Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alexander Graf | 1441 | 74.66% | 19 | 44.19% |
Paul Mackerras | 391 | 20.26% | 6 | 13.95% |
Aneesh Kumar K.V | 39 | 2.02% | 8 | 18.60% |
Alexey Kardashevskiy | 33 | 1.71% | 2 | 4.65% |
Benjamin Herrenschmidt | 17 | 0.88% | 2 | 4.65% |
Thomas Huth | 3 | 0.16% | 1 | 2.33% |
Thomas Gleixner | 2 | 0.10% | 1 | 2.33% |
Dan J Williams | 1 | 0.05% | 1 | 2.33% |
Xiao Guangrong | 1 | 0.05% | 1 | 2.33% |
Michael Ellerman | 1 | 0.05% | 1 | 2.33% |
Greg Kurz | 1 | 0.05% | 1 | 2.33% |
Total | 1930 | 43 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2009 SUSE Linux Products GmbH. All rights reserved. * * Authors: * Alexander Graf <agraf@suse.de> * Kevin Wolf <mail@kevin-wolf.de> */ #include <linux/kvm_host.h> #include <asm/kvm_ppc.h> #include <asm/kvm_book3s.h> #include <asm/book3s/64/mmu-hash.h> #include <asm/machdep.h> #include <asm/mmu_context.h> #include <asm/hw_irq.h> #include "trace_pr.h" #include "book3s.h" #define PTE_SIZE 12 void kvmppc_mmu_invalidate_pte(struct kvm_vcpu *vcpu, struct hpte_cache *pte) { mmu_hash_ops.hpte_invalidate(pte->slot, pte->host_vpn, pte->pagesize, pte->pagesize, MMU_SEGSIZE_256M, false); } /* We keep 512 gvsid->hvsid entries, mapping the guest ones to the array using * a hash, so we don't waste cycles on looping */ static u16 kvmppc_sid_hash(struct kvm_vcpu *vcpu, u64 gvsid) { return (u16)(((gvsid >> (SID_MAP_BITS * 7)) & SID_MAP_MASK) ^ ((gvsid >> (SID_MAP_BITS * 6)) & SID_MAP_MASK) ^ ((gvsid >> (SID_MAP_BITS * 5)) & SID_MAP_MASK) ^ ((gvsid >> (SID_MAP_BITS * 4)) & SID_MAP_MASK) ^ ((gvsid >> (SID_MAP_BITS * 3)) & SID_MAP_MASK) ^ ((gvsid >> (SID_MAP_BITS * 2)) & SID_MAP_MASK) ^ ((gvsid >> (SID_MAP_BITS * 1)) & SID_MAP_MASK) ^ ((gvsid >> (SID_MAP_BITS * 0)) & SID_MAP_MASK)); } static struct kvmppc_sid_map *find_sid_vsid(struct kvm_vcpu *vcpu, u64 gvsid) { struct kvmppc_sid_map *map; u16 sid_map_mask; if (kvmppc_get_msr(vcpu) & MSR_PR) gvsid |= VSID_PR; sid_map_mask = kvmppc_sid_hash(vcpu, gvsid); map = &to_book3s(vcpu)->sid_map[sid_map_mask]; if (map->valid && (map->guest_vsid == gvsid)) { trace_kvm_book3s_slb_found(gvsid, map->host_vsid); return map; } map = &to_book3s(vcpu)->sid_map[SID_MAP_MASK - sid_map_mask]; if (map->valid && (map->guest_vsid == gvsid)) { trace_kvm_book3s_slb_found(gvsid, map->host_vsid); return map; } trace_kvm_book3s_slb_fail(sid_map_mask, gvsid); return NULL; } int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *orig_pte, bool iswrite) { unsigned long vpn; kvm_pfn_t hpaddr; ulong hash, hpteg; u64 vsid; int ret; int rflags = 0x192; int vflags = 0; int attempt = 0; struct kvmppc_sid_map *map; int r = 0; int hpsize = MMU_PAGE_4K; bool writable; unsigned long mmu_seq; struct kvm *kvm = vcpu->kvm; struct hpte_cache *cpte; unsigned long gfn = orig_pte->raddr >> PAGE_SHIFT; unsigned long pfn; /* used to check for invalidations in progress */ mmu_seq = kvm->mmu_notifier_seq; smp_rmb(); /* Get host physical address for gpa */ pfn = kvmppc_gpa_to_pfn(vcpu, orig_pte->raddr, iswrite, &writable); if (is_error_noslot_pfn(pfn)) { printk(KERN_INFO "Couldn't get guest page for gpa %lx!\n", orig_pte->raddr); r = -EINVAL; goto out; } hpaddr = pfn << PAGE_SHIFT; /* and write the mapping ea -> hpa into the pt */ vcpu->arch.mmu.esid_to_vsid(vcpu, orig_pte->eaddr >> SID_SHIFT, &vsid); map = find_sid_vsid(vcpu, vsid); if (!map) { ret = kvmppc_mmu_map_segment(vcpu, orig_pte->eaddr); WARN_ON(ret < 0); map = find_sid_vsid(vcpu, vsid); } if (!map) { printk(KERN_ERR "KVM: Segment map for 0x%llx (0x%lx) failed\n", vsid, orig_pte->eaddr); WARN_ON(true); r = -EINVAL; goto out; } vpn = hpt_vpn(orig_pte->eaddr, map->host_vsid, MMU_SEGSIZE_256M); kvm_set_pfn_accessed(pfn); if (!orig_pte->may_write || !writable) rflags |= PP_RXRX; else { mark_page_dirty(vcpu->kvm, gfn); kvm_set_pfn_dirty(pfn); } if (!orig_pte->may_execute) rflags |= HPTE_R_N; else kvmppc_mmu_flush_icache(pfn); rflags = (rflags & ~HPTE_R_WIMG) | orig_pte->wimg; /* * Use 64K pages if possible; otherwise, on 64K page kernels, * we need to transfer 4 more bits from guest real to host real addr. */ if (vsid & VSID_64K) hpsize = MMU_PAGE_64K; else hpaddr |= orig_pte->raddr & (~0xfffULL & ~PAGE_MASK); hash = hpt_hash(vpn, mmu_psize_defs[hpsize].shift, MMU_SEGSIZE_256M); cpte = kvmppc_mmu_hpte_cache_next(vcpu); spin_lock(&kvm->mmu_lock); if (!cpte || mmu_notifier_retry(kvm, mmu_seq)) { r = -EAGAIN; goto out_unlock; } map_again: hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP); /* In case we tried normal mapping already, let's nuke old entries */ if (attempt > 1) if (mmu_hash_ops.hpte_remove(hpteg) < 0) { r = -1; goto out_unlock; } ret = mmu_hash_ops.hpte_insert(hpteg, vpn, hpaddr, rflags, vflags, hpsize, hpsize, MMU_SEGSIZE_256M); if (ret == -1) { /* If we couldn't map a primary PTE, try a secondary */ hash = ~hash; vflags ^= HPTE_V_SECONDARY; attempt++; goto map_again; } else if (ret < 0) { r = -EIO; goto out_unlock; } else { trace_kvm_book3s_64_mmu_map(rflags, hpteg, vpn, hpaddr, orig_pte); /* * The mmu_hash_ops code may give us a secondary entry even * though we asked for a primary. Fix up. */ if ((ret & _PTEIDX_SECONDARY) && !(vflags & HPTE_V_SECONDARY)) { hash = ~hash; hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP); } cpte->slot = hpteg + (ret & 7); cpte->host_vpn = vpn; cpte->pte = *orig_pte; cpte->pfn = pfn; cpte->pagesize = hpsize; kvmppc_mmu_hpte_cache_map(vcpu, cpte); cpte = NULL; } out_unlock: spin_unlock(&kvm->mmu_lock); kvm_release_pfn_clean(pfn); if (cpte) kvmppc_mmu_hpte_cache_free(cpte); out: return r; } void kvmppc_mmu_unmap_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte) { u64 mask = 0xfffffffffULL; u64 vsid; vcpu->arch.mmu.esid_to_vsid(vcpu, pte->eaddr >> SID_SHIFT, &vsid); if (vsid & VSID_64K) mask = 0xffffffff0ULL; kvmppc_mmu_pte_vflush(vcpu, pte->vpage, mask); } static struct kvmppc_sid_map *create_sid_map(struct kvm_vcpu *vcpu, u64 gvsid) { unsigned long vsid_bits = VSID_BITS_65_256M; struct kvmppc_sid_map *map; struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu); u16 sid_map_mask; static int backwards_map = 0; if (kvmppc_get_msr(vcpu) & MSR_PR) gvsid |= VSID_PR; /* We might get collisions that trap in preceding order, so let's map them differently */ sid_map_mask = kvmppc_sid_hash(vcpu, gvsid); if (backwards_map) sid_map_mask = SID_MAP_MASK - sid_map_mask; map = &to_book3s(vcpu)->sid_map[sid_map_mask]; /* Make sure we're taking the other map next time */ backwards_map = !backwards_map; /* Uh-oh ... out of mappings. Let's flush! */ if (vcpu_book3s->proto_vsid_next == vcpu_book3s->proto_vsid_max) { vcpu_book3s->proto_vsid_next = vcpu_book3s->proto_vsid_first; memset(vcpu_book3s->sid_map, 0, sizeof(struct kvmppc_sid_map) * SID_MAP_NUM); kvmppc_mmu_pte_flush(vcpu, 0, 0); kvmppc_mmu_flush_segments(vcpu); } if (mmu_has_feature(MMU_FTR_68_BIT_VA)) vsid_bits = VSID_BITS_256M; map->host_vsid = vsid_scramble(vcpu_book3s->proto_vsid_next++, VSID_MULTIPLIER_256M, vsid_bits); map->guest_vsid = gvsid; map->valid = true; trace_kvm_book3s_slb_map(sid_map_mask, gvsid, map->host_vsid); return map; } static int kvmppc_mmu_next_segment(struct kvm_vcpu *vcpu, ulong esid) { struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); int i; int max_slb_size = 64; int found_inval = -1; int r; /* Are we overwriting? */ for (i = 0; i < svcpu->slb_max; i++) { if (!(svcpu->slb[i].esid & SLB_ESID_V)) found_inval = i; else if ((svcpu->slb[i].esid & ESID_MASK) == esid) { r = i; goto out; } } /* Found a spare entry that was invalidated before */ if (found_inval >= 0) { r = found_inval; goto out; } /* No spare invalid entry, so create one */ if (mmu_slb_size < 64) max_slb_size = mmu_slb_size; /* Overflowing -> purge */ if ((svcpu->slb_max) == max_slb_size) kvmppc_mmu_flush_segments(vcpu); r = svcpu->slb_max; svcpu->slb_max++; out: svcpu_put(svcpu); return r; } int kvmppc_mmu_map_segment(struct kvm_vcpu *vcpu, ulong eaddr) { struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); u64 esid = eaddr >> SID_SHIFT; u64 slb_esid = (eaddr & ESID_MASK) | SLB_ESID_V; u64 slb_vsid = SLB_VSID_USER; u64 gvsid; int slb_index; struct kvmppc_sid_map *map; int r = 0; slb_index = kvmppc_mmu_next_segment(vcpu, eaddr & ESID_MASK); if (vcpu->arch.mmu.esid_to_vsid(vcpu, esid, &gvsid)) { /* Invalidate an entry */ svcpu->slb[slb_index].esid = 0; r = -ENOENT; goto out; } map = find_sid_vsid(vcpu, gvsid); if (!map) map = create_sid_map(vcpu, gvsid); map->guest_esid = esid; slb_vsid |= (map->host_vsid << 12); slb_vsid &= ~SLB_VSID_KP; slb_esid |= slb_index; #ifdef CONFIG_PPC_64K_PAGES /* Set host segment base page size to 64K if possible */ if (gvsid & VSID_64K) slb_vsid |= mmu_psize_defs[MMU_PAGE_64K].sllp; #endif svcpu->slb[slb_index].esid = slb_esid; svcpu->slb[slb_index].vsid = slb_vsid; trace_kvm_book3s_slbmte(slb_vsid, slb_esid); out: svcpu_put(svcpu); return r; } void kvmppc_mmu_flush_segment(struct kvm_vcpu *vcpu, ulong ea, ulong seg_size) { struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); ulong seg_mask = -seg_size; int i; for (i = 0; i < svcpu->slb_max; i++) { if ((svcpu->slb[i].esid & SLB_ESID_V) && (svcpu->slb[i].esid & seg_mask) == ea) { /* Invalidate this entry */ svcpu->slb[i].esid = 0; } } svcpu_put(svcpu); } void kvmppc_mmu_flush_segments(struct kvm_vcpu *vcpu) { struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); svcpu->slb_max = 0; svcpu->slb[0].esid = 0; svcpu_put(svcpu); } void kvmppc_mmu_destroy_pr(struct kvm_vcpu *vcpu) { kvmppc_mmu_hpte_destroy(vcpu); __destroy_context(to_book3s(vcpu)->context_id[0]); } int kvmppc_mmu_init_pr(struct kvm_vcpu *vcpu) { struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu); int err; err = hash__alloc_context_id(); if (err < 0) return -1; vcpu3s->context_id[0] = err; vcpu3s->proto_vsid_max = ((u64)(vcpu3s->context_id[0] + 1) << ESID_BITS) - 1; vcpu3s->proto_vsid_first = (u64)vcpu3s->context_id[0] << ESID_BITS; vcpu3s->proto_vsid_next = vcpu3s->proto_vsid_first; kvmppc_mmu_hpte_init(vcpu); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1