Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Gavin Shan | 2284 | 81.51% | 34 | 59.65% |
Sam Bobroff | 335 | 11.96% | 10 | 17.54% |
Oliver O'Halloran | 100 | 3.57% | 6 | 10.53% |
Alexey Kardashevskiy | 48 | 1.71% | 1 | 1.75% |
Wei Yang | 15 | 0.54% | 1 | 1.75% |
Arnd Bergmann | 7 | 0.25% | 1 | 1.75% |
Mike Qiu | 6 | 0.21% | 1 | 1.75% |
Michael Neuling | 4 | 0.14% | 1 | 1.75% |
Thomas Gleixner | 2 | 0.07% | 1 | 1.75% |
Russell Currey | 1 | 0.04% | 1 | 1.75% |
Total | 2802 | 57 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * The file intends to implement PE based on the information from * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device. * All the PEs should be organized as hierarchy tree. The first level * of the tree will be associated to existing PHBs since the particular * PE is only meaningful in one PHB domain. * * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012. */ #include <linux/delay.h> #include <linux/export.h> #include <linux/gfp.h> #include <linux/kernel.h> #include <linux/pci.h> #include <linux/string.h> #include <asm/pci-bridge.h> #include <asm/ppc-pci.h> static int eeh_pe_aux_size = 0; static LIST_HEAD(eeh_phb_pe); /** * eeh_set_pe_aux_size - Set PE auxillary data size * @size: PE auxillary data size * * Set PE auxillary data size */ void eeh_set_pe_aux_size(int size) { if (size < 0) return; eeh_pe_aux_size = size; } /** * eeh_pe_alloc - Allocate PE * @phb: PCI controller * @type: PE type * * Allocate PE instance dynamically. */ static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type) { struct eeh_pe *pe; size_t alloc_size; alloc_size = sizeof(struct eeh_pe); if (eeh_pe_aux_size) { alloc_size = ALIGN(alloc_size, cache_line_size()); alloc_size += eeh_pe_aux_size; } /* Allocate PHB PE */ pe = kzalloc(alloc_size, GFP_KERNEL); if (!pe) return NULL; /* Initialize PHB PE */ pe->type = type; pe->phb = phb; INIT_LIST_HEAD(&pe->child_list); INIT_LIST_HEAD(&pe->edevs); pe->data = (void *)pe + ALIGN(sizeof(struct eeh_pe), cache_line_size()); return pe; } /** * eeh_phb_pe_create - Create PHB PE * @phb: PCI controller * * The function should be called while the PHB is detected during * system boot or PCI hotplug in order to create PHB PE. */ int eeh_phb_pe_create(struct pci_controller *phb) { struct eeh_pe *pe; /* Allocate PHB PE */ pe = eeh_pe_alloc(phb, EEH_PE_PHB); if (!pe) { pr_err("%s: out of memory!\n", __func__); return -ENOMEM; } /* Put it into the list */ list_add_tail(&pe->child, &eeh_phb_pe); pr_debug("EEH: Add PE for PHB#%x\n", phb->global_number); return 0; } /** * eeh_wait_state - Wait for PE state * @pe: EEH PE * @max_wait: maximal period in millisecond * * Wait for the state of associated PE. It might take some time * to retrieve the PE's state. */ int eeh_wait_state(struct eeh_pe *pe, int max_wait) { int ret; int mwait; /* * According to PAPR, the state of PE might be temporarily * unavailable. Under the circumstance, we have to wait * for indicated time determined by firmware. The maximal * wait time is 5 minutes, which is acquired from the original * EEH implementation. Also, the original implementation * also defined the minimal wait time as 1 second. */ #define EEH_STATE_MIN_WAIT_TIME (1000) #define EEH_STATE_MAX_WAIT_TIME (300 * 1000) while (1) { ret = eeh_ops->get_state(pe, &mwait); if (ret != EEH_STATE_UNAVAILABLE) return ret; if (max_wait <= 0) { pr_warn("%s: Timeout when getting PE's state (%d)\n", __func__, max_wait); return EEH_STATE_NOT_SUPPORT; } if (mwait < EEH_STATE_MIN_WAIT_TIME) { pr_warn("%s: Firmware returned bad wait value %d\n", __func__, mwait); mwait = EEH_STATE_MIN_WAIT_TIME; } else if (mwait > EEH_STATE_MAX_WAIT_TIME) { pr_warn("%s: Firmware returned too long wait value %d\n", __func__, mwait); mwait = EEH_STATE_MAX_WAIT_TIME; } msleep(min(mwait, max_wait)); max_wait -= mwait; } } /** * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB * @phb: PCI controller * * The overall PEs form hierarchy tree. The first layer of the * hierarchy tree is composed of PHB PEs. The function is used * to retrieve the corresponding PHB PE according to the given PHB. */ struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb) { struct eeh_pe *pe; list_for_each_entry(pe, &eeh_phb_pe, child) { /* * Actually, we needn't check the type since * the PE for PHB has been determined when that * was created. */ if ((pe->type & EEH_PE_PHB) && pe->phb == phb) return pe; } return NULL; } /** * eeh_pe_next - Retrieve the next PE in the tree * @pe: current PE * @root: root PE * * The function is used to retrieve the next PE in the * hierarchy PE tree. */ struct eeh_pe *eeh_pe_next(struct eeh_pe *pe, struct eeh_pe *root) { struct list_head *next = pe->child_list.next; if (next == &pe->child_list) { while (1) { if (pe == root) return NULL; next = pe->child.next; if (next != &pe->parent->child_list) break; pe = pe->parent; } } return list_entry(next, struct eeh_pe, child); } /** * eeh_pe_traverse - Traverse PEs in the specified PHB * @root: root PE * @fn: callback * @flag: extra parameter to callback * * The function is used to traverse the specified PE and its * child PEs. The traversing is to be terminated once the * callback returns something other than NULL, or no more PEs * to be traversed. */ void *eeh_pe_traverse(struct eeh_pe *root, eeh_pe_traverse_func fn, void *flag) { struct eeh_pe *pe; void *ret; eeh_for_each_pe(root, pe) { ret = fn(pe, flag); if (ret) return ret; } return NULL; } /** * eeh_pe_dev_traverse - Traverse the devices from the PE * @root: EEH PE * @fn: function callback * @flag: extra parameter to callback * * The function is used to traverse the devices of the specified * PE and its child PEs. */ void eeh_pe_dev_traverse(struct eeh_pe *root, eeh_edev_traverse_func fn, void *flag) { struct eeh_pe *pe; struct eeh_dev *edev, *tmp; if (!root) { pr_warn("%s: Invalid PE %p\n", __func__, root); return; } /* Traverse root PE */ eeh_for_each_pe(root, pe) eeh_pe_for_each_dev(pe, edev, tmp) fn(edev, flag); } /** * __eeh_pe_get - Check the PE address * @data: EEH PE * @flag: EEH device * * For one particular PE, it can be identified by PE address * or tranditional BDF address. BDF address is composed of * Bus/Device/Function number. The extra data referred by flag * indicates which type of address should be used. */ struct eeh_pe_get_flag { int pe_no; int config_addr; }; static void *__eeh_pe_get(struct eeh_pe *pe, void *flag) { struct eeh_pe_get_flag *tmp = (struct eeh_pe_get_flag *) flag; /* Unexpected PHB PE */ if (pe->type & EEH_PE_PHB) return NULL; /* * We prefer PE address. For most cases, we should * have non-zero PE address */ if (eeh_has_flag(EEH_VALID_PE_ZERO)) { if (tmp->pe_no == pe->addr) return pe; } else { if (tmp->pe_no && (tmp->pe_no == pe->addr)) return pe; } /* Try BDF address */ if (tmp->config_addr && (tmp->config_addr == pe->config_addr)) return pe; return NULL; } /** * eeh_pe_get - Search PE based on the given address * @phb: PCI controller * @pe_no: PE number * @config_addr: Config address * * Search the corresponding PE based on the specified address which * is included in the eeh device. The function is used to check if * the associated PE has been created against the PE address. It's * notable that the PE address has 2 format: traditional PE address * which is composed of PCI bus/device/function number, or unified * PE address. */ struct eeh_pe *eeh_pe_get(struct pci_controller *phb, int pe_no, int config_addr) { struct eeh_pe *root = eeh_phb_pe_get(phb); struct eeh_pe_get_flag tmp = { pe_no, config_addr }; struct eeh_pe *pe; pe = eeh_pe_traverse(root, __eeh_pe_get, &tmp); return pe; } /** * eeh_pe_tree_insert - Add EEH device to parent PE * @edev: EEH device * @new_pe_parent: PE to create additional PEs under * * Add EEH device to the PE in edev->pe_config_addr. If a PE already * exists with that address then @edev is added to that PE. Otherwise * a new PE is created and inserted into the PE tree as a child of * @new_pe_parent. * * If @new_pe_parent is NULL then the new PE will be inserted under * directly under the the PHB. */ int eeh_pe_tree_insert(struct eeh_dev *edev, struct eeh_pe *new_pe_parent) { struct pci_controller *hose = edev->controller; struct eeh_pe *pe, *parent; /* Check if the PE number is valid */ if (!eeh_has_flag(EEH_VALID_PE_ZERO) && !edev->pe_config_addr) { eeh_edev_err(edev, "PE#0 is invalid for this PHB!\n"); return -EINVAL; } /* * Search the PE has been existing or not according * to the PE address. If that has been existing, the * PE should be composed of PCI bus and its subordinate * components. */ pe = eeh_pe_get(hose, edev->pe_config_addr, edev->bdfn); if (pe) { if (pe->type & EEH_PE_INVALID) { list_add_tail(&edev->entry, &pe->edevs); edev->pe = pe; /* * We're running to here because of PCI hotplug caused by * EEH recovery. We need clear EEH_PE_INVALID until the top. */ parent = pe; while (parent) { if (!(parent->type & EEH_PE_INVALID)) break; parent->type &= ~EEH_PE_INVALID; parent = parent->parent; } eeh_edev_dbg(edev, "Added to existing PE (parent: PE#%x)\n", pe->parent->addr); } else { /* Mark the PE as type of PCI bus */ pe->type = EEH_PE_BUS; edev->pe = pe; /* Put the edev to PE */ list_add_tail(&edev->entry, &pe->edevs); eeh_edev_dbg(edev, "Added to bus PE\n"); } return 0; } /* Create a new EEH PE */ if (edev->physfn) pe = eeh_pe_alloc(hose, EEH_PE_VF); else pe = eeh_pe_alloc(hose, EEH_PE_DEVICE); if (!pe) { pr_err("%s: out of memory!\n", __func__); return -ENOMEM; } pe->addr = edev->pe_config_addr; pe->config_addr = edev->bdfn; /* * Put the new EEH PE into hierarchy tree. If the parent * can't be found, the newly created PE will be attached * to PHB directly. Otherwise, we have to associate the * PE with its parent. */ if (!new_pe_parent) { new_pe_parent = eeh_phb_pe_get(hose); if (!new_pe_parent) { pr_err("%s: No PHB PE is found (PHB Domain=%d)\n", __func__, hose->global_number); edev->pe = NULL; kfree(pe); return -EEXIST; } } /* link new PE into the tree */ pe->parent = new_pe_parent; list_add_tail(&pe->child, &new_pe_parent->child_list); /* * Put the newly created PE into the child list and * link the EEH device accordingly. */ list_add_tail(&edev->entry, &pe->edevs); edev->pe = pe; eeh_edev_dbg(edev, "Added to new (parent: PE#%x)\n", new_pe_parent->addr); return 0; } /** * eeh_pe_tree_remove - Remove one EEH device from the associated PE * @edev: EEH device * * The PE hierarchy tree might be changed when doing PCI hotplug. * Also, the PCI devices or buses could be removed from the system * during EEH recovery. So we have to call the function remove the * corresponding PE accordingly if necessary. */ int eeh_pe_tree_remove(struct eeh_dev *edev) { struct eeh_pe *pe, *parent, *child; bool keep, recover; int cnt; pe = eeh_dev_to_pe(edev); if (!pe) { eeh_edev_dbg(edev, "No PE found for device.\n"); return -EEXIST; } /* Remove the EEH device */ edev->pe = NULL; list_del(&edev->entry); /* * Check if the parent PE includes any EEH devices. * If not, we should delete that. Also, we should * delete the parent PE if it doesn't have associated * child PEs and EEH devices. */ while (1) { parent = pe->parent; /* PHB PEs should never be removed */ if (pe->type & EEH_PE_PHB) break; /* * XXX: KEEP is set while resetting a PE. I don't think it's * ever set without RECOVERING also being set. I could * be wrong though so catch that with a WARN. */ keep = !!(pe->state & EEH_PE_KEEP); recover = !!(pe->state & EEH_PE_RECOVERING); WARN_ON(keep && !recover); if (!keep && !recover) { if (list_empty(&pe->edevs) && list_empty(&pe->child_list)) { list_del(&pe->child); kfree(pe); } else { break; } } else { /* * Mark the PE as invalid. At the end of the recovery * process any invalid PEs will be garbage collected. * * We need to delay the free()ing of them since we can * remove edev's while traversing the PE tree which * might trigger the removal of a PE and we can't * deal with that (yet). */ if (list_empty(&pe->edevs)) { cnt = 0; list_for_each_entry(child, &pe->child_list, child) { if (!(child->type & EEH_PE_INVALID)) { cnt++; break; } } if (!cnt) pe->type |= EEH_PE_INVALID; else break; } } pe = parent; } return 0; } /** * eeh_pe_update_time_stamp - Update PE's frozen time stamp * @pe: EEH PE * * We have time stamp for each PE to trace its time of getting * frozen in last hour. The function should be called to update * the time stamp on first error of the specific PE. On the other * handle, we needn't account for errors happened in last hour. */ void eeh_pe_update_time_stamp(struct eeh_pe *pe) { time64_t tstamp; if (!pe) return; if (pe->freeze_count <= 0) { pe->freeze_count = 0; pe->tstamp = ktime_get_seconds(); } else { tstamp = ktime_get_seconds(); if (tstamp - pe->tstamp > 3600) { pe->tstamp = tstamp; pe->freeze_count = 0; } } } /** * eeh_pe_state_mark - Mark specified state for PE and its associated device * @pe: EEH PE * * EEH error affects the current PE and its child PEs. The function * is used to mark appropriate state for the affected PEs and the * associated devices. */ void eeh_pe_state_mark(struct eeh_pe *root, int state) { struct eeh_pe *pe; eeh_for_each_pe(root, pe) if (!(pe->state & EEH_PE_REMOVED)) pe->state |= state; } EXPORT_SYMBOL_GPL(eeh_pe_state_mark); /** * eeh_pe_mark_isolated * @pe: EEH PE * * Record that a PE has been isolated by marking the PE and it's children as * EEH_PE_ISOLATED (and EEH_PE_CFG_BLOCKED, if required) and their PCI devices * as pci_channel_io_frozen. */ void eeh_pe_mark_isolated(struct eeh_pe *root) { struct eeh_pe *pe; struct eeh_dev *edev; struct pci_dev *pdev; eeh_pe_state_mark(root, EEH_PE_ISOLATED); eeh_for_each_pe(root, pe) { list_for_each_entry(edev, &pe->edevs, entry) { pdev = eeh_dev_to_pci_dev(edev); if (pdev) pdev->error_state = pci_channel_io_frozen; } /* Block PCI config access if required */ if (pe->state & EEH_PE_CFG_RESTRICTED) pe->state |= EEH_PE_CFG_BLOCKED; } } EXPORT_SYMBOL_GPL(eeh_pe_mark_isolated); static void __eeh_pe_dev_mode_mark(struct eeh_dev *edev, void *flag) { int mode = *((int *)flag); edev->mode |= mode; } /** * eeh_pe_dev_state_mark - Mark state for all device under the PE * @pe: EEH PE * * Mark specific state for all child devices of the PE. */ void eeh_pe_dev_mode_mark(struct eeh_pe *pe, int mode) { eeh_pe_dev_traverse(pe, __eeh_pe_dev_mode_mark, &mode); } /** * eeh_pe_state_clear - Clear state for the PE * @data: EEH PE * @state: state * @include_passed: include passed-through devices? * * The function is used to clear the indicated state from the * given PE. Besides, we also clear the check count of the PE * as well. */ void eeh_pe_state_clear(struct eeh_pe *root, int state, bool include_passed) { struct eeh_pe *pe; struct eeh_dev *edev, *tmp; struct pci_dev *pdev; eeh_for_each_pe(root, pe) { /* Keep the state of permanently removed PE intact */ if (pe->state & EEH_PE_REMOVED) continue; if (!include_passed && eeh_pe_passed(pe)) continue; pe->state &= ~state; /* * Special treatment on clearing isolated state. Clear * check count since last isolation and put all affected * devices to normal state. */ if (!(state & EEH_PE_ISOLATED)) continue; pe->check_count = 0; eeh_pe_for_each_dev(pe, edev, tmp) { pdev = eeh_dev_to_pci_dev(edev); if (!pdev) continue; pdev->error_state = pci_channel_io_normal; } /* Unblock PCI config access if required */ if (pe->state & EEH_PE_CFG_RESTRICTED) pe->state &= ~EEH_PE_CFG_BLOCKED; } } /* * Some PCI bridges (e.g. PLX bridges) have primary/secondary * buses assigned explicitly by firmware, and we probably have * lost that after reset. So we have to delay the check until * the PCI-CFG registers have been restored for the parent * bridge. * * Don't use normal PCI-CFG accessors, which probably has been * blocked on normal path during the stage. So we need utilize * eeh operations, which is always permitted. */ static void eeh_bridge_check_link(struct eeh_dev *edev) { int cap; uint32_t val; int timeout = 0; /* * We only check root port and downstream ports of * PCIe switches */ if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT))) return; eeh_edev_dbg(edev, "Checking PCIe link...\n"); /* Check slot status */ cap = edev->pcie_cap; eeh_ops->read_config(edev, cap + PCI_EXP_SLTSTA, 2, &val); if (!(val & PCI_EXP_SLTSTA_PDS)) { eeh_edev_dbg(edev, "No card in the slot (0x%04x) !\n", val); return; } /* Check power status if we have the capability */ eeh_ops->read_config(edev, cap + PCI_EXP_SLTCAP, 2, &val); if (val & PCI_EXP_SLTCAP_PCP) { eeh_ops->read_config(edev, cap + PCI_EXP_SLTCTL, 2, &val); if (val & PCI_EXP_SLTCTL_PCC) { eeh_edev_dbg(edev, "In power-off state, power it on ...\n"); val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC); val |= (0x0100 & PCI_EXP_SLTCTL_PIC); eeh_ops->write_config(edev, cap + PCI_EXP_SLTCTL, 2, val); msleep(2 * 1000); } } /* Enable link */ eeh_ops->read_config(edev, cap + PCI_EXP_LNKCTL, 2, &val); val &= ~PCI_EXP_LNKCTL_LD; eeh_ops->write_config(edev, cap + PCI_EXP_LNKCTL, 2, val); /* Check link */ eeh_ops->read_config(edev, cap + PCI_EXP_LNKCAP, 4, &val); if (!(val & PCI_EXP_LNKCAP_DLLLARC)) { eeh_edev_dbg(edev, "No link reporting capability (0x%08x) \n", val); msleep(1000); return; } /* Wait the link is up until timeout (5s) */ timeout = 0; while (timeout < 5000) { msleep(20); timeout += 20; eeh_ops->read_config(edev, cap + PCI_EXP_LNKSTA, 2, &val); if (val & PCI_EXP_LNKSTA_DLLLA) break; } if (val & PCI_EXP_LNKSTA_DLLLA) eeh_edev_dbg(edev, "Link up (%s)\n", (val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB"); else eeh_edev_dbg(edev, "Link not ready (0x%04x)\n", val); } #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF)) #define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)]) static void eeh_restore_bridge_bars(struct eeh_dev *edev) { int i; /* * Device BARs: 0x10 - 0x18 * Bus numbers and windows: 0x18 - 0x30 */ for (i = 4; i < 13; i++) eeh_ops->write_config(edev, i*4, 4, edev->config_space[i]); /* Rom: 0x38 */ eeh_ops->write_config(edev, 14*4, 4, edev->config_space[14]); /* Cache line & Latency timer: 0xC 0xD */ eeh_ops->write_config(edev, PCI_CACHE_LINE_SIZE, 1, SAVED_BYTE(PCI_CACHE_LINE_SIZE)); eeh_ops->write_config(edev, PCI_LATENCY_TIMER, 1, SAVED_BYTE(PCI_LATENCY_TIMER)); /* Max latency, min grant, interrupt ping and line: 0x3C */ eeh_ops->write_config(edev, 15*4, 4, edev->config_space[15]); /* PCI Command: 0x4 */ eeh_ops->write_config(edev, PCI_COMMAND, 4, edev->config_space[1] | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER); /* Check the PCIe link is ready */ eeh_bridge_check_link(edev); } static void eeh_restore_device_bars(struct eeh_dev *edev) { int i; u32 cmd; for (i = 4; i < 10; i++) eeh_ops->write_config(edev, i*4, 4, edev->config_space[i]); /* 12 == Expansion ROM Address */ eeh_ops->write_config(edev, 12*4, 4, edev->config_space[12]); eeh_ops->write_config(edev, PCI_CACHE_LINE_SIZE, 1, SAVED_BYTE(PCI_CACHE_LINE_SIZE)); eeh_ops->write_config(edev, PCI_LATENCY_TIMER, 1, SAVED_BYTE(PCI_LATENCY_TIMER)); /* max latency, min grant, interrupt pin and line */ eeh_ops->write_config(edev, 15*4, 4, edev->config_space[15]); /* * Restore PERR & SERR bits, some devices require it, * don't touch the other command bits */ eeh_ops->read_config(edev, PCI_COMMAND, 4, &cmd); if (edev->config_space[1] & PCI_COMMAND_PARITY) cmd |= PCI_COMMAND_PARITY; else cmd &= ~PCI_COMMAND_PARITY; if (edev->config_space[1] & PCI_COMMAND_SERR) cmd |= PCI_COMMAND_SERR; else cmd &= ~PCI_COMMAND_SERR; eeh_ops->write_config(edev, PCI_COMMAND, 4, cmd); } /** * eeh_restore_one_device_bars - Restore the Base Address Registers for one device * @data: EEH device * @flag: Unused * * Loads the PCI configuration space base address registers, * the expansion ROM base address, the latency timer, and etc. * from the saved values in the device node. */ static void eeh_restore_one_device_bars(struct eeh_dev *edev, void *flag) { /* Do special restore for bridges */ if (edev->mode & EEH_DEV_BRIDGE) eeh_restore_bridge_bars(edev); else eeh_restore_device_bars(edev); if (eeh_ops->restore_config) eeh_ops->restore_config(edev); } /** * eeh_pe_restore_bars - Restore the PCI config space info * @pe: EEH PE * * This routine performs a recursive walk to the children * of this device as well. */ void eeh_pe_restore_bars(struct eeh_pe *pe) { /* * We needn't take the EEH lock since eeh_pe_dev_traverse() * will take that. */ eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL); } /** * eeh_pe_loc_get - Retrieve location code binding to the given PE * @pe: EEH PE * * Retrieve the location code of the given PE. If the primary PE bus * is root bus, we will grab location code from PHB device tree node * or root port. Otherwise, the upstream bridge's device tree node * of the primary PE bus will be checked for the location code. */ const char *eeh_pe_loc_get(struct eeh_pe *pe) { struct pci_bus *bus = eeh_pe_bus_get(pe); struct device_node *dn; const char *loc = NULL; while (bus) { dn = pci_bus_to_OF_node(bus); if (!dn) { bus = bus->parent; continue; } if (pci_is_root_bus(bus)) loc = of_get_property(dn, "ibm,io-base-loc-code", NULL); else loc = of_get_property(dn, "ibm,slot-location-code", NULL); if (loc) return loc; bus = bus->parent; } return "N/A"; } /** * eeh_pe_bus_get - Retrieve PCI bus according to the given PE * @pe: EEH PE * * Retrieve the PCI bus according to the given PE. Basically, * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the * primary PCI bus will be retrieved. The parent bus will be * returned for BUS PE. However, we don't have associated PCI * bus for DEVICE PE. */ struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe) { struct eeh_dev *edev; struct pci_dev *pdev; if (pe->type & EEH_PE_PHB) return pe->phb->bus; /* The primary bus might be cached during probe time */ if (pe->state & EEH_PE_PRI_BUS) return pe->bus; /* Retrieve the parent PCI bus of first (top) PCI device */ edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, entry); pdev = eeh_dev_to_pci_dev(edev); if (pdev) return pdev->bus; return NULL; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1