Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Gavin Shan | 1133 | 52.70% | 66 | 52.38% |
Andrew Morton | 289 | 13.44% | 2 | 1.59% |
Sam Bobroff | 181 | 8.42% | 10 | 7.94% |
Anton Blanchard | 172 | 8.00% | 5 | 3.97% |
Oliver O'Halloran | 128 | 5.95% | 14 | 11.11% |
Benjamin Herrenschmidt | 91 | 4.23% | 6 | 4.76% |
Wei Yang | 45 | 2.09% | 5 | 3.97% |
Paul Mackerras | 30 | 1.40% | 3 | 2.38% |
Linus Torvalds | 27 | 1.26% | 1 | 0.79% |
Bryant G. Ly | 10 | 0.47% | 1 | 0.79% |
Alexey Kardashevskiy | 8 | 0.37% | 1 | 0.79% |
Arnd Bergmann | 7 | 0.33% | 2 | 1.59% |
Michael Ellerman | 7 | 0.33% | 2 | 1.59% |
Mauro S. M. Rodrigues | 7 | 0.33% | 1 | 0.79% |
David Gibson | 5 | 0.23% | 2 | 1.59% |
John Rose | 3 | 0.14% | 1 | 0.79% |
David Woodhouse | 2 | 0.09% | 1 | 0.79% |
Haren Myneni | 2 | 0.09% | 1 | 0.79% |
Thomas Gleixner | 2 | 0.09% | 1 | 0.79% |
Linas Vepstas | 1 | 0.05% | 1 | 0.79% |
Total | 2150 | 126 |
/* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation. * Copyright 2001-2012 IBM Corporation. */ #ifndef _POWERPC_EEH_H #define _POWERPC_EEH_H #ifdef __KERNEL__ #include <linux/init.h> #include <linux/list.h> #include <linux/string.h> #include <linux/time.h> #include <linux/atomic.h> #include <uapi/asm/eeh.h> struct pci_dev; struct pci_bus; struct pci_dn; #ifdef CONFIG_EEH /* EEH subsystem flags */ #define EEH_ENABLED 0x01 /* EEH enabled */ #define EEH_FORCE_DISABLED 0x02 /* EEH disabled */ #define EEH_PROBE_MODE_DEV 0x04 /* From PCI device */ #define EEH_PROBE_MODE_DEVTREE 0x08 /* From device tree */ #define EEH_VALID_PE_ZERO 0x10 /* PE#0 is valid */ #define EEH_ENABLE_IO_FOR_LOG 0x20 /* Enable IO for log */ #define EEH_EARLY_DUMP_LOG 0x40 /* Dump log immediately */ /* * Delay for PE reset, all in ms * * PCI specification has reset hold time of 100 milliseconds. * We have 250 milliseconds here. The PCI bus settlement time * is specified as 1.5 seconds and we have 1.8 seconds. */ #define EEH_PE_RST_HOLD_TIME 250 #define EEH_PE_RST_SETTLE_TIME 1800 /* * The struct is used to trace PE related EEH functionality. * In theory, there will have one instance of the struct to * be created against particular PE. In nature, PEs correlate * to each other. the struct has to reflect that hierarchy in * order to easily pick up those affected PEs when one particular * PE has EEH errors. * * Also, one particular PE might be composed of PCI device, PCI * bus and its subordinate components. The struct also need ship * the information. Further more, one particular PE is only meaingful * in the corresponding PHB. Therefore, the root PEs should be created * against existing PHBs in on-to-one fashion. */ #define EEH_PE_INVALID (1 << 0) /* Invalid */ #define EEH_PE_PHB (1 << 1) /* PHB PE */ #define EEH_PE_DEVICE (1 << 2) /* Device PE */ #define EEH_PE_BUS (1 << 3) /* Bus PE */ #define EEH_PE_VF (1 << 4) /* VF PE */ #define EEH_PE_ISOLATED (1 << 0) /* Isolated PE */ #define EEH_PE_RECOVERING (1 << 1) /* Recovering PE */ #define EEH_PE_CFG_BLOCKED (1 << 2) /* Block config access */ #define EEH_PE_RESET (1 << 3) /* PE reset in progress */ #define EEH_PE_KEEP (1 << 8) /* Keep PE on hotplug */ #define EEH_PE_CFG_RESTRICTED (1 << 9) /* Block config on error */ #define EEH_PE_REMOVED (1 << 10) /* Removed permanently */ #define EEH_PE_PRI_BUS (1 << 11) /* Cached primary bus */ struct eeh_pe { int type; /* PE type: PHB/Bus/Device */ int state; /* PE EEH dependent mode */ int config_addr; /* Traditional PCI address */ int addr; /* PE configuration address */ struct pci_controller *phb; /* Associated PHB */ struct pci_bus *bus; /* Top PCI bus for bus PE */ int check_count; /* Times of ignored error */ int freeze_count; /* Times of froze up */ time64_t tstamp; /* Time on first-time freeze */ int false_positives; /* Times of reported #ff's */ atomic_t pass_dev_cnt; /* Count of passed through devs */ struct eeh_pe *parent; /* Parent PE */ void *data; /* PE auxillary data */ struct list_head child_list; /* List of PEs below this PE */ struct list_head child; /* Memb. child_list/eeh_phb_pe */ struct list_head edevs; /* List of eeh_dev in this PE */ #ifdef CONFIG_STACKTRACE /* * Saved stack trace. When we find a PE freeze in eeh_dev_check_failure * the stack trace is saved here so we can print it in the recovery * thread if it turns out to due to a real problem rather than * a hot-remove. * * A max of 64 entries might be overkill, but it also might not be. */ unsigned long stack_trace[64]; int trace_entries; #endif /* CONFIG_STACKTRACE */ }; #define eeh_pe_for_each_dev(pe, edev, tmp) \ list_for_each_entry_safe(edev, tmp, &pe->edevs, entry) #define eeh_for_each_pe(root, pe) \ for (pe = root; pe; pe = eeh_pe_next(pe, root)) static inline bool eeh_pe_passed(struct eeh_pe *pe) { return pe ? !!atomic_read(&pe->pass_dev_cnt) : false; } /* * The struct is used to trace EEH state for the associated * PCI device node or PCI device. In future, it might * represent PE as well so that the EEH device to form * another tree except the currently existing tree of PCI * buses and PCI devices */ #define EEH_DEV_BRIDGE (1 << 0) /* PCI bridge */ #define EEH_DEV_ROOT_PORT (1 << 1) /* PCIe root port */ #define EEH_DEV_DS_PORT (1 << 2) /* Downstream port */ #define EEH_DEV_IRQ_DISABLED (1 << 3) /* Interrupt disabled */ #define EEH_DEV_DISCONNECTED (1 << 4) /* Removing from PE */ #define EEH_DEV_NO_HANDLER (1 << 8) /* No error handler */ #define EEH_DEV_SYSFS (1 << 9) /* Sysfs created */ #define EEH_DEV_REMOVED (1 << 10) /* Removed permanently */ struct eeh_dev { int mode; /* EEH mode */ int bdfn; /* bdfn of device (for cfg ops) */ struct pci_controller *controller; int pe_config_addr; /* PE config address */ u32 config_space[16]; /* Saved PCI config space */ int pcix_cap; /* Saved PCIx capability */ int pcie_cap; /* Saved PCIe capability */ int aer_cap; /* Saved AER capability */ int af_cap; /* Saved AF capability */ struct eeh_pe *pe; /* Associated PE */ struct list_head entry; /* Membership in eeh_pe.edevs */ struct list_head rmv_entry; /* Membership in rmv_list */ struct pci_dn *pdn; /* Associated PCI device node */ struct pci_dev *pdev; /* Associated PCI device */ bool in_error; /* Error flag for edev */ /* VF specific properties */ struct pci_dev *physfn; /* Associated SRIOV PF */ int vf_index; /* Index of this VF */ }; /* "fmt" must be a simple literal string */ #define EEH_EDEV_PRINT(level, edev, fmt, ...) \ pr_##level("PCI %04x:%02x:%02x.%x#%04x: EEH: " fmt, \ (edev)->controller->global_number, PCI_BUSNO((edev)->bdfn), \ PCI_SLOT((edev)->bdfn), PCI_FUNC((edev)->bdfn), \ ((edev)->pe ? (edev)->pe_config_addr : 0xffff), ##__VA_ARGS__) #define eeh_edev_dbg(edev, fmt, ...) EEH_EDEV_PRINT(debug, (edev), fmt, ##__VA_ARGS__) #define eeh_edev_info(edev, fmt, ...) EEH_EDEV_PRINT(info, (edev), fmt, ##__VA_ARGS__) #define eeh_edev_warn(edev, fmt, ...) EEH_EDEV_PRINT(warn, (edev), fmt, ##__VA_ARGS__) #define eeh_edev_err(edev, fmt, ...) EEH_EDEV_PRINT(err, (edev), fmt, ##__VA_ARGS__) static inline struct pci_dn *eeh_dev_to_pdn(struct eeh_dev *edev) { return edev ? edev->pdn : NULL; } static inline struct pci_dev *eeh_dev_to_pci_dev(struct eeh_dev *edev) { return edev ? edev->pdev : NULL; } static inline struct eeh_pe *eeh_dev_to_pe(struct eeh_dev* edev) { return edev ? edev->pe : NULL; } /* Return values from eeh_ops::next_error */ enum { EEH_NEXT_ERR_NONE = 0, EEH_NEXT_ERR_INF, EEH_NEXT_ERR_FROZEN_PE, EEH_NEXT_ERR_FENCED_PHB, EEH_NEXT_ERR_DEAD_PHB, EEH_NEXT_ERR_DEAD_IOC }; /* * The struct is used to trace the registered EEH operation * callback functions. Actually, those operation callback * functions are heavily platform dependent. That means the * platform should register its own EEH operation callback * functions before any EEH further operations. */ #define EEH_OPT_DISABLE 0 /* EEH disable */ #define EEH_OPT_ENABLE 1 /* EEH enable */ #define EEH_OPT_THAW_MMIO 2 /* MMIO enable */ #define EEH_OPT_THAW_DMA 3 /* DMA enable */ #define EEH_OPT_FREEZE_PE 4 /* Freeze PE */ #define EEH_STATE_UNAVAILABLE (1 << 0) /* State unavailable */ #define EEH_STATE_NOT_SUPPORT (1 << 1) /* EEH not supported */ #define EEH_STATE_RESET_ACTIVE (1 << 2) /* Active reset */ #define EEH_STATE_MMIO_ACTIVE (1 << 3) /* Active MMIO */ #define EEH_STATE_DMA_ACTIVE (1 << 4) /* Active DMA */ #define EEH_STATE_MMIO_ENABLED (1 << 5) /* MMIO enabled */ #define EEH_STATE_DMA_ENABLED (1 << 6) /* DMA enabled */ #define EEH_RESET_DEACTIVATE 0 /* Deactivate the PE reset */ #define EEH_RESET_HOT 1 /* Hot reset */ #define EEH_RESET_FUNDAMENTAL 3 /* Fundamental reset */ #define EEH_LOG_TEMP 1 /* EEH temporary error log */ #define EEH_LOG_PERM 2 /* EEH permanent error log */ struct eeh_ops { char *name; int (*init)(void); struct eeh_dev *(*probe)(struct pci_dev *pdev); int (*set_option)(struct eeh_pe *pe, int option); int (*get_state)(struct eeh_pe *pe, int *delay); int (*reset)(struct eeh_pe *pe, int option); int (*get_log)(struct eeh_pe *pe, int severity, char *drv_log, unsigned long len); int (*configure_bridge)(struct eeh_pe *pe); int (*err_inject)(struct eeh_pe *pe, int type, int func, unsigned long addr, unsigned long mask); int (*read_config)(struct eeh_dev *edev, int where, int size, u32 *val); int (*write_config)(struct eeh_dev *edev, int where, int size, u32 val); int (*next_error)(struct eeh_pe **pe); int (*restore_config)(struct eeh_dev *edev); int (*notify_resume)(struct eeh_dev *edev); }; extern int eeh_subsystem_flags; extern u32 eeh_max_freezes; extern bool eeh_debugfs_no_recover; extern struct eeh_ops *eeh_ops; extern raw_spinlock_t confirm_error_lock; static inline void eeh_add_flag(int flag) { eeh_subsystem_flags |= flag; } static inline void eeh_clear_flag(int flag) { eeh_subsystem_flags &= ~flag; } static inline bool eeh_has_flag(int flag) { return !!(eeh_subsystem_flags & flag); } static inline bool eeh_enabled(void) { return eeh_has_flag(EEH_ENABLED) && !eeh_has_flag(EEH_FORCE_DISABLED); } static inline void eeh_serialize_lock(unsigned long *flags) { raw_spin_lock_irqsave(&confirm_error_lock, *flags); } static inline void eeh_serialize_unlock(unsigned long flags) { raw_spin_unlock_irqrestore(&confirm_error_lock, flags); } static inline bool eeh_state_active(int state) { return (state & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) == (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE); } typedef void (*eeh_edev_traverse_func)(struct eeh_dev *edev, void *flag); typedef void *(*eeh_pe_traverse_func)(struct eeh_pe *pe, void *flag); void eeh_set_pe_aux_size(int size); int eeh_phb_pe_create(struct pci_controller *phb); int eeh_wait_state(struct eeh_pe *pe, int max_wait); struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb); struct eeh_pe *eeh_pe_next(struct eeh_pe *pe, struct eeh_pe *root); struct eeh_pe *eeh_pe_get(struct pci_controller *phb, int pe_no, int config_addr); int eeh_pe_tree_insert(struct eeh_dev *edev, struct eeh_pe *new_pe_parent); int eeh_pe_tree_remove(struct eeh_dev *edev); void eeh_pe_update_time_stamp(struct eeh_pe *pe); void *eeh_pe_traverse(struct eeh_pe *root, eeh_pe_traverse_func fn, void *flag); void eeh_pe_dev_traverse(struct eeh_pe *root, eeh_edev_traverse_func fn, void *flag); void eeh_pe_restore_bars(struct eeh_pe *pe); const char *eeh_pe_loc_get(struct eeh_pe *pe); struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe); void eeh_show_enabled(void); int __init eeh_ops_register(struct eeh_ops *ops); int __exit eeh_ops_unregister(const char *name); int eeh_check_failure(const volatile void __iomem *token); int eeh_dev_check_failure(struct eeh_dev *edev); void eeh_addr_cache_init(void); void eeh_probe_device(struct pci_dev *pdev); void eeh_remove_device(struct pci_dev *); int eeh_unfreeze_pe(struct eeh_pe *pe); int eeh_pe_reset_and_recover(struct eeh_pe *pe); int eeh_dev_open(struct pci_dev *pdev); void eeh_dev_release(struct pci_dev *pdev); struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group); int eeh_pe_set_option(struct eeh_pe *pe, int option); int eeh_pe_get_state(struct eeh_pe *pe); int eeh_pe_reset(struct eeh_pe *pe, int option, bool include_passed); int eeh_pe_configure(struct eeh_pe *pe); int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func, unsigned long addr, unsigned long mask); /** * EEH_POSSIBLE_ERROR() -- test for possible MMIO failure. * * If this macro yields TRUE, the caller relays to eeh_check_failure() * which does further tests out of line. */ #define EEH_POSSIBLE_ERROR(val, type) ((val) == (type)~0 && eeh_enabled()) /* * Reads from a device which has been isolated by EEH will return * all 1s. This macro gives an all-1s value of the given size (in * bytes: 1, 2, or 4) for comparing with the result of a read. */ #define EEH_IO_ERROR_VALUE(size) (~0U >> ((4 - (size)) * 8)) #else /* !CONFIG_EEH */ static inline bool eeh_enabled(void) { return false; } static inline void eeh_show_enabled(void) { } static inline void eeh_dev_phb_init_dynamic(struct pci_controller *phb) { } static inline int eeh_check_failure(const volatile void __iomem *token) { return 0; } #define eeh_dev_check_failure(x) (0) static inline void eeh_addr_cache_init(void) { } static inline void eeh_probe_device(struct pci_dev *dev) { } static inline void eeh_remove_device(struct pci_dev *dev) { } #define EEH_POSSIBLE_ERROR(val, type) (0) #define EEH_IO_ERROR_VALUE(size) (-1UL) static inline int eeh_phb_pe_create(struct pci_controller *phb) { return 0; } #endif /* CONFIG_EEH */ #if defined(CONFIG_PPC_PSERIES) && defined(CONFIG_EEH) void pseries_eeh_init_edev(struct pci_dn *pdn); void pseries_eeh_init_edev_recursive(struct pci_dn *pdn); #else static inline void pseries_eeh_add_device_early(struct pci_dn *pdn) { } static inline void pseries_eeh_add_device_tree_early(struct pci_dn *pdn) { } #endif #ifdef CONFIG_PPC64 /* * MMIO read/write operations with EEH support. */ static inline u8 eeh_readb(const volatile void __iomem *addr) { u8 val = in_8(addr); if (EEH_POSSIBLE_ERROR(val, u8)) eeh_check_failure(addr); return val; } static inline u16 eeh_readw(const volatile void __iomem *addr) { u16 val = in_le16(addr); if (EEH_POSSIBLE_ERROR(val, u16)) eeh_check_failure(addr); return val; } static inline u32 eeh_readl(const volatile void __iomem *addr) { u32 val = in_le32(addr); if (EEH_POSSIBLE_ERROR(val, u32)) eeh_check_failure(addr); return val; } static inline u64 eeh_readq(const volatile void __iomem *addr) { u64 val = in_le64(addr); if (EEH_POSSIBLE_ERROR(val, u64)) eeh_check_failure(addr); return val; } static inline u16 eeh_readw_be(const volatile void __iomem *addr) { u16 val = in_be16(addr); if (EEH_POSSIBLE_ERROR(val, u16)) eeh_check_failure(addr); return val; } static inline u32 eeh_readl_be(const volatile void __iomem *addr) { u32 val = in_be32(addr); if (EEH_POSSIBLE_ERROR(val, u32)) eeh_check_failure(addr); return val; } static inline u64 eeh_readq_be(const volatile void __iomem *addr) { u64 val = in_be64(addr); if (EEH_POSSIBLE_ERROR(val, u64)) eeh_check_failure(addr); return val; } static inline void eeh_memcpy_fromio(void *dest, const volatile void __iomem *src, unsigned long n) { _memcpy_fromio(dest, src, n); /* Look for ffff's here at dest[n]. Assume that at least 4 bytes * were copied. Check all four bytes. */ if (n >= 4 && EEH_POSSIBLE_ERROR(*((u32 *)(dest + n - 4)), u32)) eeh_check_failure(src); } /* in-string eeh macros */ static inline void eeh_readsb(const volatile void __iomem *addr, void * buf, int ns) { _insb(addr, buf, ns); if (EEH_POSSIBLE_ERROR((*(((u8*)buf)+ns-1)), u8)) eeh_check_failure(addr); } static inline void eeh_readsw(const volatile void __iomem *addr, void * buf, int ns) { _insw(addr, buf, ns); if (EEH_POSSIBLE_ERROR((*(((u16*)buf)+ns-1)), u16)) eeh_check_failure(addr); } static inline void eeh_readsl(const volatile void __iomem *addr, void * buf, int nl) { _insl(addr, buf, nl); if (EEH_POSSIBLE_ERROR((*(((u32*)buf)+nl-1)), u32)) eeh_check_failure(addr); } void eeh_cache_debugfs_init(void); #endif /* CONFIG_PPC64 */ #endif /* __KERNEL__ */ #endif /* _POWERPC_EEH_H */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1