Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Gautham R. Shenoy | 920 | 19.51% | 3 | 1.71% |
Nicholas Piggin | 760 | 16.12% | 17 | 9.71% |
Oliver O'Halloran | 453 | 9.61% | 4 | 2.29% |
Milton D. Miller II | 390 | 8.27% | 7 | 4.00% |
Anton Blanchard | 366 | 7.76% | 18 | 10.29% |
Benjamin Herrenschmidt | 298 | 6.32% | 16 | 9.14% |
Paul Mackerras | 202 | 4.28% | 11 | 6.29% |
Nathan T. Lynch | 185 | 3.92% | 4 | 2.29% |
Michael Ellerman | 145 | 3.08% | 11 | 6.29% |
Zwane Mwaikambo | 143 | 3.03% | 2 | 1.14% |
Andrew Morton | 112 | 2.38% | 8 | 4.57% |
Vincent Guittot | 81 | 1.72% | 1 | 0.57% |
Jens Axboe | 71 | 1.51% | 1 | 0.57% |
Srikar Dronamraju | 68 | 1.44% | 1 | 0.57% |
Andy Fleming | 54 | 1.15% | 1 | 0.57% |
Suresh E. Warrier | 49 | 1.04% | 3 | 1.71% |
Chen-Hui Zhao | 42 | 0.89% | 3 | 1.71% |
Srivatsa S. Bhat | 37 | 0.78% | 2 | 1.14% |
Li Zhong | 37 | 0.78% | 2 | 1.14% |
Vaidyanathan Srinivasan | 37 | 0.78% | 1 | 0.57% |
Balbir Singh | 32 | 0.68% | 1 | 0.57% |
Thomas Gleixner | 25 | 0.53% | 7 | 4.00% |
Becky Bruce | 23 | 0.49% | 1 | 0.57% |
Will Schmidt | 16 | 0.34% | 1 | 0.57% |
Christophe Leroy | 16 | 0.34% | 4 | 2.29% |
Olof Johansson | 15 | 0.32% | 1 | 0.57% |
Kumar Gala | 14 | 0.30% | 1 | 0.57% |
Naveen N. Rao | 14 | 0.30% | 2 | 1.14% |
Nishanth Aravamudan | 13 | 0.28% | 2 | 1.14% |
Satyam Sharma | 11 | 0.23% | 1 | 0.57% |
Rusty Russell | 8 | 0.17% | 2 | 1.14% |
Santosh Sivaraj | 8 | 0.17% | 2 | 1.14% |
Daniel Axtens | 6 | 0.13% | 2 | 1.14% |
Mike Travis | 6 | 0.13% | 1 | 0.57% |
Michael Neuling | 5 | 0.11% | 2 | 1.14% |
Mauricio Faria de Oliveira | 5 | 0.11% | 1 | 0.57% |
Ingo Molnar | 5 | 0.11% | 3 | 1.71% |
Christian Krafft | 4 | 0.08% | 1 | 0.57% |
David Howells | 3 | 0.06% | 1 | 0.57% |
Kevin Hao | 3 | 0.06% | 1 | 0.57% |
Tony Breeds | 3 | 0.06% | 1 | 0.57% |
Peter Zijlstra | 3 | 0.06% | 1 | 0.57% |
Mike Rapoport | 3 | 0.06% | 1 | 0.57% |
Aneesh Kumar K.V | 3 | 0.06% | 1 | 0.57% |
Avi Kivity | 2 | 0.04% | 1 | 0.57% |
Arnaldo Carvalho de Melo | 2 | 0.04% | 1 | 0.57% |
Darren Hart | 2 | 0.04% | 1 | 0.57% |
Oleg Nesterov | 1 | 0.02% | 1 | 0.57% |
Paul Gortmaker | 1 | 0.02% | 1 | 0.57% |
Arun Sharma | 1 | 0.02% | 1 | 0.57% |
Vegard Nossum | 1 | 0.02% | 1 | 0.57% |
Chen Gang S | 1 | 0.02% | 1 | 0.57% |
Hugh Dickins | 1 | 0.02% | 1 | 0.57% |
Nico Pitre | 1 | 0.02% | 1 | 0.57% |
Srivatsa Vaddagiri | 1 | 0.02% | 1 | 0.57% |
Tejun Heo | 1 | 0.02% | 1 | 0.57% |
Thiago Jung Bauermann | 1 | 0.02% | 1 | 0.57% |
David Gibson | 1 | 0.02% | 1 | 0.57% |
Motohiro Kosaki | 1 | 0.02% | 1 | 0.57% |
Jon Loeliger | 1 | 0.02% | 1 | 0.57% |
Matthew Dobson | 1 | 0.02% | 1 | 0.57% |
Kay Sievers | 1 | 0.02% | 1 | 0.57% |
Total | 4715 | 175 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * SMP support for ppc. * * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great * deal of code from the sparc and intel versions. * * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu> * * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com */ #undef DEBUG #include <linux/kernel.h> #include <linux/export.h> #include <linux/sched/mm.h> #include <linux/sched/task_stack.h> #include <linux/sched/topology.h> #include <linux/smp.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/spinlock.h> #include <linux/cache.h> #include <linux/err.h> #include <linux/device.h> #include <linux/cpu.h> #include <linux/notifier.h> #include <linux/topology.h> #include <linux/profile.h> #include <linux/processor.h> #include <linux/random.h> #include <linux/stackprotector.h> #include <linux/pgtable.h> #include <asm/ptrace.h> #include <linux/atomic.h> #include <asm/irq.h> #include <asm/hw_irq.h> #include <asm/kvm_ppc.h> #include <asm/dbell.h> #include <asm/page.h> #include <asm/prom.h> #include <asm/smp.h> #include <asm/time.h> #include <asm/machdep.h> #include <asm/cputhreads.h> #include <asm/cputable.h> #include <asm/mpic.h> #include <asm/vdso_datapage.h> #ifdef CONFIG_PPC64 #include <asm/paca.h> #endif #include <asm/vdso.h> #include <asm/debug.h> #include <asm/kexec.h> #include <asm/asm-prototypes.h> #include <asm/cpu_has_feature.h> #include <asm/ftrace.h> #include <asm/kup.h> #ifdef DEBUG #include <asm/udbg.h> #define DBG(fmt...) udbg_printf(fmt) #else #define DBG(fmt...) #endif #ifdef CONFIG_HOTPLUG_CPU /* State of each CPU during hotplug phases */ static DEFINE_PER_CPU(int, cpu_state) = { 0 }; #endif struct task_struct *secondary_current; bool has_big_cores; DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map); DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map); DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map); DEFINE_PER_CPU(cpumask_var_t, cpu_core_map); EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map); EXPORT_PER_CPU_SYMBOL(cpu_core_map); EXPORT_SYMBOL_GPL(has_big_cores); #define MAX_THREAD_LIST_SIZE 8 #define THREAD_GROUP_SHARE_L1 1 struct thread_groups { unsigned int property; unsigned int nr_groups; unsigned int threads_per_group; unsigned int thread_list[MAX_THREAD_LIST_SIZE]; }; /* * On big-cores system, cpu_l1_cache_map for each CPU corresponds to * the set its siblings that share the L1-cache. */ DEFINE_PER_CPU(cpumask_var_t, cpu_l1_cache_map); /* SMP operations for this machine */ struct smp_ops_t *smp_ops; /* Can't be static due to PowerMac hackery */ volatile unsigned int cpu_callin_map[NR_CPUS]; int smt_enabled_at_boot = 1; /* * Returns 1 if the specified cpu should be brought up during boot. * Used to inhibit booting threads if they've been disabled or * limited on the command line */ int smp_generic_cpu_bootable(unsigned int nr) { /* Special case - we inhibit secondary thread startup * during boot if the user requests it. */ if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) { if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0) return 0; if (smt_enabled_at_boot && cpu_thread_in_core(nr) >= smt_enabled_at_boot) return 0; } return 1; } #ifdef CONFIG_PPC64 int smp_generic_kick_cpu(int nr) { if (nr < 0 || nr >= nr_cpu_ids) return -EINVAL; /* * The processor is currently spinning, waiting for the * cpu_start field to become non-zero After we set cpu_start, * the processor will continue on to secondary_start */ if (!paca_ptrs[nr]->cpu_start) { paca_ptrs[nr]->cpu_start = 1; smp_mb(); return 0; } #ifdef CONFIG_HOTPLUG_CPU /* * Ok it's not there, so it might be soft-unplugged, let's * try to bring it back */ generic_set_cpu_up(nr); smp_wmb(); smp_send_reschedule(nr); #endif /* CONFIG_HOTPLUG_CPU */ return 0; } #endif /* CONFIG_PPC64 */ static irqreturn_t call_function_action(int irq, void *data) { generic_smp_call_function_interrupt(); return IRQ_HANDLED; } static irqreturn_t reschedule_action(int irq, void *data) { scheduler_ipi(); return IRQ_HANDLED; } #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST static irqreturn_t tick_broadcast_ipi_action(int irq, void *data) { timer_broadcast_interrupt(); return IRQ_HANDLED; } #endif #ifdef CONFIG_NMI_IPI static irqreturn_t nmi_ipi_action(int irq, void *data) { smp_handle_nmi_ipi(get_irq_regs()); return IRQ_HANDLED; } #endif static irq_handler_t smp_ipi_action[] = { [PPC_MSG_CALL_FUNCTION] = call_function_action, [PPC_MSG_RESCHEDULE] = reschedule_action, #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST [PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action, #endif #ifdef CONFIG_NMI_IPI [PPC_MSG_NMI_IPI] = nmi_ipi_action, #endif }; /* * The NMI IPI is a fallback and not truly non-maskable. It is simpler * than going through the call function infrastructure, and strongly * serialized, so it is more appropriate for debugging. */ const char *smp_ipi_name[] = { [PPC_MSG_CALL_FUNCTION] = "ipi call function", [PPC_MSG_RESCHEDULE] = "ipi reschedule", #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST [PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast", #endif #ifdef CONFIG_NMI_IPI [PPC_MSG_NMI_IPI] = "nmi ipi", #endif }; /* optional function to request ipi, for controllers with >= 4 ipis */ int smp_request_message_ipi(int virq, int msg) { int err; if (msg < 0 || msg > PPC_MSG_NMI_IPI) return -EINVAL; #ifndef CONFIG_NMI_IPI if (msg == PPC_MSG_NMI_IPI) return 1; #endif err = request_irq(virq, smp_ipi_action[msg], IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND, smp_ipi_name[msg], NULL); WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n", virq, smp_ipi_name[msg], err); return err; } #ifdef CONFIG_PPC_SMP_MUXED_IPI struct cpu_messages { long messages; /* current messages */ }; static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message); void smp_muxed_ipi_set_message(int cpu, int msg) { struct cpu_messages *info = &per_cpu(ipi_message, cpu); char *message = (char *)&info->messages; /* * Order previous accesses before accesses in the IPI handler. */ smp_mb(); message[msg] = 1; } void smp_muxed_ipi_message_pass(int cpu, int msg) { smp_muxed_ipi_set_message(cpu, msg); /* * cause_ipi functions are required to include a full barrier * before doing whatever causes the IPI. */ smp_ops->cause_ipi(cpu); } #ifdef __BIG_ENDIAN__ #define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A))) #else #define IPI_MESSAGE(A) (1uL << (8 * (A))) #endif irqreturn_t smp_ipi_demux(void) { mb(); /* order any irq clear */ return smp_ipi_demux_relaxed(); } /* sync-free variant. Callers should ensure synchronization */ irqreturn_t smp_ipi_demux_relaxed(void) { struct cpu_messages *info; unsigned long all; info = this_cpu_ptr(&ipi_message); do { all = xchg(&info->messages, 0); #if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) /* * Must check for PPC_MSG_RM_HOST_ACTION messages * before PPC_MSG_CALL_FUNCTION messages because when * a VM is destroyed, we call kick_all_cpus_sync() * to ensure that any pending PPC_MSG_RM_HOST_ACTION * messages have completed before we free any VCPUs. */ if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION)) kvmppc_xics_ipi_action(); #endif if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION)) generic_smp_call_function_interrupt(); if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE)) scheduler_ipi(); #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST)) timer_broadcast_interrupt(); #endif #ifdef CONFIG_NMI_IPI if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI)) nmi_ipi_action(0, NULL); #endif } while (info->messages); return IRQ_HANDLED; } #endif /* CONFIG_PPC_SMP_MUXED_IPI */ static inline void do_message_pass(int cpu, int msg) { if (smp_ops->message_pass) smp_ops->message_pass(cpu, msg); #ifdef CONFIG_PPC_SMP_MUXED_IPI else smp_muxed_ipi_message_pass(cpu, msg); #endif } void smp_send_reschedule(int cpu) { if (likely(smp_ops)) do_message_pass(cpu, PPC_MSG_RESCHEDULE); } EXPORT_SYMBOL_GPL(smp_send_reschedule); void arch_send_call_function_single_ipi(int cpu) { do_message_pass(cpu, PPC_MSG_CALL_FUNCTION); } void arch_send_call_function_ipi_mask(const struct cpumask *mask) { unsigned int cpu; for_each_cpu(cpu, mask) do_message_pass(cpu, PPC_MSG_CALL_FUNCTION); } #ifdef CONFIG_NMI_IPI /* * "NMI IPI" system. * * NMI IPIs may not be recoverable, so should not be used as ongoing part of * a running system. They can be used for crash, debug, halt/reboot, etc. * * The IPI call waits with interrupts disabled until all targets enter the * NMI handler, then returns. Subsequent IPIs can be issued before targets * have returned from their handlers, so there is no guarantee about * concurrency or re-entrancy. * * A new NMI can be issued before all targets exit the handler. * * The IPI call may time out without all targets entering the NMI handler. * In that case, there is some logic to recover (and ignore subsequent * NMI interrupts that may eventually be raised), but the platform interrupt * handler may not be able to distinguish this from other exception causes, * which may cause a crash. */ static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0); static struct cpumask nmi_ipi_pending_mask; static bool nmi_ipi_busy = false; static void (*nmi_ipi_function)(struct pt_regs *) = NULL; static void nmi_ipi_lock_start(unsigned long *flags) { raw_local_irq_save(*flags); hard_irq_disable(); while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) { raw_local_irq_restore(*flags); spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0); raw_local_irq_save(*flags); hard_irq_disable(); } } static void nmi_ipi_lock(void) { while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0); } static void nmi_ipi_unlock(void) { smp_mb(); WARN_ON(atomic_read(&__nmi_ipi_lock) != 1); atomic_set(&__nmi_ipi_lock, 0); } static void nmi_ipi_unlock_end(unsigned long *flags) { nmi_ipi_unlock(); raw_local_irq_restore(*flags); } /* * Platform NMI handler calls this to ack */ int smp_handle_nmi_ipi(struct pt_regs *regs) { void (*fn)(struct pt_regs *) = NULL; unsigned long flags; int me = raw_smp_processor_id(); int ret = 0; /* * Unexpected NMIs are possible here because the interrupt may not * be able to distinguish NMI IPIs from other types of NMIs, or * because the caller may have timed out. */ nmi_ipi_lock_start(&flags); if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) { cpumask_clear_cpu(me, &nmi_ipi_pending_mask); fn = READ_ONCE(nmi_ipi_function); WARN_ON_ONCE(!fn); ret = 1; } nmi_ipi_unlock_end(&flags); if (fn) fn(regs); return ret; } static void do_smp_send_nmi_ipi(int cpu, bool safe) { if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu)) return; if (cpu >= 0) { do_message_pass(cpu, PPC_MSG_NMI_IPI); } else { int c; for_each_online_cpu(c) { if (c == raw_smp_processor_id()) continue; do_message_pass(c, PPC_MSG_NMI_IPI); } } } /* * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS. * - fn is the target callback function. * - delay_us > 0 is the delay before giving up waiting for targets to * begin executing the handler, == 0 specifies indefinite delay. */ static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us, bool safe) { unsigned long flags; int me = raw_smp_processor_id(); int ret = 1; BUG_ON(cpu == me); BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS); if (unlikely(!smp_ops)) return 0; nmi_ipi_lock_start(&flags); while (nmi_ipi_busy) { nmi_ipi_unlock_end(&flags); spin_until_cond(!nmi_ipi_busy); nmi_ipi_lock_start(&flags); } nmi_ipi_busy = true; nmi_ipi_function = fn; WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask)); if (cpu < 0) { /* ALL_OTHERS */ cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask); cpumask_clear_cpu(me, &nmi_ipi_pending_mask); } else { cpumask_set_cpu(cpu, &nmi_ipi_pending_mask); } nmi_ipi_unlock(); /* Interrupts remain hard disabled */ do_smp_send_nmi_ipi(cpu, safe); nmi_ipi_lock(); /* nmi_ipi_busy is set here, so unlock/lock is okay */ while (!cpumask_empty(&nmi_ipi_pending_mask)) { nmi_ipi_unlock(); udelay(1); nmi_ipi_lock(); if (delay_us) { delay_us--; if (!delay_us) break; } } if (!cpumask_empty(&nmi_ipi_pending_mask)) { /* Timeout waiting for CPUs to call smp_handle_nmi_ipi */ ret = 0; cpumask_clear(&nmi_ipi_pending_mask); } nmi_ipi_function = NULL; nmi_ipi_busy = false; nmi_ipi_unlock_end(&flags); return ret; } int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us) { return __smp_send_nmi_ipi(cpu, fn, delay_us, false); } int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us) { return __smp_send_nmi_ipi(cpu, fn, delay_us, true); } #endif /* CONFIG_NMI_IPI */ #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST void tick_broadcast(const struct cpumask *mask) { unsigned int cpu; for_each_cpu(cpu, mask) do_message_pass(cpu, PPC_MSG_TICK_BROADCAST); } #endif #ifdef CONFIG_DEBUGGER void debugger_ipi_callback(struct pt_regs *regs) { debugger_ipi(regs); } void smp_send_debugger_break(void) { smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000); } #endif #ifdef CONFIG_KEXEC_CORE void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *)) { int cpu; smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000); if (kdump_in_progress() && crash_wake_offline) { for_each_present_cpu(cpu) { if (cpu_online(cpu)) continue; /* * crash_ipi_callback will wait for * all cpus, including offline CPUs. * We don't care about nmi_ipi_function. * Offline cpus will jump straight into * crash_ipi_callback, we can skip the * entire NMI dance and waiting for * cpus to clear pending mask, etc. */ do_smp_send_nmi_ipi(cpu, false); } } } #endif #ifdef CONFIG_NMI_IPI static void nmi_stop_this_cpu(struct pt_regs *regs) { /* * IRQs are already hard disabled by the smp_handle_nmi_ipi. */ spin_begin(); while (1) spin_cpu_relax(); } void smp_send_stop(void) { smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000); } #else /* CONFIG_NMI_IPI */ static void stop_this_cpu(void *dummy) { hard_irq_disable(); spin_begin(); while (1) spin_cpu_relax(); } void smp_send_stop(void) { static bool stopped = false; /* * Prevent waiting on csd lock from a previous smp_send_stop. * This is racy, but in general callers try to do the right * thing and only fire off one smp_send_stop (e.g., see * kernel/panic.c) */ if (stopped) return; stopped = true; smp_call_function(stop_this_cpu, NULL, 0); } #endif /* CONFIG_NMI_IPI */ struct task_struct *current_set[NR_CPUS]; static void smp_store_cpu_info(int id) { per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR); #ifdef CONFIG_PPC_FSL_BOOK3E per_cpu(next_tlbcam_idx, id) = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1; #endif } /* * Relationships between CPUs are maintained in a set of per-cpu cpumasks so * rather than just passing around the cpumask we pass around a function that * returns the that cpumask for the given CPU. */ static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int)) { cpumask_set_cpu(i, get_cpumask(j)); cpumask_set_cpu(j, get_cpumask(i)); } #ifdef CONFIG_HOTPLUG_CPU static void set_cpus_unrelated(int i, int j, struct cpumask *(*get_cpumask)(int)) { cpumask_clear_cpu(i, get_cpumask(j)); cpumask_clear_cpu(j, get_cpumask(i)); } #endif /* * parse_thread_groups: Parses the "ibm,thread-groups" device tree * property for the CPU device node @dn and stores * the parsed output in the thread_groups * structure @tg if the ibm,thread-groups[0] * matches @property. * * @dn: The device node of the CPU device. * @tg: Pointer to a thread group structure into which the parsed * output of "ibm,thread-groups" is stored. * @property: The property of the thread-group that the caller is * interested in. * * ibm,thread-groups[0..N-1] array defines which group of threads in * the CPU-device node can be grouped together based on the property. * * ibm,thread-groups[0] tells us the property based on which the * threads are being grouped together. If this value is 1, it implies * that the threads in the same group share L1, translation cache. * * ibm,thread-groups[1] tells us how many such thread groups exist. * * ibm,thread-groups[2] tells us the number of threads in each such * group. * * ibm,thread-groups[3..N-1] is the list of threads identified by * "ibm,ppc-interrupt-server#s" arranged as per their membership in * the grouping. * * Example: If ibm,thread-groups = [1,2,4,5,6,7,8,9,10,11,12] it * implies that there are 2 groups of 4 threads each, where each group * of threads share L1, translation cache. * * The "ibm,ppc-interrupt-server#s" of the first group is {5,6,7,8} * and the "ibm,ppc-interrupt-server#s" of the second group is {9, 10, * 11, 12} structure * * Returns 0 on success, -EINVAL if the property does not exist, * -ENODATA if property does not have a value, and -EOVERFLOW if the * property data isn't large enough. */ static int parse_thread_groups(struct device_node *dn, struct thread_groups *tg, unsigned int property) { int i; u32 thread_group_array[3 + MAX_THREAD_LIST_SIZE]; u32 *thread_list; size_t total_threads; int ret; ret = of_property_read_u32_array(dn, "ibm,thread-groups", thread_group_array, 3); if (ret) return ret; tg->property = thread_group_array[0]; tg->nr_groups = thread_group_array[1]; tg->threads_per_group = thread_group_array[2]; if (tg->property != property || tg->nr_groups < 1 || tg->threads_per_group < 1) return -ENODATA; total_threads = tg->nr_groups * tg->threads_per_group; ret = of_property_read_u32_array(dn, "ibm,thread-groups", thread_group_array, 3 + total_threads); if (ret) return ret; thread_list = &thread_group_array[3]; for (i = 0 ; i < total_threads; i++) tg->thread_list[i] = thread_list[i]; return 0; } /* * get_cpu_thread_group_start : Searches the thread group in tg->thread_list * that @cpu belongs to. * * @cpu : The logical CPU whose thread group is being searched. * @tg : The thread-group structure of the CPU node which @cpu belongs * to. * * Returns the index to tg->thread_list that points to the the start * of the thread_group that @cpu belongs to. * * Returns -1 if cpu doesn't belong to any of the groups pointed to by * tg->thread_list. */ static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg) { int hw_cpu_id = get_hard_smp_processor_id(cpu); int i, j; for (i = 0; i < tg->nr_groups; i++) { int group_start = i * tg->threads_per_group; for (j = 0; j < tg->threads_per_group; j++) { int idx = group_start + j; if (tg->thread_list[idx] == hw_cpu_id) return group_start; } } return -1; } static int init_cpu_l1_cache_map(int cpu) { struct device_node *dn = of_get_cpu_node(cpu, NULL); struct thread_groups tg = {.property = 0, .nr_groups = 0, .threads_per_group = 0}; int first_thread = cpu_first_thread_sibling(cpu); int i, cpu_group_start = -1, err = 0; if (!dn) return -ENODATA; err = parse_thread_groups(dn, &tg, THREAD_GROUP_SHARE_L1); if (err) goto out; zalloc_cpumask_var_node(&per_cpu(cpu_l1_cache_map, cpu), GFP_KERNEL, cpu_to_node(cpu)); cpu_group_start = get_cpu_thread_group_start(cpu, &tg); if (unlikely(cpu_group_start == -1)) { WARN_ON_ONCE(1); err = -ENODATA; goto out; } for (i = first_thread; i < first_thread + threads_per_core; i++) { int i_group_start = get_cpu_thread_group_start(i, &tg); if (unlikely(i_group_start == -1)) { WARN_ON_ONCE(1); err = -ENODATA; goto out; } if (i_group_start == cpu_group_start) cpumask_set_cpu(i, per_cpu(cpu_l1_cache_map, cpu)); } out: of_node_put(dn); return err; } static int init_big_cores(void) { int cpu; for_each_possible_cpu(cpu) { int err = init_cpu_l1_cache_map(cpu); if (err) return err; zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu), GFP_KERNEL, cpu_to_node(cpu)); } has_big_cores = true; return 0; } void __init smp_prepare_cpus(unsigned int max_cpus) { unsigned int cpu; DBG("smp_prepare_cpus\n"); /* * setup_cpu may need to be called on the boot cpu. We havent * spun any cpus up but lets be paranoid. */ BUG_ON(boot_cpuid != smp_processor_id()); /* Fixup boot cpu */ smp_store_cpu_info(boot_cpuid); cpu_callin_map[boot_cpuid] = 1; for_each_possible_cpu(cpu) { zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu), GFP_KERNEL, cpu_to_node(cpu)); zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu), GFP_KERNEL, cpu_to_node(cpu)); zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu), GFP_KERNEL, cpu_to_node(cpu)); /* * numa_node_id() works after this. */ if (cpu_present(cpu)) { set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]); set_cpu_numa_mem(cpu, local_memory_node(numa_cpu_lookup_table[cpu])); } } /* Init the cpumasks so the boot CPU is related to itself */ cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid)); cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid)); cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid)); init_big_cores(); if (has_big_cores) { cpumask_set_cpu(boot_cpuid, cpu_smallcore_mask(boot_cpuid)); } if (smp_ops && smp_ops->probe) smp_ops->probe(); } void smp_prepare_boot_cpu(void) { BUG_ON(smp_processor_id() != boot_cpuid); #ifdef CONFIG_PPC64 paca_ptrs[boot_cpuid]->__current = current; #endif set_numa_node(numa_cpu_lookup_table[boot_cpuid]); current_set[boot_cpuid] = current; } #ifdef CONFIG_HOTPLUG_CPU int generic_cpu_disable(void) { unsigned int cpu = smp_processor_id(); if (cpu == boot_cpuid) return -EBUSY; set_cpu_online(cpu, false); #ifdef CONFIG_PPC64 vdso_data->processorCount--; #endif /* Update affinity of all IRQs previously aimed at this CPU */ irq_migrate_all_off_this_cpu(); /* * Depending on the details of the interrupt controller, it's possible * that one of the interrupts we just migrated away from this CPU is * actually already pending on this CPU. If we leave it in that state * the interrupt will never be EOI'ed, and will never fire again. So * temporarily enable interrupts here, to allow any pending interrupt to * be received (and EOI'ed), before we take this CPU offline. */ local_irq_enable(); mdelay(1); local_irq_disable(); return 0; } void generic_cpu_die(unsigned int cpu) { int i; for (i = 0; i < 100; i++) { smp_rmb(); if (is_cpu_dead(cpu)) return; msleep(100); } printk(KERN_ERR "CPU%d didn't die...\n", cpu); } void generic_set_cpu_dead(unsigned int cpu) { per_cpu(cpu_state, cpu) = CPU_DEAD; } /* * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(), * which makes the delay in generic_cpu_die() not happen. */ void generic_set_cpu_up(unsigned int cpu) { per_cpu(cpu_state, cpu) = CPU_UP_PREPARE; } int generic_check_cpu_restart(unsigned int cpu) { return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE; } int is_cpu_dead(unsigned int cpu) { return per_cpu(cpu_state, cpu) == CPU_DEAD; } static bool secondaries_inhibited(void) { return kvm_hv_mode_active(); } #else /* HOTPLUG_CPU */ #define secondaries_inhibited() 0 #endif static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle) { #ifdef CONFIG_PPC64 paca_ptrs[cpu]->__current = idle; paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) + THREAD_SIZE - STACK_FRAME_OVERHEAD; #endif idle->cpu = cpu; secondary_current = current_set[cpu] = idle; } int __cpu_up(unsigned int cpu, struct task_struct *tidle) { int rc, c; /* * Don't allow secondary threads to come online if inhibited */ if (threads_per_core > 1 && secondaries_inhibited() && cpu_thread_in_subcore(cpu)) return -EBUSY; if (smp_ops == NULL || (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu))) return -EINVAL; cpu_idle_thread_init(cpu, tidle); /* * The platform might need to allocate resources prior to bringing * up the CPU */ if (smp_ops->prepare_cpu) { rc = smp_ops->prepare_cpu(cpu); if (rc) return rc; } /* Make sure callin-map entry is 0 (can be leftover a CPU * hotplug */ cpu_callin_map[cpu] = 0; /* The information for processor bringup must * be written out to main store before we release * the processor. */ smp_mb(); /* wake up cpus */ DBG("smp: kicking cpu %d\n", cpu); rc = smp_ops->kick_cpu(cpu); if (rc) { pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc); return rc; } /* * wait to see if the cpu made a callin (is actually up). * use this value that I found through experimentation. * -- Cort */ if (system_state < SYSTEM_RUNNING) for (c = 50000; c && !cpu_callin_map[cpu]; c--) udelay(100); #ifdef CONFIG_HOTPLUG_CPU else /* * CPUs can take much longer to come up in the * hotplug case. Wait five seconds. */ for (c = 5000; c && !cpu_callin_map[cpu]; c--) msleep(1); #endif if (!cpu_callin_map[cpu]) { printk(KERN_ERR "Processor %u is stuck.\n", cpu); return -ENOENT; } DBG("Processor %u found.\n", cpu); if (smp_ops->give_timebase) smp_ops->give_timebase(); /* Wait until cpu puts itself in the online & active maps */ spin_until_cond(cpu_online(cpu)); return 0; } /* Return the value of the reg property corresponding to the given * logical cpu. */ int cpu_to_core_id(int cpu) { struct device_node *np; const __be32 *reg; int id = -1; np = of_get_cpu_node(cpu, NULL); if (!np) goto out; reg = of_get_property(np, "reg", NULL); if (!reg) goto out; id = be32_to_cpup(reg); out: of_node_put(np); return id; } EXPORT_SYMBOL_GPL(cpu_to_core_id); /* Helper routines for cpu to core mapping */ int cpu_core_index_of_thread(int cpu) { return cpu >> threads_shift; } EXPORT_SYMBOL_GPL(cpu_core_index_of_thread); int cpu_first_thread_of_core(int core) { return core << threads_shift; } EXPORT_SYMBOL_GPL(cpu_first_thread_of_core); /* Must be called when no change can occur to cpu_present_mask, * i.e. during cpu online or offline. */ static struct device_node *cpu_to_l2cache(int cpu) { struct device_node *np; struct device_node *cache; if (!cpu_present(cpu)) return NULL; np = of_get_cpu_node(cpu, NULL); if (np == NULL) return NULL; cache = of_find_next_cache_node(np); of_node_put(np); return cache; } static bool update_mask_by_l2(int cpu, struct cpumask *(*mask_fn)(int)) { struct device_node *l2_cache, *np; int i; l2_cache = cpu_to_l2cache(cpu); if (!l2_cache) return false; for_each_cpu(i, cpu_online_mask) { /* * when updating the marks the current CPU has not been marked * online, but we need to update the cache masks */ np = cpu_to_l2cache(i); if (!np) continue; if (np == l2_cache) set_cpus_related(cpu, i, mask_fn); of_node_put(np); } of_node_put(l2_cache); return true; } #ifdef CONFIG_HOTPLUG_CPU static void remove_cpu_from_masks(int cpu) { int i; /* NB: cpu_core_mask is a superset of the others */ for_each_cpu(i, cpu_core_mask(cpu)) { set_cpus_unrelated(cpu, i, cpu_core_mask); set_cpus_unrelated(cpu, i, cpu_l2_cache_mask); set_cpus_unrelated(cpu, i, cpu_sibling_mask); if (has_big_cores) set_cpus_unrelated(cpu, i, cpu_smallcore_mask); } } #endif static inline void add_cpu_to_smallcore_masks(int cpu) { struct cpumask *this_l1_cache_map = per_cpu(cpu_l1_cache_map, cpu); int i, first_thread = cpu_first_thread_sibling(cpu); if (!has_big_cores) return; cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu)); for (i = first_thread; i < first_thread + threads_per_core; i++) { if (cpu_online(i) && cpumask_test_cpu(i, this_l1_cache_map)) set_cpus_related(i, cpu, cpu_smallcore_mask); } } int get_physical_package_id(int cpu) { int pkg_id = cpu_to_chip_id(cpu); /* * If the platform is PowerNV or Guest on KVM, ibm,chip-id is * defined. Hence we would return the chip-id as the result of * get_physical_package_id. */ if (pkg_id == -1 && firmware_has_feature(FW_FEATURE_LPAR) && IS_ENABLED(CONFIG_PPC_SPLPAR)) { struct device_node *np = of_get_cpu_node(cpu, NULL); pkg_id = of_node_to_nid(np); of_node_put(np); } return pkg_id; } EXPORT_SYMBOL_GPL(get_physical_package_id); static void add_cpu_to_masks(int cpu) { int first_thread = cpu_first_thread_sibling(cpu); int pkg_id = get_physical_package_id(cpu); int i; /* * This CPU will not be in the online mask yet so we need to manually * add it to it's own thread sibling mask. */ cpumask_set_cpu(cpu, cpu_sibling_mask(cpu)); for (i = first_thread; i < first_thread + threads_per_core; i++) if (cpu_online(i)) set_cpus_related(i, cpu, cpu_sibling_mask); add_cpu_to_smallcore_masks(cpu); /* * Copy the thread sibling mask into the cache sibling mask * and mark any CPUs that share an L2 with this CPU. */ for_each_cpu(i, cpu_sibling_mask(cpu)) set_cpus_related(cpu, i, cpu_l2_cache_mask); update_mask_by_l2(cpu, cpu_l2_cache_mask); /* * Copy the cache sibling mask into core sibling mask and mark * any CPUs on the same chip as this CPU. */ for_each_cpu(i, cpu_l2_cache_mask(cpu)) set_cpus_related(cpu, i, cpu_core_mask); if (pkg_id == -1) return; for_each_cpu(i, cpu_online_mask) if (get_physical_package_id(i) == pkg_id) set_cpus_related(cpu, i, cpu_core_mask); } static bool shared_caches; /* Activate a secondary processor. */ void start_secondary(void *unused) { unsigned int cpu = smp_processor_id(); struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask; mmgrab(&init_mm); current->active_mm = &init_mm; smp_store_cpu_info(cpu); set_dec(tb_ticks_per_jiffy); preempt_disable(); cpu_callin_map[cpu] = 1; if (smp_ops->setup_cpu) smp_ops->setup_cpu(cpu); if (smp_ops->take_timebase) smp_ops->take_timebase(); secondary_cpu_time_init(); #ifdef CONFIG_PPC64 if (system_state == SYSTEM_RUNNING) vdso_data->processorCount++; vdso_getcpu_init(); #endif /* Update topology CPU masks */ add_cpu_to_masks(cpu); if (has_big_cores) sibling_mask = cpu_smallcore_mask; /* * Check for any shared caches. Note that this must be done on a * per-core basis because one core in the pair might be disabled. */ if (!cpumask_equal(cpu_l2_cache_mask(cpu), sibling_mask(cpu))) shared_caches = true; set_numa_node(numa_cpu_lookup_table[cpu]); set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu])); smp_wmb(); notify_cpu_starting(cpu); set_cpu_online(cpu, true); boot_init_stack_canary(); local_irq_enable(); /* We can enable ftrace for secondary cpus now */ this_cpu_enable_ftrace(); cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); BUG(); } int setup_profiling_timer(unsigned int multiplier) { return 0; } #ifdef CONFIG_SCHED_SMT /* cpumask of CPUs with asymetric SMT dependancy */ static int powerpc_smt_flags(void) { int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES; if (cpu_has_feature(CPU_FTR_ASYM_SMT)) { printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n"); flags |= SD_ASYM_PACKING; } return flags; } #endif static struct sched_domain_topology_level powerpc_topology[] = { #ifdef CONFIG_SCHED_SMT { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) }, #endif { cpu_cpu_mask, SD_INIT_NAME(DIE) }, { NULL, }, }; /* * P9 has a slightly odd architecture where pairs of cores share an L2 cache. * This topology makes it *much* cheaper to migrate tasks between adjacent cores * since the migrated task remains cache hot. We want to take advantage of this * at the scheduler level so an extra topology level is required. */ static int powerpc_shared_cache_flags(void) { return SD_SHARE_PKG_RESOURCES; } /* * We can't just pass cpu_l2_cache_mask() directly because * returns a non-const pointer and the compiler barfs on that. */ static const struct cpumask *shared_cache_mask(int cpu) { return cpu_l2_cache_mask(cpu); } #ifdef CONFIG_SCHED_SMT static const struct cpumask *smallcore_smt_mask(int cpu) { return cpu_smallcore_mask(cpu); } #endif static struct sched_domain_topology_level power9_topology[] = { #ifdef CONFIG_SCHED_SMT { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) }, #endif { shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) }, { cpu_cpu_mask, SD_INIT_NAME(DIE) }, { NULL, }, }; void __init smp_cpus_done(unsigned int max_cpus) { /* * We are running pinned to the boot CPU, see rest_init(). */ if (smp_ops && smp_ops->setup_cpu) smp_ops->setup_cpu(boot_cpuid); if (smp_ops && smp_ops->bringup_done) smp_ops->bringup_done(); dump_numa_cpu_topology(); #ifdef CONFIG_SCHED_SMT if (has_big_cores) { pr_info("Big cores detected but using small core scheduling\n"); power9_topology[0].mask = smallcore_smt_mask; powerpc_topology[0].mask = smallcore_smt_mask; } #endif /* * If any CPU detects that it's sharing a cache with another CPU then * use the deeper topology that is aware of this sharing. */ if (shared_caches) { pr_info("Using shared cache scheduler topology\n"); set_sched_topology(power9_topology); } else { pr_info("Using standard scheduler topology\n"); set_sched_topology(powerpc_topology); } } #ifdef CONFIG_HOTPLUG_CPU int __cpu_disable(void) { int cpu = smp_processor_id(); int err; if (!smp_ops->cpu_disable) return -ENOSYS; this_cpu_disable_ftrace(); err = smp_ops->cpu_disable(); if (err) return err; /* Update sibling maps */ remove_cpu_from_masks(cpu); return 0; } void __cpu_die(unsigned int cpu) { if (smp_ops->cpu_die) smp_ops->cpu_die(cpu); } void cpu_die(void) { /* * Disable on the down path. This will be re-enabled by * start_secondary() via start_secondary_resume() below */ this_cpu_disable_ftrace(); if (ppc_md.cpu_die) ppc_md.cpu_die(); /* If we return, we re-enter start_secondary */ start_secondary_resume(); } #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1