr); } static void r4k_blast_dcache_page_setup(void) { unsigned long dc_lsize = cpu_dcache_line_size(); switch (dc_lsize) { case 0: r4k_blast_dcache_page = (void *)cache_noop; break; case 16: r4k_blast_dcache_page = blast_dcache16_page; break; case 32: r4k_blast_dcache_page = r4k_blast_dcache_page_dc32; break; case 64: r4k_blast_dcache_page = r4k_blast_dcache_page_dc64; break; case 128: r4k_blast_dcache_page = r4k_blast_dcache_page_dc128; break; default: break; } } #ifndef CONFIG_EVA #define r4k_blast_dcache_user_page r4k_blast_dcache_page #else static void (*r4k_blast_dcache_user_page)(unsigned long addr); static void r4k_blast_dcache_user_page_setup(void) { unsigned long dc_lsize = cpu_dcache_line_size(); if (dc_lsize == 0) r4k_blast_dcache_user_page = (void *)cache_noop; else if (dc_lsize == 16) r4k_blast_dcache_user_page = blast_dcache16_user_page; else if (dc_lsize == 32) r4k_blast_dcache_user_page = blast_dcache32_user_page; else if (dc_lsize == 64) r4k_blast_dcache_user_page = blast_dcache64_user_page; } #endif static void (* r4k_blast_dcache_page_indexed)(unsigned long addr); static void r4k_blast_dcache_page_indexed_setup(void) { unsigned long dc_lsize = cpu_dcache_line_size(); if (dc_lsize == 0) r4k_blast_dcache_page_indexed = (void *)cache_noop; else if (dc_lsize == 16) r4k_blast_dcache_page_indexed = blast_dcache16_page_indexed; else if (dc_lsize == 32) r4k_blast_dcache_page_indexed = blast_dcache32_page_indexed; else if (dc_lsize == 64) r4k_blast_dcache_page_indexed = blast_dcache64_page_indexed; else if (dc_lsize == 128) r4k_blast_dcache_page_indexed = blast_dcache128_page_indexed; } void (* r4k_blast_dcache)(void); EXPORT_SYMBOL(r4k_blast_dcache); static void r4k_blast_dcache_setup(void) { unsigned long dc_lsize = cpu_dcache_line_size(); if (dc_lsize == 0) r4k_blast_dcache = (void *)cache_noop; else if (dc_lsize == 16) r4k_blast_dcache = blast_dcache16; else if (dc_lsize == 32) r4k_blast_dcache = blast_dcache32; else if (dc_lsize == 64) r4k_blast_dcache = blast_dcache64; else if (dc_lsize == 128) r4k_blast_dcache = blast_dcache128; } /* force code alignment (used for TX49XX_ICACHE_INDEX_INV_WAR) */ #define JUMP_TO_ALIGN(order) \ __asm__ __volatile__( \ "b\t1f\n\t" \ ".align\t" #order "\n\t" \ "1:\n\t" \ ) #define CACHE32_UNROLL32_ALIGN JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */ #define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11) static inline void blast_r4600_v1_icache32(void) { unsigned long flags; local_irq_save(flags); blast_icache32(); local_irq_restore(flags); } static inline void tx49_blast_icache32(void) { unsigned long start = INDEX_BASE; unsigned long end = start + current_cpu_data.icache.waysize; unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit; unsigned long ws_end = current_cpu_data.icache.ways << current_cpu_data.icache.waybit; unsigned long ws, addr; CACHE32_UNROLL32_ALIGN2; /* I'm in even chunk. blast odd chunks */ for (ws = 0; ws < ws_end; ws += ws_inc) for (addr = start + 0x400; addr < end; addr += 0x400 * 2) cache_unroll(32, kernel_cache, Index_Invalidate_I, addr | ws, 32); CACHE32_UNROLL32_ALIGN; /* I'm in odd chunk. blast even chunks */ for (ws = 0; ws < ws_end; ws += ws_inc) for (addr = start; addr < end; addr += 0x400 * 2) cache_unroll(32, kernel_cache, Index_Invalidate_I, addr | ws, 32); } static inline void blast_icache32_r4600_v1_page_indexed(unsigned long page) { unsigned long flags; local_irq_save(flags); blast_icache32_page_indexed(page); local_irq_restore(flags); } static inline void tx49_blast_icache32_page_indexed(unsigned long page) { unsigned long indexmask = current_cpu_data.icache.waysize - 1; unsigned long start = INDEX_BASE + (page & indexmask); unsigned long end = start + PAGE_SIZE; unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit; unsigned long ws_end = current_cpu_data.icache.ways << current_cpu_data.icache.waybit; unsigned long ws, addr; CACHE32_UNROLL32_ALIGN2; /* I'm in even chunk. blast odd chunks */ for (ws = 0; ws < ws_end; ws += ws_inc) for (addr = start + 0x400; addr < end; addr += 0x400 * 2) cache_unroll(32, kernel_cache, Index_Invalidate_I, addr | ws, 32); CACHE32_UNROLL32_ALIGN; /* I'm in odd chunk. blast even chunks */ for (ws = 0; ws < ws_end; ws += ws_inc) for (addr = start; addr < end; addr += 0x400 * 2) cache_unroll(32, kernel_cache, Index_Invalidate_I, addr | ws, 32); } static void (* r4k_blast_icache_page)(unsigned long addr); static void r4k_blast_icache_page_setup(void) { unsigned long ic_lsize = cpu_icache_line_size(); if (ic_lsize == 0) r4k_blast_icache_page = (void *)cache_noop; else if (ic_lsize == 16) r4k_blast_icache_page = blast_icache16_page; else if (ic_lsize == 32 && current_cpu_type() == CPU_LOONGSON2EF) r4k_blast_icache_page = loongson2_blast_icache32_page; else if (ic_lsize == 32) r4k_blast_icache_page = blast_icache32_page; else if (ic_lsize == 64) r4k_blast_icache_page = blast_icache64_page; else if (ic_lsize == 128) r4k_blast_icache_page = blast_icache128_page; } #ifndef CONFIG_EVA #define r4k_blast_icache_user_page r4k_blast_icache_page #else static void (*r4k_blast_icache_user_page)(unsigned long addr); static void r4k_blast_icache_user_page_setup(void) { unsigned long ic_lsize = cpu_icache_line_size(); if (ic_lsize == 0) r4k_blast_icache_user_page = (void *)cache_noop; else if (ic_lsize == 16) r4k_blast_icache_user_page = blast_icache16_user_page; else if (ic_lsize == 32) r4k_blast_icache_user_page = blast_icache32_user_page; else if (ic_lsize == 64) r4k_blast_icache_user_page = blast_icache64_user_page; } #endif static void (* r4k_blast_icache_page_indexed)(unsigned long addr); static void r4k_blast_icache_page_indexed_setup(void) { unsigned long ic_lsize = cpu_icache_line_size(); if (ic_lsize == 0) r4k_blast_icache_page_indexed = (void *)cache_noop; else if (ic_lsize == 16) r4k_blast_icache_page_indexed = blast_icache16_page_indexed; else if (ic_lsize == 32) { if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x()) r4k_blast_icache_page_indexed = blast_icache32_r4600_v1_page_indexed; else if (TX49XX_ICACHE_INDEX_INV_WAR) r4k_blast_icache_page_indexed = tx49_blast_icache32_page_indexed; else if (current_cpu_type() == CPU_LOONGSON2EF) r4k_blast_icache_page_indexed = loongson2_blast_icache32_page_indexed; else r4k_blast_icache_page_indexed = blast_icache32_page_indexed; } else if (ic_lsize == 64) r4k_blast_icache_page_indexed = blast_icache64_page_indexed; } void (* r4k_blast_icache)(void); EXPORT_SYMBOL(r4k_blast_icache); static void r4k_blast_icache_setup(void) { unsigned long ic_lsize = cpu_icache_line_size(); if (ic_lsize == 0) r4k_blast_icache = (void *)cache_noop; else if (ic_lsize == 16) r4k_blast_icache = blast_icache16; else if (ic_lsize == 32) { if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x()) r4k_blast_icache = blast_r4600_v1_icache32; else if (TX49XX_ICACHE_INDEX_INV_WAR) r4k_blast_icache = tx49_blast_icache32; else if (current_cpu_type() == CPU_LOONGSON2EF) r4k_blast_icache = loongson2_blast_icache32; else r4k_blast_icache = blast_icache32; } else if (ic_lsize == 64) r4k_blast_icache = blast_icache64; else if (ic_lsize == 128) r4k_blast_icache = blast_icache128; } static void (* r4k_blast_scache_page)(unsigned long addr); static void r4k_blast_scache_page_setup(void) { unsigned long sc_lsize = cpu_scache_line_size(); if (scache_size == 0) r4k_blast_scache_page = (void *)cache_noop; else if (sc_lsize == 16) r4k_blast_scache_page = blast_scache16_page; else if (sc_lsize == 32) r4k_blast_scache_page = blast_scache32_page; else if (sc_lsize == 64) r4k_blast_scache_page = blast_scache64_page; else if (sc_lsize == 128) r4k_blast_scache_page = blast_scache128_page; } static void (* r4k_blast_scache_page_indexed)(unsigned long addr); static void r4k_blast_scache_page_indexed_setup(void) { unsigned long sc_lsize = cpu_scache_line_size(); if (scache_size == 0) r4k_blast_scache_page_indexed = (void *)cache_noop; else if (sc_lsize == 16) r4k_blast_scache_page_indexed = blast_scache16_page_indexed; else if (sc_lsize == 32) r4k_blast_scache_page_indexed = blast_scache32_page_indexed; else if (sc_lsize == 64) r4k_blast_scache_page_indexed = blast_scache64_page_indexed; else if (sc_lsize == 128) r4k_blast_scache_page_indexed = blast_scache128_page_indexed; } static void (* r4k_blast_scache)(void); static void r4k_blast_scache_setup(void) { unsigned long sc_lsize = cpu_scache_line_size(); if (scache_size == 0) r4k_blast_scache = (void *)cache_noop; else if (sc_lsize == 16) r4k_blast_scache = blast_scache16; else if (sc_lsize == 32) r4k_blast_scache = blast_scache32; else if (sc_lsize == 64) r4k_blast_scache = blast_scache64; else if (sc_lsize == 128) r4k_blast_scache = blast_scache128; } static void (*r4k_blast_scache_node)(long node); static void r4k_blast_scache_node_setup(void) { unsigned long sc_lsize = cpu_scache_line_size(); if (current_cpu_type() != CPU_LOONGSON64) r4k_blast_scache_node = (void *)cache_noop; else if (sc_lsize == 16) r4k_blast_scache_node = blast_scache16_node; else if (sc_lsize == 32) r4k_blast_scache_node = blast_scache32_node; else if (sc_lsize == 64) r4k_blast_scache_node = blast_scache64_node; else if (sc_lsize == 128) r4k_blast_scache_node = blast_scache128_node; } static inline void local_r4k___flush_cache_all(void * args) { switch (current_cpu_type()) { case CPU_LOONGSON2EF: case CPU_R4000SC: case CPU_R4000MC: case CPU_R4400SC: case CPU_R4400MC: case CPU_R10000: case CPU_R12000: case CPU_R14000: case CPU_R16000: /* * These caches are inclusive caches, that is, if something * is not cached in the S-cache, we know it also won't be * in one of the primary caches. */ r4k_blast_scache(); break; case CPU_LOONGSON64: /* Use get_ebase_cpunum() for both NUMA=y/n */ r4k_blast_scache_node(get_ebase_cpunum() >> 2); break; case CPU_BMIPS5000: r4k_blast_scache(); __sync(); break; default: r4k_blast_dcache(); r4k_blast_icache(); break; } } static void r4k___flush_cache_all(void) { r4k_on_each_cpu(R4K_INDEX, local_r4k___flush_cache_all, NULL); } /** * has_valid_asid() - Determine if an mm already has an ASID. * @mm: Memory map. * @type: R4K_HIT or R4K_INDEX, type of cache op. * * Determines whether @mm already has an ASID on any of the CPUs which cache ops * of type @type within an r4k_on_each_cpu() call will affect. If * r4k_on_each_cpu() does an SMP call to a single VPE in each core, then the * scope of the operation is confined to sibling CPUs, otherwise all online CPUs * will need to be checked. * * Must be called in non-preemptive context. * * Returns: 1 if the CPUs affected by @type cache ops have an ASID for @mm. * 0 otherwise. */ static inline int has_valid_asid(const struct mm_struct *mm, unsigned int type) { unsigned int i; const cpumask_t *mask = cpu_present_mask; if (cpu_has_mmid) return cpu_context(0, mm) != 0; /* cpu_sibling_map[] undeclared when !CONFIG_SMP */ #ifdef CONFIG_SMP /* * If r4k_on_each_cpu does SMP calls, it does them to a single VPE in * each foreign core, so we only need to worry about siblings. * Otherwise we need to worry about all present CPUs. */ if (r4k_op_needs_ipi(type)) mask = &cpu_sibling_map[smp_processor_id()]; #endif for_each_cpu(i, mask) if (cpu_context(i, mm)) return 1; return 0; } static void r4k__flush_cache_vmap(void) { r4k_blast_dcache(); } static void r4k__flush_cache_vunmap(void) { r4k_blast_dcache(); } /* * Note: flush_tlb_range() assumes flush_cache_range() sufficiently flushes * whole caches when vma is executable. */ static inline void local_r4k_flush_cache_range(void * args) { struct vm_area_struct *vma = args; int exec = vma->vm_flags & VM_EXEC; if (!has_valid_asid(vma->vm_mm, R4K_INDEX)) return; /* * If dcache can alias, we must blast it since mapping is changing. * If executable, we must ensure any dirty lines are written back far * enough to be visible to icache. */ if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) r4k_blast_dcache(); /* If executable, blast stale lines from icache */ if (exec) r4k_blast_icache(); } static void r4k_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { int exec = vma->vm_flags & VM_EXEC; if (cpu_has_dc_aliases || exec) r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_range, vma); } static inline void local_r4k_flush_cache_mm(void * args) { struct mm_struct *mm = args; if (!has_valid_asid(mm, R4K_INDEX)) return; /* * Kludge alert. For obscure reasons R4000SC and R4400SC go nuts if we * only flush the primary caches but R1x000 behave sane ... * R4000SC and R4400SC indexed S-cache ops also invalidate primary * caches, so we can bail out early. */ if (current_cpu_type() == CPU_R4000SC || current_cpu_type() == CPU_R4000MC || current_cpu_type() == CPU_R4400SC || current_cpu_type() == CPU_R4400MC) { r4k_blast_scache(); return; } r4k_blast_dcache(); } static void r4k_flush_cache_mm(struct mm_struct *mm) { if (!cpu_has_dc_aliases) return; r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_mm, mm); } struct flush_cache_page_args { struct vm_area_struct *vma; unsigned long addr; unsigned long pfn; }; static inline void local_r4k_flush_cache_page(void *args) { struct flush_cache_page_args *fcp_args = args; struct vm_area_struct *vma = fcp_args->vma; unsigned long addr = fcp_args->addr; struct page *page = pfn_to_page(fcp_args->pfn); int exec = vma->vm_flags & VM_EXEC; struct mm_struct *mm = vma->vm_mm; int map_coherent = 0; pmd_t *pmdp; pte_t *ptep; void *vaddr; /* * If owns no valid ASID yet, cannot possibly have gotten * this page into the cache. */ if (!has_valid_asid(mm, R4K_HIT)) return; addr &= PAGE_MASK; pmdp = pmd_off(mm, addr); ptep = pte_offset_kernel(pmdp, addr); /* * If the page isn't marked valid, the page cannot possibly be * in the cache. */ if (!(pte_present(*ptep))) return; if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID)) vaddr = NULL; else { /* * Use kmap_coherent or kmap_atomic to do flushes for * another ASID than the current one. */ map_coherent = (cpu_has_dc_aliases && page_mapcount(page) && !Page_dcache_dirty(page)); if (map_coherent) vaddr = kmap_coherent(page, addr); else vaddr = kmap_atomic(page); addr = (unsigned long)vaddr; } if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) { vaddr ? r4k_blast_dcache_page(addr) : r4k_blast_dcache_user_page(addr); if (exec && !cpu_icache_snoops_remote_store) r4k_blast_scache_page(addr); } if (exec) { if (vaddr && cpu_has_vtag_icache && mm == current->active_mm) { drop_mmu_context(mm); } else vaddr ? r4k_blast_icache_page(addr) : r4k_blast_icache_user_page(addr); } if (vaddr) { if (map_coherent) kunmap_coherent(); else kunmap_atomic(vaddr); } } static void r4k_flush_cache_page(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn) { struct flush_cache_page_args args; args.vma = vma; args.addr = addr; args.pfn = pfn; r4k_on_each_cpu(R4K_HIT, local_r4k_flush_cache_page, &args); } static inline void local_r4k_flush_data_cache_page(void * addr) { r4k_blast_dcache_page((unsigned long) addr); } static void r4k_flush_data_cache_page(unsigned long addr) { if (in_atomic()) local_r4k_flush_data_cache_page((void *)addr); else r4k_on_each_cpu(R4K_HIT, local_r4k_flush_data_cache_page, (void *) addr); } struct flush_icache_range_args { unsigned long start; unsigned long end; unsigned int type; bool user; }; static inline void __local_r4k_flush_icache_range(unsigned long start, unsigned long end, unsigned int type, bool user) { if (!cpu_has_ic_fills_f_dc) { if (type == R4K_INDEX || (type & R4K_INDEX && end - start >= dcache_size)) { r4k_blast_dcache(); } else { R4600_HIT_CACHEOP_WAR_IMPL; if (user) protected_blast_dcache_range(start, end); else blast_dcache_range(start, end); } } if (type == R4K_INDEX || (type & R4K_INDEX && end - start > icache_size)) r4k_blast_icache(); else { switch (boot_cpu_type()) { case CPU_LOONGSON2EF: protected_loongson2_blast_icache_range(start, end); break; default: if (user) protected_blast_icache_range(start, end); else blast_icache_range(start, end); break; } } } static inline void local_r4k_flush_icache_range(unsigned long start, unsigned long end) { __local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, false); } static inline void local_r4k_flush_icache_user_range(unsigned long start, unsigned long end) { __local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, true); } static inline void local_r4k_flush_icache_range_ipi(void *args) { struct flush_icache_range_args *fir_args = args; unsigned long start = fir_args->start; unsigned long end = fir_args->end; unsigned int type = fir_args->type; bool user = fir_args->user; __local_r4k_flush_icache_range(start, end, type, user); } static void __r4k_flush_icache_range(unsigned long start, unsigned long end, bool user) { struct flush_icache_range_args args; unsigned long size, cache_size; args.start = start; args.end = end; args.type = R4K_HIT | R4K_INDEX; args.user = user; /* * Indexed cache ops require an SMP call. * Consider if that can or should be avoided. */ preempt_disable(); if (r4k_op_needs_ipi(R4K_INDEX) && !r4k_op_needs_ipi(R4K_HIT)) { /* * If address-based cache ops don't require an SMP call, then * use them exclusively for small flushes. */ size = end - start; cache_size = icache_size; if (!cpu_has_ic_fills_f_dc) { size *= 2; cache_size += dcache_size; } if (size <= cache_size) args.type &= ~R4K_INDEX; } r4k_on_each_cpu(args.type, local_r4k_flush_icache_range_ipi, &args); preempt_enable(); instruction_hazard(); } static void r4k_flush_icache_range(unsigned long start, unsigned long end) { return __r4k_flush_icache_range(start, end, false); } static void r4k_flush_icache_user_range(unsigned long start, unsigned long end) { return __r4k_flush_icache_range(start, end, true); } #ifdef CONFIG_DMA_NONCOHERENT static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size) { /* Catch bad driver code */ if (WARN_ON(size == 0)) return; preempt_disable(); if (cpu_has_inclusive_pcaches) { if (size >= scache_size) { if (current_cpu_type() != CPU_LOONGSON64) r4k_blast_scache(); else r4k_blast_scache_node(pa_to_nid(addr)); } else { blast_scache_range(addr, addr + size); } preempt_enable(); __sync(); return; } /* * Either no secondary cache or the available caches don't have the * subset property so we have to flush the primary caches * explicitly. * If we would need IPI to perform an INDEX-type operation, then * we have to use the HIT-type alternative as IPI cannot be used * here due to interrupts possibly being disabled. */ if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) { r4k_blast_dcache(); } else { R4600_HIT_CACHEOP_WAR_IMPL; blast_dcache_range(addr, addr + size); } preempt_enable(); bc_wback_inv(addr, size); __sync(); } static void prefetch_cache_inv(unsigned long addr, unsigned long size) { unsigned int linesz = cpu_scache_line_size(); unsigned long addr0 = addr, addr1; addr0 &= ~(linesz - 1); addr1 = (addr0 + size - 1) & ~(linesz - 1); protected_writeback_scache_line(addr0); if (likely(addr1 != addr0)) protected_writeback_scache_line(addr1); else return; addr0 += linesz; if (likely(addr1 != addr0)) protected_writeback_scache_line(addr0); else return; addr1 -= linesz; if (likely(addr1 > addr0)) protected_writeback_scache_line(addr0); } static void r4k_dma_cache_inv(unsigned long addr, unsigned long size) { /* Catch bad driver code */ if (WARN_ON(size == 0)) return; preempt_disable(); if (current_cpu_type() == CPU_BMIPS5000) prefetch_cache_inv(addr, size); if (cpu_has_inclusive_pcaches) { if (size >= scache_size) { if (current_cpu_type() != CPU_LOONGSON64) r4k_blast_scache(); else r4k_blast_scache_node(pa_to_nid(addr)); } else { /* * There is no clearly documented alignment requirement * for the cache instruction on MIPS processors and * some processors, among them the RM5200 and RM7000 * QED processors will throw an address error for cache * hit ops with insufficient alignment. Solved by * aligning the address to cache line size. */ blast_inv_scache_range(addr, addr + size); } preempt_enable(); __sync(); return; } if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) { r4k_blast_dcache(); } else { R4600_HIT_CACHEOP_WAR_IMPL; blast_inv_dcache_range(addr, addr + size); } preempt_enable(); bc_inv(addr, size); __sync(); } #endif /* CONFIG_DMA_NONCOHERENT */ static void r4k_flush_icache_all(void) { if (cpu_has_vtag_icache) r4k_blast_icache(); } struct flush_kernel_vmap_range_args { unsigned long vaddr; int size; }; static inline void local_r4k_flush_kernel_vmap_range_index(void *args) { /* * Aliases only affect the primary caches so don't bother with * S-caches or T-caches. */ r4k_blast_dcache(); } static inline void local_r4k_flush_kernel_vmap_range(void *args) { struct flush_kernel_vmap_range_args *vmra = args; unsigned long vaddr = vmra->vaddr; int size = vmra->size; /* * Aliases only affect the primary caches so don't bother with * S-caches or T-caches. */ R4600_HIT_CACHEOP_WAR_IMPL; blast_dcache_range(vaddr, vaddr + size); } static void r4k_flush_kernel_vmap_range(unsigned long vaddr, int size) { struct flush_kernel_vmap_range_args args; args.vaddr = (unsigned long) vaddr; args.size = size; if (size >= dcache_size) r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_kernel_vmap_range_index, NULL); else r4k_on_each_cpu(R4K_HIT, local_r4k_flush_kernel_vmap_range, &args); } static inline void rm7k_erratum31(void) { const unsigned long ic_lsize = 32; unsigned long addr; /* RM7000 erratum #31. The icache is screwed at startup. */ write_c0_taglo(0); write_c0_taghi(0); for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) { __asm__ __volatile__ ( ".set push\n\t" ".set noreorder\n\t" ".set mips3\n\t" "cache\t%1, 0(%0)\n\t" "cache\t%1, 0x1000(%0)\n\t" "cache\t%1, 0x2000(%0)\n\t" "cache\t%1, 0x3000(%0)\n\t" "cache\t%2, 0(%0)\n\t" "cache\t%2, 0x1000(%0)\n\t" "cache\t%2, 0x2000(%0)\n\t" "cache\t%2, 0x3000(%0)\n\t" "cache\t%1, 0(%0)\n\t" "cache\t%1, 0x1000(%0)\n\t" "cache\t%1, 0x2000(%0)\n\t" "cache\t%1, 0x3000(%0)\n\t" ".set pop\n" : : "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill_I)); } } static inline int alias_74k_erratum(struct cpuinfo_mips *c) { unsigned int imp = c->processor_id & PRID_IMP_MASK; unsigned int rev = c->processor_id & PRID_REV_MASK; int present = 0; /* * Early versions of the 74K do not update the cache tags on a * vtag miss/ptag hit which can occur in the case of KSEG0/KUSEG * aliases. In this case it is better to treat the cache as always * having aliases. Also disable the synonym tag update feature * where available. In this case no opportunistic tag update will * happen where a load causes a virtual address miss but a physical * address hit during a D-cache look-up. */ switch (imp) { case PRID_IMP_74K: if (rev <= PRID_REV_ENCODE_332(2, 4, 0)) present = 1; if (rev == PRID_REV_ENCODE_332(2, 4, 0)) write_c0_config6(read_c0_config6() | MTI_CONF6_SYND); break; case PRID_IMP_1074K: if (rev <= PRID_REV_ENCODE_332(1, 1, 0)) { present = 1; write_c0_config6(read_c0_config6() | MTI_CONF6_SYND); } break; default: BUG(); } return present; } static void b5k_instruction_hazard(void) { __sync(); __sync(); __asm__ __volatile__( " nop; nop; nop; nop; nop; nop; nop; nop\n" " nop; nop; nop; nop; nop; nop; nop; nop\n" " nop; nop; nop; nop; nop; nop; nop; nop\n" " nop; nop; nop; nop; nop; nop; nop; nop\n" : : : "memory"); } static char *way_string[] = { NULL, "direct mapped", "2-way", "3-way", "4-way", "5-way", "6-way", "7-way", "8-way", "9-way", "10-way", "11-way", "12-way", "13-way", "14-way", "15-way", "16-way", }; static void probe_pcache(void) { struct cpuinfo_mips *c = ¤t_cpu_data; unsigned int config = read_c0_config(); unsigned int prid = read_c0_prid(); int has_74k_erratum = 0; unsigned long config1; unsigned int lsize; switch (current_cpu_type()) { case CPU_R4600: /* QED style two way caches? */ case CPU_R4700: case CPU_R5000: case CPU_NEVADA: icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); c->icache.linesz = 16 << ((config & CONF_IB) >> 5); c->icache.ways = 2; c->icache.waybit = __ffs(icache_size/2); dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); c->dcache.ways = 2; c->dcache.waybit= __ffs(dcache_size/2); c->options |= MIPS_CPU_CACHE_CDEX_P; break; case CPU_R5500: icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); c->icache.linesz = 16 << ((config & CONF_IB) >> 5); c->icache.ways = 2; c->icache.waybit= 0; dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); c->dcache.ways = 2; c->dcache.waybit = 0; c->options |= MIPS_CPU_CACHE_CDEX_P | MIPS_CPU_PREFETCH; break; case CPU_TX49XX: icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); c->icache.linesz = 16 << ((config & CONF_IB) >> 5); c->icache.ways = 4; c->icache.waybit= 0; dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); c->dcache.ways = 4; c->dcache.waybit = 0; c->options |= MIPS_CPU_CACHE_CDEX_P; c->options |= MIPS_CPU_PREFETCH; break; case CPU_R4000PC: case CPU_R4000SC: case CPU_R4000MC: case CPU_R4400PC: case CPU_R4400SC: case CPU_R4400MC: icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); c->icache.linesz = 16 << ((config & CONF_IB) >> 5); c->icache.ways = 1; c->icache.waybit = 0; /* doesn't matter */ dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); c->dcache.ways = 1; c->dcache.waybit = 0; /* does not matter */ c->options |= MIPS_CPU_CACHE_CDEX_P; break; case CPU_R10000: case CPU_R12000: case CPU_R14000: case CPU_R16000: icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29)); c->icache.linesz = 64; c->icache.ways = 2; c->icache.waybit = 0; dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26)); c->dcache.linesz = 32; c->dcache.ways = 2; c->dcache.waybit = 0; c->options |= MIPS_CPU_PREFETCH; break; case CPU_VR4133: write_c0_config(config & ~VR41_CONF_P4K); fallthrough; case CPU_VR4131: /* Workaround for cache instruction bug of VR4131 */ if (c->processor_id == 0x0c80U || c->processor_id == 0x0c81U || c->processor_id == 0x0c82U) { config |= 0x00400000U; if (c->processor_id == 0x0c80U) config |= VR41_CONF_BP; write_c0_config(config); } else c->options |= MIPS_CPU_CACHE_CDEX_P; icache_size = 1 << (10 + ((config & CONF_IC) >> 9)); c->icache.linesz = 16 << ((config & CONF_IB) >> 5); c->icache.ways = 2; c->icache.waybit = __ffs(icache_size/2); dcache_size = 1 << (10 + ((config & CONF_DC) >> 6)); c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); c->dcache.ways = 2; c->dcache.waybit = __ffs(dcache_size/2); break; case CPU_VR41XX: case CPU_VR4111: case CPU_VR4121: case CPU_VR4122: case CPU_VR4181: case CPU_VR4181A: icache_size = 1 << (10 + ((config & CONF_IC) >> 9)); c->icache.linesz = 16 << ((config & CONF_IB) >> 5); c->icache.ways = 1; c->icache.waybit = 0; /* doesn't matter */ dcache_size = 1 << (10 + ((config & CONF_DC) >> 6)); c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); c->dcache.ways = 1; c->dcache.waybit = 0; /* does not matter */ c->options |= MIPS_CPU_CACHE_CDEX_P; break; case CPU_RM7000: rm7k_erratum31(); icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); c->icache.linesz = 16 << ((config & CONF_IB) >> 5); c->icache.ways = 4; c->icache.waybit = __ffs(icache_size / c->icache.ways); dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); c->dcache.ways = 4; c->dcache.waybit = __ffs(dcache_size / c->dcache.ways); c->options |= MIPS_CPU_CACHE_CDEX_P; c->options |= MIPS_CPU_PREFETCH; break; case CPU_LOONGSON2EF: icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); c->icache.linesz = 16 << ((config & CONF_IB) >> 5); if (prid & 0x3) c->icache.ways = 4; else c->icache.ways = 2; c->icache.waybit = 0; dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); if (prid & 0x3) c->dcache.ways = 4; else c->dcache.ways = 2; c->dcache.waybit = 0; break; case CPU_LOONGSON64: config1 = read_c0_config1(); lsize = (config1 >> 19) & 7; if (lsize) c->icache.linesz = 2 << lsize; else c->icache.linesz = 0; c->icache.sets = 64 << ((config1 >> 22) & 7); c->icache.ways = 1 + ((config1 >> 16) & 7); icache_size = c->icache.sets * c->icache.ways * c->icache.linesz; c->icache.waybit = 0; lsize = (config1 >> 10) & 7; if (lsize) c->dcache.linesz = 2 << lsize; else c->dcache.linesz = 0; c->dcache.sets = 64 << ((config1 >> 13) & 7); c->dcache.ways = 1 + ((config1 >> 7) & 7); dcache_size = c->dcache.sets * c->dcache.ways * c->dcache.linesz; c->dcache.waybit = 0; if ((c->processor_id & (PRID_IMP_MASK | PRID_REV_MASK)) >= (PRID_IMP_LOONGSON_64C | PRID_REV_LOONGSON3A_R2_0) || (c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R) c->options |= MIPS_CPU_PREFETCH; break; case CPU_CAVIUM_OCTEON3: /* For now lie about the number of ways. */ c->icache.linesz = 128; c->icache.sets = 16; c->icache.ways = 8; c->icache.flags |= MIPS_CACHE_VTAG; icache_size = c->icache.sets * c->icache.ways * c->icache.linesz; c->dcache.linesz = 128; c->dcache.ways = 8; c->dcache.sets = 8; dcache_size = c->dcache.sets * c->dcache.ways * c->dcache.linesz; c->options |= MIPS_CPU_PREFETCH; break; default: if (!(config & MIPS_CONF_M)) panic("Don't know how to probe P-caches on this cpu."); /* * So we seem to be a MIPS32 or MIPS64 CPU * So let's probe the I-cache ... */ config1 = read_c0_config1(); lsize = (config1 >> 19) & 7; /* IL == 7 is reserved */ if (lsize == 7) panic("Invalid icache line size"); c->icache.linesz = lsize ? 2 << lsize : 0; c->icache.sets = 32 << (((config1 >> 22) + 1) & 7); c->icache.ways = 1 + ((config1 >> 16) & 7); icache_size = c->icache.sets * c->icache.ways * c->icache.linesz; c->icache.waybit = __ffs(icache_size/c->icache.ways); if (config & MIPS_CONF_VI) c->icache.flags |= MIPS_CACHE_VTAG; /* * Now probe the MIPS32 / MIPS64 data cache. */ c->dcache.flags = 0; lsize = (config1 >> 10) & 7; /* DL == 7 is reserved */ if (lsize == 7) panic("Invalid dcache line size"); c->dcache.linesz = lsize ? 2 << lsize : 0; c->dcache.sets = 32 << (((config1 >> 13) + 1) & 7); c->dcache.ways = 1 + ((config1 >> 7) & 7); dcache_size = c->dcache.sets * c->dcache.ways * c->dcache.linesz; c->dcache.waybit = __ffs(dcache_size/c->dcache.ways); c->options |= MIPS_CPU_PREFETCH; break; } /* * Processor configuration sanity check for the R4000SC erratum * #5. With page sizes larger than 32kB there is no possibility * to get a VCE exception anymore so we don't care about this * misconfiguration. The case is rather theoretical anyway; * presumably no vendor is shipping his hardware in the "bad" * configuration. */ if ((prid & PRID_IMP_MASK) == PRID_IMP_R4000 && (prid & PRID_REV_MASK) < PRID_REV_R4400 && !(config & CONF_SC) && c->icache.linesz != 16 && PAGE_SIZE <= 0x8000) panic("Improper R4000SC processor configuration detected"); /* compute a couple of other cache variables */ c->icache.waysize = icache_size / c->icache.ways; c->dcache.waysize = dcache_size / c->dcache.ways; c->icache.sets = c->icache.linesz ? icache_size / (c->icache.linesz * c->icache.ways) : 0; c->dcache.sets = c->dcache.linesz ? dcache_size / (c->dcache.linesz * c->dcache.ways) : 0; /* * R1x000 P-caches are odd in a positive way. They're 32kB 2-way * virtually indexed so normally would suffer from aliases. So * normally they'd suffer from aliases but magic in the hardware deals * with that for us so we don't need to take care ourselves. */ switch (current_cpu_type()) { case CPU_20KC: case CPU_25KF: case CPU_I6400: case CPU_I6500: case CPU_SB1: case CPU_SB1A: case CPU_XLR: c->dcache.flags |= MIPS_CACHE_PINDEX; break; case CPU_R10000: case CPU_R12000: case CPU_R14000: case CPU_R16000: break; case CPU_74K: case CPU_1074K: has_74k_erratum = alias_74k_erratum(c); fallthrough; case CPU_M14KC: case CPU_M14KEC: case CPU_24K: case CPU_34K: case CPU_1004K: case CPU_INTERAPTIV: case CPU_P5600: case CPU_PROAPTIV: case CPU_M5150: case CPU_QEMU_GENERIC: case CPU_P6600: case CPU_M6250: if (!(read_c0_config7() & MIPS_CONF7_IAR) && (c->icache.waysize > PAGE_SIZE)) c->icache.flags |= MIPS_CACHE_ALIASES; if (!has_74k_erratum && (read_c0_config7() & MIPS_CONF7_AR)) { /* * Effectively physically indexed dcache, * thus no virtual aliases. */ c->dcache.flags |= MIPS_CACHE_PINDEX; break; } fallthrough; default: if (has_74k_erratum || c->dcache.waysize > PAGE_SIZE) c->dcache.flags |= MIPS_CACHE_ALIASES; } /* Physically indexed caches don't suffer from virtual aliasing */ if (c->dcache.flags & MIPS_CACHE_PINDEX) c->dcache.flags &= ~MIPS_CACHE_ALIASES; /* * In systems with CM the icache fills from L2 or closer caches, and * thus sees remote stores without needing to write them back any * further than that. */ if (mips_cm_present()) c->icache.flags |= MIPS_IC_SNOOPS_REMOTE; switch (current_cpu_type()) { case CPU_20KC: /* * Some older 20Kc chips doesn't have the 'VI' bit in * the config register. */ c->icache.flags |= MIPS_CACHE_VTAG; break; case CPU_ALCHEMY: case CPU_I6400: case CPU_I6500: c->icache.flags |= MIPS_CACHE_IC_F_DC; break; case CPU_BMIPS5000: c->icache.flags |= MIPS_CACHE_IC_F_DC; /* Cache aliases are handled in hardware; allow HIGHMEM */ c->dcache.flags &= ~MIPS_CACHE_ALIASES; break; case CPU_LOONGSON2EF: /* * LOONGSON2 has 4 way icache, but when using indexed cache op, * one op will act on all 4 ways */ c->icache.ways = 1; } pr_info("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n", icache_size >> 10, c->icache.flags & MIPS_CACHE_VTAG ? "VIVT" : "VIPT", way_string[c->icache.ways], c->icache.linesz); pr_info("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n", dcache_size >> 10, way_string[c->dcache.ways], (c->dcache.flags & MIPS_CACHE_PINDEX) ? "PIPT" : "VIPT", (c->dcache.flags & MIPS_CACHE_ALIASES) ? "cache aliases" : "no aliases", c->dcache.linesz); } static void probe_vcache(void) { struct cpuinfo_mips *c = ¤t_cpu_data; unsigned int config2, lsize; if (current_cpu_type() != CPU_LOONGSON64) return; config2 = read_c0_config2(); if ((lsize = ((config2 >> 20) & 15))) c->vcache.linesz = 2 << lsize; else c->vcache.linesz = lsize; c->vcache.sets = 64 << ((config2 >> 24) & 15); c->vcache.ways = 1 + ((config2 >> 16) & 15); vcache_size = c->vcache.sets * c->vcache.ways * c->vcache.linesz; c->vcache.waybit = 0; c->vcache.waysize = vcache_size / c->vcache.ways; pr_info("Unified victim cache %ldkB %s, linesize %d bytes.\n", vcache_size >> 10, way_string[c->vcache.ways], c->vcache.linesz); } /* * If you even _breathe_ on this function, look at the gcc output and make sure * it does not pop things on and off the stack for the cache sizing loop that * executes in KSEG1 space or else you will crash and burn badly. You have * been warned. */ static int probe_scache(void) { unsigned long flags, addr, begin, end, pow2; unsigned int config = read_c0_config(); struct cpuinfo_mips *c = ¤t_cpu_data; if (config & CONF_SC) return 0; begin = (unsigned long) &_stext; begin &= ~((4 * 1024 * 1024) - 1); end = begin + (4 * 1024 * 1024); /* * This is such a bitch, you'd think they would make it easy to do * this. Away you daemons of stupidity! */ local_irq_save(flags); /* Fill each size-multiple cache line with a valid tag. */ pow2 = (64 * 1024); for (addr = begin; addr < end; addr = (begin + pow2)) { unsigned long *p = (unsigned long *) addr; __asm__ __volatile__("nop" : : "r" (*p)); /* whee... */ pow2 <<= 1; } /* Load first line with zero (therefore invalid) tag. */ write_c0_taglo(0); write_c0_taghi(0); __asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */ cache_op(Index_Store_Tag_I, begin); cache_op(Index_Store_Tag_D, begin); cache_op(Index_Store_Tag_SD, begin); /* Now search for the wrap around point. */ pow2 = (128 * 1024); for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) { cache_op(Index_Load_Tag_SD, addr); __asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */ if (!read_c0_taglo()) break; pow2 <<= 1; } local_irq_restore(flags); addr -= begin; scache_size = addr; c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22); c->scache.ways = 1; c->scache.waybit = 0; /* does not matter */ return 1; } static void __init loongson2_sc_init(void) { struct cpuinfo_mips *c = ¤t_cpu_data; scache_size = 512*1024; c->scache.linesz = 32; c->scache.ways = 4; c->scache.waybit = 0; c->scache.waysize = scache_size / (c->scache.ways); c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways); pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n", scache_size >> 10, way_string[c->scache.ways], c->scache.linesz); c->options |= MIPS_CPU_INCLUSIVE_CACHES; } static void __init loongson3_sc_init(void) { struct cpuinfo_mips *c = ¤t_cpu_data; unsigned int config2, lsize; config2 = read_c0_config2(); lsize = (config2 >> 4) & 15; if (lsize) c->scache.linesz = 2 << lsize; else c->scache.linesz = 0; c->scache.sets = 64 << ((config2 >> 8) & 15); c->scache.ways = 1 + (config2 & 15); scache_size = c->scache.sets * c->scache.ways * c->scache.linesz; /* Loongson-3 has 4-Scache banks, while Loongson-2K have only 2 banks */ if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R) scache_size *= 2; else scache_size *= 4; c->scache.waybit = 0; c->scache.waysize = scache_size / c->scache.ways; pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n", scache_size >> 10, way_string[c->scache.ways], c->scache.linesz); if (scache_size) c->options |= MIPS_CPU_INCLUSIVE_CACHES; return; } extern int r5k_sc_init(void); extern int rm7k_sc_init(void); extern int mips_sc_init(void); static void setup_scache(void) { struct cpuinfo_mips *c = ¤t_cpu_data; unsigned int config = read_c0_config(); int sc_present = 0; /* * Do the probing thing on R4000SC and R4400SC processors. Other * processors don't have a S-cache that would be relevant to the * Linux memory management. */ switch (current_cpu_type()) { case CPU_R4000SC: case CPU_R4000MC: case CPU_R4400SC: case CPU_R4400MC: sc_present = run_uncached(probe_scache); if (sc_present) c->options |= MIPS_CPU_CACHE_CDEX_S; break; case CPU_R10000: case CPU_R12000: case CPU_R14000: case CPU_R16000: scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16); c->scache.linesz = 64 << ((config >> 13) & 1); c->scache.ways = 2; c->scache.waybit= 0; sc_present = 1; break; case CPU_R5000: case CPU_NEVADA: #ifdef CONFIG_R5000_CPU_SCACHE r5k_sc_init(); #endif return; case CPU_RM7000: #ifdef CONFIG_RM7000_CPU_SCACHE rm7k_sc_init(); #endif return; case CPU_LOONGSON2EF: loongson2_sc_init(); return; case CPU_LOONGSON64: loongson3_sc_init(); return; case CPU_CAVIUM_OCTEON3: case CPU_XLP: /* don't need to worry about L2, fully coherent */ return; default: if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 | MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 | MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 | MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) { #ifdef CONFIG_MIPS_CPU_SCACHE if (mips_sc_init ()) { scache_size = c->scache.ways * c->scache.sets * c->scache.linesz; printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n", scache_size >> 10, way_string[c->scache.ways], c->scache.linesz); if (current_cpu_type() == CPU_BMIPS5000) c->options |= MIPS_CPU_INCLUSIVE_CACHES; } #else if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT)) panic("Dunno how to handle MIPS32 / MIPS64 second level cache"); #endif return; } sc_present = 0; } if (!sc_present) return; /* compute a couple of other cache variables */ c->scache.waysize = scache_size / c->scache.ways; c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways); printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n", scache_size >> 10, way_string[c->scache.ways], c->scache.linesz); c->options |= MIPS_CPU_INCLUSIVE_CACHES; } void au1x00_fixup_config_od(void) { /* * c0_config.od (bit 19) was write only (and read as 0) * on the early revisions of Alchemy SOCs. It disables the bus * transaction overlapping and needs to be set to fix various errata. */ switch (read_c0_prid()) { case 0x00030100: /* Au1000 DA */ case 0x00030201: /* Au1000 HA */ case 0x00030202: /* Au1000 HB */ case 0x01030200: /* Au1500 AB */ /* * Au1100 errata actually keeps silence about this bit, so we set it * just in case for those revisions that require it to be set according * to the (now gone) cpu table. */ case 0x02030200: /* Au1100 AB */ case 0x02030201: /* Au1100 BA */ case 0x02030202: /* Au1100 BC */ set_c0_config(1 << 19); break; } } /* CP0 hazard avoidance. */ #define NXP_BARRIER() \ __asm__ __volatile__( \ ".set noreorder\n\t" \ "nop; nop; nop; nop; nop; nop;\n\t" \ ".set reorder\n\t") static void nxp_pr4450_fixup_config(void) { unsigned long config0; config0 = read_c0_config(); /* clear all three cache coherency fields */ config0 &= ~(0x7 | (7 << 25) | (7 << 28)); config0 |= (((_page_cachable_default >> _CACHE_SHIFT) << 0) | ((_page_cachable_default >> _CACHE_SHIFT) << 25) | ((_page_cachable_default >> _CACHE_SHIFT) << 28)); write_c0_config(config0); NXP_BARRIER(); } static int cca = -1; static int __init cca_setup(char *str) { get_option(&str, &cca); return 0; } early_param("cca", cca_setup); static void coherency_setup(void) { if (cca < 0 || cca > 7) cca = read_c0_config() & CONF_CM_CMASK; _page_cachable_default = cca << _CACHE_SHIFT; pr_debug("Using cache attribute %d\n", cca); change_c0_config(CONF_CM_CMASK, cca); /* * c0_status.cu=0 specifies that updates by the sc instruction use * the coherency mode specified by the TLB; 1 means cachable * coherent update on write will be used. Not all processors have * this bit and; some wire it to zero, others like Toshiba had the * silly idea of putting something else there ... */ switch (current_cpu_type()) { case CPU_R4000PC: case CPU_R4000SC: case CPU_R4000MC: case CPU_R4400PC: case CPU_R4400SC: case CPU_R4400MC: clear_c0_config(CONF_CU); break; /* * We need to catch the early Alchemy SOCs with * the write-only co_config.od bit and set it back to one on: * Au1000 rev DA, HA, HB; Au1100 AB, BA, BC, Au1500 AB */ case CPU_ALCHEMY: au1x00_fixup_config_od(); break; case PRID_IMP_PR4450: nxp_pr4450_fixup_config(); break; } } static void r4k_cache_error_setup(void) { extern char __weak except_vec2_generic; extern char __weak except_vec2_sb1; switch (current_cpu_type()) { case CPU_SB1: case CPU_SB1A: set_uncached_handler(0x100, &except_vec2_sb1, 0x80); break; default: set_uncached_handler(0x100, &except_vec2_generic, 0x80); break; } } void r4k_cache_init(void) { extern void build_clear_page(void); extern void build_copy_page(void); struct cpuinfo_mips *c = ¤t_cpu_data; probe_pcache(); probe_vcache(); setup_scache(); r4k_blast_dcache_page_setup(); r4k_blast_dcache_page_indexed_setup(); r4k_blast_dcache_setup(); r4k_blast_icache_page_setup(); r4k_blast_icache_page_indexed_setup(); r4k_blast_icache_setup(); r4k_blast_scache_page_setup(); r4k_blast_scache_page_indexed_setup(); r4k_blast_scache_setup(); r4k_blast_scache_node_setup(); #ifdef CONFIG_EVA r4k_blast_dcache_user_page_setup(); r4k_blast_icache_user_page_setup(); #endif /* * Some MIPS32 and MIPS64 processors have physically indexed caches. * This code supports virtually indexed processors and will be * unnecessarily inefficient on physically indexed processors. */ if (c->dcache.linesz && cpu_has_dc_aliases) shm_align_mask = max_t( unsigned long, c->dcache.sets * c->dcache.linesz - 1, PAGE_SIZE - 1); else shm_align_mask = PAGE_SIZE-1; __flush_cache_vmap = r4k__flush_cache_vmap; __flush_cache_vunmap = r4k__flush_cache_vunmap; flush_cache_all = cache_noop; __flush_cache_all = r4k___flush_cache_all; flush_cache_mm = r4k_flush_cache_mm; flush_cache_page = r4k_flush_cache_page; flush_cache_range = r4k_flush_cache_range; __flush_kernel_vmap_range = r4k_flush_kernel_vmap_range; flush_icache_all = r4k_flush_icache_all; local_flush_data_cache_page = local_r4k_flush_data_cache_page; flush_data_cache_page = r4k_flush_data_cache_page; flush_icache_range = r4k_flush_icache_range; local_flush_icache_range = local_r4k_flush_icache_range; __flush_icache_user_range = r4k_flush_icache_user_range; __local_flush_icache_user_range = local_r4k_flush_icache_user_range; #ifdef CONFIG_DMA_NONCOHERENT #ifdef CONFIG_DMA_MAYBE_COHERENT if (coherentio == IO_COHERENCE_ENABLED || (coherentio == IO_COHERENCE_DEFAULT && hw_coherentio)) { _dma_cache_wback_inv = (void *)cache_noop; _dma_cache_wback = (void *)cache_noop; _dma_cache_inv = (void *)cache_noop; } else #endif /* CONFIG_DMA_MAYBE_COHERENT */ { _dma_cache_wback_inv = r4k_dma_cache_wback_inv; _dma_cache_wback = r4k_dma_cache_wback_inv; _dma_cache_inv = r4k_dma_cache_inv; } #endif /* CONFIG_DMA_NONCOHERENT */ build_clear_page(); build_copy_page(); /* * We want to run CMP kernels on core with and without coherent * caches. Therefore, do not use CONFIG_MIPS_CMP to decide whether * or not to flush caches. */ local_r4k___flush_cache_all(NULL); coherency_setup(); board_cache_error_setup = r4k_cache_error_setup; /* * Per-CPU overrides */ switch (current_cpu_type()) { case CPU_BMIPS4350: case CPU_BMIPS4380: /* No IPI is needed because all CPUs share the same D$ */ flush_data_cache_page = r4k_blast_dcache_page; break; case CPU_BMIPS5000: /* We lose our superpowers if L2 is disabled */ if (c->scache.flags & MIPS_CACHE_NOT_PRESENT) break; /* I$ fills from D$ just by emptying the write buffers */ flush_cache_page = (void *)b5k_instruction_hazard; flush_cache_range = (void *)b5k_instruction_hazard; local_flush_data_cache_page = (void *)b5k_instruction_hazard; flush_data_cache_page = (void *)b5k_instruction_hazard; flush_icache_range = (void *)b5k_instruction_hazard; local_flush_icache_range = (void *)b5k_instruction_hazard; /* Optimization: an L2 flush implicitly flushes the L1 */ current_cpu_data.options |= MIPS_CPU_INCLUSIVE_CACHES; break; case CPU_LOONGSON64: /* Loongson-3 maintains cache coherency by hardware */ __flush_cache_all = cache_noop; __flush_cache_vmap = cache_noop; __flush_cache_vunmap = cache_noop; __flush_kernel_vmap_range = (void *)cache_noop; flush_cache_mm = (void *)cache_noop; flush_cache_page = (void *)cache_noop; flush_cache_range = (void *)cache_noop; flush_icache_all = (void *)cache_noop; flush_data_cache_page = (void *)cache_noop; local_flush_data_cache_page = (void *)cache_noop; break; } } static int r4k_cache_pm_notifier(struct notifier_block *self, unsigned long cmd, void *v) { switch (cmd) { case CPU_PM_ENTER_FAILED: case CPU_PM_EXIT: coherency_setup(); break; } return NOTIFY_OK; } static struct notifier_block r4k_cache_pm_notifier_block = { .notifier_call = r4k_cache_pm_notifier, }; int __init r4k_cache_init_pm(void) { return cpu_pm_register_notifier(&r4k_cache_pm_notifier_block); } arch_initcall(r4k_cache_init_pm);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1