Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Greentime Hu | 2449 | 89.44% | 1 | 33.33% |
Vincent Chen | 285 | 10.41% | 1 | 33.33% |
Gustavo A. R. Silva | 4 | 0.15% | 1 | 33.33% |
Total | 2738 | 3 |
// SPDX-License-Identifier: GPL-2.0 // Copyright (C) 2005-2017 Andes Technology Corporation #include <linux/errno.h> #include <linux/signal.h> #include <linux/ptrace.h> #include <linux/personality.h> #include <linux/freezer.h> #include <linux/tracehook.h> #include <linux/uaccess.h> #include <asm/cacheflush.h> #include <asm/ucontext.h> #include <asm/unistd.h> #include <asm/fpu.h> #include <asm/ptrace.h> #include <asm/vdso.h> struct rt_sigframe { struct siginfo info; struct ucontext uc; }; #if IS_ENABLED(CONFIG_FPU) static inline int restore_sigcontext_fpu(struct pt_regs *regs, struct sigcontext __user *sc) { struct task_struct *tsk = current; unsigned long used_math_flag; int ret = 0; clear_used_math(); __get_user_error(used_math_flag, &sc->used_math_flag, ret); if (!used_math_flag) return 0; set_used_math(); #if IS_ENABLED(CONFIG_LAZY_FPU) preempt_disable(); if (current == last_task_used_math) { last_task_used_math = NULL; disable_ptreg_fpu(regs); } preempt_enable(); #else clear_fpu(regs); #endif return __copy_from_user(&tsk->thread.fpu, &sc->fpu, sizeof(struct fpu_struct)); } static inline int setup_sigcontext_fpu(struct pt_regs *regs, struct sigcontext __user *sc) { struct task_struct *tsk = current; int ret = 0; __put_user_error(used_math(), &sc->used_math_flag, ret); if (!used_math()) return ret; preempt_disable(); #if IS_ENABLED(CONFIG_LAZY_FPU) if (last_task_used_math == tsk) save_fpu(last_task_used_math); #else unlazy_fpu(tsk); #endif ret = __copy_to_user(&sc->fpu, &tsk->thread.fpu, sizeof(struct fpu_struct)); preempt_enable(); return ret; } #endif static int restore_sigframe(struct pt_regs *regs, struct rt_sigframe __user * sf) { sigset_t set; int err; err = __copy_from_user(&set, &sf->uc.uc_sigmask, sizeof(set)); if (err == 0) { set_current_blocked(&set); } __get_user_error(regs->uregs[0], &sf->uc.uc_mcontext.nds32_r0, err); __get_user_error(regs->uregs[1], &sf->uc.uc_mcontext.nds32_r1, err); __get_user_error(regs->uregs[2], &sf->uc.uc_mcontext.nds32_r2, err); __get_user_error(regs->uregs[3], &sf->uc.uc_mcontext.nds32_r3, err); __get_user_error(regs->uregs[4], &sf->uc.uc_mcontext.nds32_r4, err); __get_user_error(regs->uregs[5], &sf->uc.uc_mcontext.nds32_r5, err); __get_user_error(regs->uregs[6], &sf->uc.uc_mcontext.nds32_r6, err); __get_user_error(regs->uregs[7], &sf->uc.uc_mcontext.nds32_r7, err); __get_user_error(regs->uregs[8], &sf->uc.uc_mcontext.nds32_r8, err); __get_user_error(regs->uregs[9], &sf->uc.uc_mcontext.nds32_r9, err); __get_user_error(regs->uregs[10], &sf->uc.uc_mcontext.nds32_r10, err); __get_user_error(regs->uregs[11], &sf->uc.uc_mcontext.nds32_r11, err); __get_user_error(regs->uregs[12], &sf->uc.uc_mcontext.nds32_r12, err); __get_user_error(regs->uregs[13], &sf->uc.uc_mcontext.nds32_r13, err); __get_user_error(regs->uregs[14], &sf->uc.uc_mcontext.nds32_r14, err); __get_user_error(regs->uregs[15], &sf->uc.uc_mcontext.nds32_r15, err); __get_user_error(regs->uregs[16], &sf->uc.uc_mcontext.nds32_r16, err); __get_user_error(regs->uregs[17], &sf->uc.uc_mcontext.nds32_r17, err); __get_user_error(regs->uregs[18], &sf->uc.uc_mcontext.nds32_r18, err); __get_user_error(regs->uregs[19], &sf->uc.uc_mcontext.nds32_r19, err); __get_user_error(regs->uregs[20], &sf->uc.uc_mcontext.nds32_r20, err); __get_user_error(regs->uregs[21], &sf->uc.uc_mcontext.nds32_r21, err); __get_user_error(regs->uregs[22], &sf->uc.uc_mcontext.nds32_r22, err); __get_user_error(regs->uregs[23], &sf->uc.uc_mcontext.nds32_r23, err); __get_user_error(regs->uregs[24], &sf->uc.uc_mcontext.nds32_r24, err); __get_user_error(regs->uregs[25], &sf->uc.uc_mcontext.nds32_r25, err); __get_user_error(regs->fp, &sf->uc.uc_mcontext.nds32_fp, err); __get_user_error(regs->gp, &sf->uc.uc_mcontext.nds32_gp, err); __get_user_error(regs->lp, &sf->uc.uc_mcontext.nds32_lp, err); __get_user_error(regs->sp, &sf->uc.uc_mcontext.nds32_sp, err); __get_user_error(regs->ipc, &sf->uc.uc_mcontext.nds32_ipc, err); #if defined(CONFIG_HWZOL) __get_user_error(regs->lc, &sf->uc.uc_mcontext.zol.nds32_lc, err); __get_user_error(regs->le, &sf->uc.uc_mcontext.zol.nds32_le, err); __get_user_error(regs->lb, &sf->uc.uc_mcontext.zol.nds32_lb, err); #endif #if IS_ENABLED(CONFIG_FPU) err |= restore_sigcontext_fpu(regs, &sf->uc.uc_mcontext); #endif /* * Avoid sys_rt_sigreturn() restarting. */ forget_syscall(regs); return err; } asmlinkage long sys_rt_sigreturn(struct pt_regs *regs) { struct rt_sigframe __user *frame; /* Always make any pending restarted system calls return -EINTR */ current->restart_block.fn = do_no_restart_syscall; /* * Since we stacked the signal on a 64-bit boundary, * then 'sp' should be two-word aligned here. If it's * not, then the user is trying to mess with us. */ if (regs->sp & 7) goto badframe; frame = (struct rt_sigframe __user *)regs->sp; if (!access_ok(frame, sizeof(*frame))) goto badframe; if (restore_sigframe(regs, frame)) goto badframe; if (restore_altstack(&frame->uc.uc_stack)) goto badframe; return regs->uregs[0]; badframe: force_sig(SIGSEGV); return 0; } static int setup_sigframe(struct rt_sigframe __user * sf, struct pt_regs *regs, sigset_t * set) { int err = 0; __put_user_error(regs->uregs[0], &sf->uc.uc_mcontext.nds32_r0, err); __put_user_error(regs->uregs[1], &sf->uc.uc_mcontext.nds32_r1, err); __put_user_error(regs->uregs[2], &sf->uc.uc_mcontext.nds32_r2, err); __put_user_error(regs->uregs[3], &sf->uc.uc_mcontext.nds32_r3, err); __put_user_error(regs->uregs[4], &sf->uc.uc_mcontext.nds32_r4, err); __put_user_error(regs->uregs[5], &sf->uc.uc_mcontext.nds32_r5, err); __put_user_error(regs->uregs[6], &sf->uc.uc_mcontext.nds32_r6, err); __put_user_error(regs->uregs[7], &sf->uc.uc_mcontext.nds32_r7, err); __put_user_error(regs->uregs[8], &sf->uc.uc_mcontext.nds32_r8, err); __put_user_error(regs->uregs[9], &sf->uc.uc_mcontext.nds32_r9, err); __put_user_error(regs->uregs[10], &sf->uc.uc_mcontext.nds32_r10, err); __put_user_error(regs->uregs[11], &sf->uc.uc_mcontext.nds32_r11, err); __put_user_error(regs->uregs[12], &sf->uc.uc_mcontext.nds32_r12, err); __put_user_error(regs->uregs[13], &sf->uc.uc_mcontext.nds32_r13, err); __put_user_error(regs->uregs[14], &sf->uc.uc_mcontext.nds32_r14, err); __put_user_error(regs->uregs[15], &sf->uc.uc_mcontext.nds32_r15, err); __put_user_error(regs->uregs[16], &sf->uc.uc_mcontext.nds32_r16, err); __put_user_error(regs->uregs[17], &sf->uc.uc_mcontext.nds32_r17, err); __put_user_error(regs->uregs[18], &sf->uc.uc_mcontext.nds32_r18, err); __put_user_error(regs->uregs[19], &sf->uc.uc_mcontext.nds32_r19, err); __put_user_error(regs->uregs[20], &sf->uc.uc_mcontext.nds32_r20, err); __put_user_error(regs->uregs[21], &sf->uc.uc_mcontext.nds32_r21, err); __put_user_error(regs->uregs[22], &sf->uc.uc_mcontext.nds32_r22, err); __put_user_error(regs->uregs[23], &sf->uc.uc_mcontext.nds32_r23, err); __put_user_error(regs->uregs[24], &sf->uc.uc_mcontext.nds32_r24, err); __put_user_error(regs->uregs[25], &sf->uc.uc_mcontext.nds32_r25, err); __put_user_error(regs->fp, &sf->uc.uc_mcontext.nds32_fp, err); __put_user_error(regs->gp, &sf->uc.uc_mcontext.nds32_gp, err); __put_user_error(regs->lp, &sf->uc.uc_mcontext.nds32_lp, err); __put_user_error(regs->sp, &sf->uc.uc_mcontext.nds32_sp, err); __put_user_error(regs->ipc, &sf->uc.uc_mcontext.nds32_ipc, err); #if defined(CONFIG_HWZOL) __put_user_error(regs->lc, &sf->uc.uc_mcontext.zol.nds32_lc, err); __put_user_error(regs->le, &sf->uc.uc_mcontext.zol.nds32_le, err); __put_user_error(regs->lb, &sf->uc.uc_mcontext.zol.nds32_lb, err); #endif #if IS_ENABLED(CONFIG_FPU) err |= setup_sigcontext_fpu(regs, &sf->uc.uc_mcontext); #endif __put_user_error(current->thread.trap_no, &sf->uc.uc_mcontext.trap_no, err); __put_user_error(current->thread.error_code, &sf->uc.uc_mcontext.error_code, err); __put_user_error(current->thread.address, &sf->uc.uc_mcontext.fault_address, err); __put_user_error(set->sig[0], &sf->uc.uc_mcontext.oldmask, err); err |= __copy_to_user(&sf->uc.uc_sigmask, set, sizeof(*set)); return err; } static inline void __user *get_sigframe(struct ksignal *ksig, struct pt_regs *regs, int framesize) { unsigned long sp; /* Default to using normal stack */ sp = regs->sp; /* * If we are on the alternate signal stack and would overflow it, don't. * Return an always-bogus address instead so we will die with SIGSEGV. */ if (on_sig_stack(sp) && !likely(on_sig_stack(sp - framesize))) return (void __user __force *)(-1UL); /* This is the X/Open sanctioned signal stack switching. */ sp = (sigsp(sp, ksig) - framesize); /* * nds32 mandates 8-byte alignment */ sp &= ~0x7UL; return (void __user *)sp; } static int setup_return(struct pt_regs *regs, struct ksignal *ksig, void __user * frame) { unsigned long handler = (unsigned long)ksig->ka.sa.sa_handler; unsigned long retcode; retcode = VDSO_SYMBOL(current->mm->context.vdso, rt_sigtramp); regs->uregs[0] = ksig->sig; regs->sp = (unsigned long)frame; regs->lp = retcode; regs->ipc = handler; return 0; } static int setup_rt_frame(struct ksignal *ksig, sigset_t * set, struct pt_regs *regs) { struct rt_sigframe __user *frame = get_sigframe(ksig, regs, sizeof(*frame)); int err = 0; if (!access_ok(frame, sizeof(*frame))) return -EFAULT; __put_user_error(0, &frame->uc.uc_flags, err); __put_user_error(NULL, &frame->uc.uc_link, err); err |= __save_altstack(&frame->uc.uc_stack, regs->sp); err |= setup_sigframe(frame, regs, set); if (err == 0) { setup_return(regs, ksig, frame); if (ksig->ka.sa.sa_flags & SA_SIGINFO) { err |= copy_siginfo_to_user(&frame->info, &ksig->info); regs->uregs[1] = (unsigned long)&frame->info; regs->uregs[2] = (unsigned long)&frame->uc; } } return err; } /* * OK, we're invoking a handler */ static void handle_signal(struct ksignal *ksig, struct pt_regs *regs) { int ret; sigset_t *oldset = sigmask_to_save(); if (in_syscall(regs)) { /* Avoid additional syscall restarting via ret_slow_syscall. */ forget_syscall(regs); switch (regs->uregs[0]) { case -ERESTART_RESTARTBLOCK: case -ERESTARTNOHAND: regs->uregs[0] = -EINTR; break; case -ERESTARTSYS: if (!(ksig->ka.sa.sa_flags & SA_RESTART)) { regs->uregs[0] = -EINTR; break; } fallthrough; case -ERESTARTNOINTR: regs->uregs[0] = regs->orig_r0; regs->ipc -= 4; break; } } /* * Set up the stack frame */ ret = setup_rt_frame(ksig, oldset, regs); signal_setup_done(ret, ksig, 0); } /* * Note that 'init' is a special process: it doesn't get signals it doesn't * want to handle. Thus you cannot kill init even with a SIGKILL even by * mistake. * * Note that we go through the signals twice: once to check the signals that * the kernel can handle, and then we build all the user-level signal handling * stack-frames in one go after that. */ static void do_signal(struct pt_regs *regs) { struct ksignal ksig; if (get_signal(&ksig)) { handle_signal(&ksig, regs); return; } /* * If we were from a system call, check for system call restarting... */ if (in_syscall(regs)) { /* Restart the system call - no handlers present */ /* Avoid additional syscall restarting via ret_slow_syscall. */ forget_syscall(regs); switch (regs->uregs[0]) { case -ERESTART_RESTARTBLOCK: regs->uregs[15] = __NR_restart_syscall; fallthrough; case -ERESTARTNOHAND: case -ERESTARTSYS: case -ERESTARTNOINTR: regs->uregs[0] = regs->orig_r0; regs->ipc -= 0x4; break; } } restore_saved_sigmask(); } asmlinkage void do_notify_resume(struct pt_regs *regs, unsigned int thread_flags) { if (thread_flags & _TIF_SIGPENDING) do_signal(regs); if (thread_flags & _TIF_NOTIFY_RESUME) { clear_thread_flag(TIF_NOTIFY_RESUME); tracehook_notify_resume(regs); } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1