Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Bin Lu | 1951 | 17.64% | 1 | 0.47% |
Alexander Graf | 1909 | 17.26% | 45 | 21.23% |
Paul Mackerras | 1482 | 13.40% | 35 | 16.51% |
Simon Guo | 1200 | 10.85% | 8 | 3.77% |
Hollis Blanchard | 767 | 6.94% | 7 | 3.30% |
Jose Ricardo Ziviani | 598 | 5.41% | 1 | 0.47% |
Scott Wood | 585 | 5.29% | 14 | 6.60% |
Mihai Caraman | 390 | 3.53% | 3 | 1.42% |
Aneesh Kumar K.V | 288 | 2.60% | 6 | 2.83% |
Suraj Jitindar Singh | 221 | 2.00% | 4 | 1.89% |
Suresh E. Warrier | 177 | 1.60% | 2 | 0.94% |
Sean Christopherson | 174 | 1.57% | 11 | 5.19% |
Cédric Le Goater | 158 | 1.43% | 3 | 1.42% |
Alexey Kardashevskiy | 153 | 1.38% | 4 | 1.89% |
Benjamin Herrenschmidt | 127 | 1.15% | 4 | 1.89% |
David Gibson | 92 | 0.83% | 4 | 1.89% |
Paolo Bonzini | 76 | 0.69% | 6 | 2.83% |
Stuart Yoder | 62 | 0.56% | 2 | 0.94% |
Tianjia Zhang | 56 | 0.51% | 2 | 0.94% |
Greg Kurz | 54 | 0.49% | 1 | 0.47% |
Aravinda Prasad | 53 | 0.48% | 1 | 0.47% |
Bharata B Rao | 51 | 0.46% | 2 | 0.94% |
Marcelo Tosatti | 51 | 0.46% | 4 | 1.89% |
Gleb Natapov | 48 | 0.43% | 2 | 0.94% |
Christoffer Dall | 42 | 0.38% | 3 | 1.42% |
Michael Ellerman | 40 | 0.36% | 3 | 1.42% |
Carsten Otte | 28 | 0.25% | 2 | 0.94% |
Liu Yu | 28 | 0.25% | 1 | 0.47% |
Bharat Bhushan | 24 | 0.22% | 1 | 0.47% |
Al Viro | 24 | 0.22% | 1 | 0.47% |
Matt Evans | 23 | 0.21% | 1 | 0.47% |
Takuya Yoshikawa | 21 | 0.19% | 4 | 1.89% |
Wanpeng Li | 16 | 0.14% | 1 | 0.47% |
Longpeng( Mike) | 13 | 0.12% | 1 | 0.47% |
Vasiliy Kulikov | 13 | 0.12% | 1 | 0.47% |
Radim Krčmář | 10 | 0.09% | 3 | 1.42% |
Thomas Huth | 8 | 0.07% | 1 | 0.47% |
Sam Bobroff | 7 | 0.06% | 1 | 0.47% |
Laurent Vivier | 5 | 0.05% | 1 | 0.47% |
Jan Kiszka | 5 | 0.05% | 1 | 0.47% |
Peter Xu | 3 | 0.03% | 1 | 0.47% |
Jan H. Schönherr | 3 | 0.03% | 1 | 0.47% |
Ingo Molnar | 3 | 0.03% | 1 | 0.47% |
Avi Kivity | 3 | 0.03% | 2 | 0.94% |
Tejun Heo | 3 | 0.03% | 1 | 0.47% |
Fabiano Rosas | 3 | 0.03% | 1 | 0.47% |
Thomas Gleixner | 2 | 0.02% | 1 | 0.47% |
Dominik Dingel | 2 | 0.02% | 1 | 0.47% |
Denis Kirjanov | 2 | 0.02% | 1 | 0.47% |
Davidlohr Bueso A | 2 | 0.02% | 1 | 0.47% |
Linus Torvalds | 1 | 0.01% | 1 | 0.47% |
Lan Tianyu | 1 | 0.01% | 1 | 0.47% |
Souptick Joarder | 1 | 0.01% | 1 | 0.47% |
Total | 11059 | 212 |
// SPDX-License-Identifier: GPL-2.0-only /* * * Copyright IBM Corp. 2007 * * Authors: Hollis Blanchard <hollisb@us.ibm.com> * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> */ #include <linux/errno.h> #include <linux/err.h> #include <linux/kvm_host.h> #include <linux/vmalloc.h> #include <linux/hrtimer.h> #include <linux/sched/signal.h> #include <linux/fs.h> #include <linux/slab.h> #include <linux/file.h> #include <linux/module.h> #include <linux/irqbypass.h> #include <linux/kvm_irqfd.h> #include <asm/cputable.h> #include <linux/uaccess.h> #include <asm/kvm_ppc.h> #include <asm/cputhreads.h> #include <asm/irqflags.h> #include <asm/iommu.h> #include <asm/switch_to.h> #include <asm/xive.h> #ifdef CONFIG_PPC_PSERIES #include <asm/hvcall.h> #include <asm/plpar_wrappers.h> #endif #include <asm/ultravisor.h> #include "timing.h" #include "irq.h" #include "../mm/mmu_decl.h" #define CREATE_TRACE_POINTS #include "trace.h" struct kvmppc_ops *kvmppc_hv_ops; EXPORT_SYMBOL_GPL(kvmppc_hv_ops); struct kvmppc_ops *kvmppc_pr_ops; EXPORT_SYMBOL_GPL(kvmppc_pr_ops); int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) { return !!(v->arch.pending_exceptions) || kvm_request_pending(v); } bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) { return kvm_arch_vcpu_runnable(vcpu); } bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) { return false; } int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) { return 1; } /* * Common checks before entering the guest world. Call with interrupts * disabled. * * returns: * * == 1 if we're ready to go into guest state * <= 0 if we need to go back to the host with return value */ int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu) { int r; WARN_ON(irqs_disabled()); hard_irq_disable(); while (true) { if (need_resched()) { local_irq_enable(); cond_resched(); hard_irq_disable(); continue; } if (signal_pending(current)) { kvmppc_account_exit(vcpu, SIGNAL_EXITS); vcpu->run->exit_reason = KVM_EXIT_INTR; r = -EINTR; break; } vcpu->mode = IN_GUEST_MODE; /* * Reading vcpu->requests must happen after setting vcpu->mode, * so we don't miss a request because the requester sees * OUTSIDE_GUEST_MODE and assumes we'll be checking requests * before next entering the guest (and thus doesn't IPI). * This also orders the write to mode from any reads * to the page tables done while the VCPU is running. * Please see the comment in kvm_flush_remote_tlbs. */ smp_mb(); if (kvm_request_pending(vcpu)) { /* Make sure we process requests preemptable */ local_irq_enable(); trace_kvm_check_requests(vcpu); r = kvmppc_core_check_requests(vcpu); hard_irq_disable(); if (r > 0) continue; break; } if (kvmppc_core_prepare_to_enter(vcpu)) { /* interrupts got enabled in between, so we are back at square 1 */ continue; } guest_enter_irqoff(); return 1; } /* return to host */ local_irq_enable(); return r; } EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter); #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) static void kvmppc_swab_shared(struct kvm_vcpu *vcpu) { struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared; int i; shared->sprg0 = swab64(shared->sprg0); shared->sprg1 = swab64(shared->sprg1); shared->sprg2 = swab64(shared->sprg2); shared->sprg3 = swab64(shared->sprg3); shared->srr0 = swab64(shared->srr0); shared->srr1 = swab64(shared->srr1); shared->dar = swab64(shared->dar); shared->msr = swab64(shared->msr); shared->dsisr = swab32(shared->dsisr); shared->int_pending = swab32(shared->int_pending); for (i = 0; i < ARRAY_SIZE(shared->sr); i++) shared->sr[i] = swab32(shared->sr[i]); } #endif int kvmppc_kvm_pv(struct kvm_vcpu *vcpu) { int nr = kvmppc_get_gpr(vcpu, 11); int r; unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3); unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4); unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5); unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6); unsigned long r2 = 0; if (!(kvmppc_get_msr(vcpu) & MSR_SF)) { /* 32 bit mode */ param1 &= 0xffffffff; param2 &= 0xffffffff; param3 &= 0xffffffff; param4 &= 0xffffffff; } switch (nr) { case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE): { #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) /* Book3S can be little endian, find it out here */ int shared_big_endian = true; if (vcpu->arch.intr_msr & MSR_LE) shared_big_endian = false; if (shared_big_endian != vcpu->arch.shared_big_endian) kvmppc_swab_shared(vcpu); vcpu->arch.shared_big_endian = shared_big_endian; #endif if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) { /* * Older versions of the Linux magic page code had * a bug where they would map their trampoline code * NX. If that's the case, remove !PR NX capability. */ vcpu->arch.disable_kernel_nx = true; kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); } vcpu->arch.magic_page_pa = param1 & ~0xfffULL; vcpu->arch.magic_page_ea = param2 & ~0xfffULL; #ifdef CONFIG_PPC_64K_PAGES /* * Make sure our 4k magic page is in the same window of a 64k * page within the guest and within the host's page. */ if ((vcpu->arch.magic_page_pa & 0xf000) != ((ulong)vcpu->arch.shared & 0xf000)) { void *old_shared = vcpu->arch.shared; ulong shared = (ulong)vcpu->arch.shared; void *new_shared; shared &= PAGE_MASK; shared |= vcpu->arch.magic_page_pa & 0xf000; new_shared = (void*)shared; memcpy(new_shared, old_shared, 0x1000); vcpu->arch.shared = new_shared; } #endif r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7; r = EV_SUCCESS; break; } case KVM_HCALL_TOKEN(KVM_HC_FEATURES): r = EV_SUCCESS; #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2) r2 |= (1 << KVM_FEATURE_MAGIC_PAGE); #endif /* Second return value is in r4 */ break; case EV_HCALL_TOKEN(EV_IDLE): r = EV_SUCCESS; kvm_vcpu_block(vcpu); kvm_clear_request(KVM_REQ_UNHALT, vcpu); break; default: r = EV_UNIMPLEMENTED; break; } kvmppc_set_gpr(vcpu, 4, r2); return r; } EXPORT_SYMBOL_GPL(kvmppc_kvm_pv); int kvmppc_sanity_check(struct kvm_vcpu *vcpu) { int r = false; /* We have to know what CPU to virtualize */ if (!vcpu->arch.pvr) goto out; /* PAPR only works with book3s_64 */ if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled) goto out; /* HV KVM can only do PAPR mode for now */ if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm)) goto out; #ifdef CONFIG_KVM_BOOKE_HV if (!cpu_has_feature(CPU_FTR_EMB_HV)) goto out; #endif r = true; out: vcpu->arch.sane = r; return r ? 0 : -EINVAL; } EXPORT_SYMBOL_GPL(kvmppc_sanity_check); int kvmppc_emulate_mmio(struct kvm_vcpu *vcpu) { enum emulation_result er; int r; er = kvmppc_emulate_loadstore(vcpu); switch (er) { case EMULATE_DONE: /* Future optimization: only reload non-volatiles if they were * actually modified. */ r = RESUME_GUEST_NV; break; case EMULATE_AGAIN: r = RESUME_GUEST; break; case EMULATE_DO_MMIO: vcpu->run->exit_reason = KVM_EXIT_MMIO; /* We must reload nonvolatiles because "update" load/store * instructions modify register state. */ /* Future optimization: only reload non-volatiles if they were * actually modified. */ r = RESUME_HOST_NV; break; case EMULATE_FAIL: { u32 last_inst; kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); /* XXX Deliver Program interrupt to guest. */ pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst); r = RESUME_HOST; break; } default: WARN_ON(1); r = RESUME_GUEST; } return r; } EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio); int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, bool data) { ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; struct kvmppc_pte pte; int r = -EINVAL; vcpu->stat.st++; if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr) r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr, size); if ((!r) || (r == -EAGAIN)) return r; r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, XLATE_WRITE, &pte); if (r < 0) return r; *eaddr = pte.raddr; if (!pte.may_write) return -EPERM; /* Magic page override */ if (kvmppc_supports_magic_page(vcpu) && mp_pa && ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && !(kvmppc_get_msr(vcpu) & MSR_PR)) { void *magic = vcpu->arch.shared; magic += pte.eaddr & 0xfff; memcpy(magic, ptr, size); return EMULATE_DONE; } if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size)) return EMULATE_DO_MMIO; return EMULATE_DONE; } EXPORT_SYMBOL_GPL(kvmppc_st); int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, bool data) { ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; struct kvmppc_pte pte; int rc = -EINVAL; vcpu->stat.ld++; if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr) rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr, size); if ((!rc) || (rc == -EAGAIN)) return rc; rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, XLATE_READ, &pte); if (rc) return rc; *eaddr = pte.raddr; if (!pte.may_read) return -EPERM; if (!data && !pte.may_execute) return -ENOEXEC; /* Magic page override */ if (kvmppc_supports_magic_page(vcpu) && mp_pa && ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && !(kvmppc_get_msr(vcpu) & MSR_PR)) { void *magic = vcpu->arch.shared; magic += pte.eaddr & 0xfff; memcpy(ptr, magic, size); return EMULATE_DONE; } vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); rc = kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size); srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); if (rc) return EMULATE_DO_MMIO; return EMULATE_DONE; } EXPORT_SYMBOL_GPL(kvmppc_ld); int kvm_arch_hardware_enable(void) { return 0; } int kvm_arch_hardware_setup(void *opaque) { return 0; } int kvm_arch_check_processor_compat(void *opaque) { return kvmppc_core_check_processor_compat(); } int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) { struct kvmppc_ops *kvm_ops = NULL; /* * if we have both HV and PR enabled, default is HV */ if (type == 0) { if (kvmppc_hv_ops) kvm_ops = kvmppc_hv_ops; else kvm_ops = kvmppc_pr_ops; if (!kvm_ops) goto err_out; } else if (type == KVM_VM_PPC_HV) { if (!kvmppc_hv_ops) goto err_out; kvm_ops = kvmppc_hv_ops; } else if (type == KVM_VM_PPC_PR) { if (!kvmppc_pr_ops) goto err_out; kvm_ops = kvmppc_pr_ops; } else goto err_out; if (kvm_ops->owner && !try_module_get(kvm_ops->owner)) return -ENOENT; kvm->arch.kvm_ops = kvm_ops; return kvmppc_core_init_vm(kvm); err_out: return -EINVAL; } void kvm_arch_destroy_vm(struct kvm *kvm) { unsigned int i; struct kvm_vcpu *vcpu; #ifdef CONFIG_KVM_XICS /* * We call kick_all_cpus_sync() to ensure that all * CPUs have executed any pending IPIs before we * continue and free VCPUs structures below. */ if (is_kvmppc_hv_enabled(kvm)) kick_all_cpus_sync(); #endif kvm_for_each_vcpu(i, vcpu, kvm) kvm_vcpu_destroy(vcpu); mutex_lock(&kvm->lock); for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) kvm->vcpus[i] = NULL; atomic_set(&kvm->online_vcpus, 0); kvmppc_core_destroy_vm(kvm); mutex_unlock(&kvm->lock); /* drop the module reference */ module_put(kvm->arch.kvm_ops->owner); } int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) { int r; /* Assume we're using HV mode when the HV module is loaded */ int hv_enabled = kvmppc_hv_ops ? 1 : 0; if (kvm) { /* * Hooray - we know which VM type we're running on. Depend on * that rather than the guess above. */ hv_enabled = is_kvmppc_hv_enabled(kvm); } switch (ext) { #ifdef CONFIG_BOOKE case KVM_CAP_PPC_BOOKE_SREGS: case KVM_CAP_PPC_BOOKE_WATCHDOG: case KVM_CAP_PPC_EPR: #else case KVM_CAP_PPC_SEGSTATE: case KVM_CAP_PPC_HIOR: case KVM_CAP_PPC_PAPR: #endif case KVM_CAP_PPC_UNSET_IRQ: case KVM_CAP_PPC_IRQ_LEVEL: case KVM_CAP_ENABLE_CAP: case KVM_CAP_ONE_REG: case KVM_CAP_IOEVENTFD: case KVM_CAP_DEVICE_CTRL: case KVM_CAP_IMMEDIATE_EXIT: case KVM_CAP_SET_GUEST_DEBUG: r = 1; break; case KVM_CAP_PPC_GUEST_DEBUG_SSTEP: case KVM_CAP_PPC_PAIRED_SINGLES: case KVM_CAP_PPC_OSI: case KVM_CAP_PPC_GET_PVINFO: #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) case KVM_CAP_SW_TLB: #endif /* We support this only for PR */ r = !hv_enabled; break; #ifdef CONFIG_KVM_MPIC case KVM_CAP_IRQ_MPIC: r = 1; break; #endif #ifdef CONFIG_PPC_BOOK3S_64 case KVM_CAP_SPAPR_TCE: case KVM_CAP_SPAPR_TCE_64: r = 1; break; case KVM_CAP_SPAPR_TCE_VFIO: r = !!cpu_has_feature(CPU_FTR_HVMODE); break; case KVM_CAP_PPC_RTAS: case KVM_CAP_PPC_FIXUP_HCALL: case KVM_CAP_PPC_ENABLE_HCALL: #ifdef CONFIG_KVM_XICS case KVM_CAP_IRQ_XICS: #endif case KVM_CAP_PPC_GET_CPU_CHAR: r = 1; break; #ifdef CONFIG_KVM_XIVE case KVM_CAP_PPC_IRQ_XIVE: /* * We need XIVE to be enabled on the platform (implies * a POWER9 processor) and the PowerNV platform, as * nested is not yet supported. */ r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) && kvmppc_xive_native_supported(); break; #endif case KVM_CAP_PPC_ALLOC_HTAB: r = hv_enabled; break; #endif /* CONFIG_PPC_BOOK3S_64 */ #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE case KVM_CAP_PPC_SMT: r = 0; if (kvm) { if (kvm->arch.emul_smt_mode > 1) r = kvm->arch.emul_smt_mode; else r = kvm->arch.smt_mode; } else if (hv_enabled) { if (cpu_has_feature(CPU_FTR_ARCH_300)) r = 1; else r = threads_per_subcore; } break; case KVM_CAP_PPC_SMT_POSSIBLE: r = 1; if (hv_enabled) { if (!cpu_has_feature(CPU_FTR_ARCH_300)) r = ((threads_per_subcore << 1) - 1); else /* P9 can emulate dbells, so allow any mode */ r = 8 | 4 | 2 | 1; } break; case KVM_CAP_PPC_RMA: r = 0; break; case KVM_CAP_PPC_HWRNG: r = kvmppc_hwrng_present(); break; case KVM_CAP_PPC_MMU_RADIX: r = !!(hv_enabled && radix_enabled()); break; case KVM_CAP_PPC_MMU_HASH_V3: r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300) && cpu_has_feature(CPU_FTR_HVMODE)); break; case KVM_CAP_PPC_NESTED_HV: r = !!(hv_enabled && kvmppc_hv_ops->enable_nested && !kvmppc_hv_ops->enable_nested(NULL)); break; #endif case KVM_CAP_SYNC_MMU: #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE r = hv_enabled; #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER) r = 1; #else r = 0; #endif break; #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE case KVM_CAP_PPC_HTAB_FD: r = hv_enabled; break; #endif case KVM_CAP_NR_VCPUS: /* * Recommending a number of CPUs is somewhat arbitrary; we * return the number of present CPUs for -HV (since a host * will have secondary threads "offline"), and for other KVM * implementations just count online CPUs. */ if (hv_enabled) r = num_present_cpus(); else r = num_online_cpus(); break; case KVM_CAP_MAX_VCPUS: r = KVM_MAX_VCPUS; break; case KVM_CAP_MAX_VCPU_ID: r = KVM_MAX_VCPU_ID; break; #ifdef CONFIG_PPC_BOOK3S_64 case KVM_CAP_PPC_GET_SMMU_INFO: r = 1; break; case KVM_CAP_SPAPR_MULTITCE: r = 1; break; case KVM_CAP_SPAPR_RESIZE_HPT: r = !!hv_enabled; break; #endif #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE case KVM_CAP_PPC_FWNMI: r = hv_enabled; break; #endif #ifdef CONFIG_PPC_TRANSACTIONAL_MEM case KVM_CAP_PPC_HTM: r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) || (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)); break; #endif #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) case KVM_CAP_PPC_SECURE_GUEST: r = hv_enabled && kvmppc_hv_ops->enable_svm && !kvmppc_hv_ops->enable_svm(NULL); break; #endif default: r = 0; break; } return r; } long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { return -EINVAL; } void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) { kvmppc_core_free_memslot(kvm, slot); } int kvm_arch_prepare_memory_region(struct kvm *kvm, struct kvm_memory_slot *memslot, const struct kvm_userspace_memory_region *mem, enum kvm_mr_change change) { return kvmppc_core_prepare_memory_region(kvm, memslot, mem, change); } void kvm_arch_commit_memory_region(struct kvm *kvm, const struct kvm_userspace_memory_region *mem, struct kvm_memory_slot *old, const struct kvm_memory_slot *new, enum kvm_mr_change change) { kvmppc_core_commit_memory_region(kvm, mem, old, new, change); } void kvm_arch_flush_shadow_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) { kvmppc_core_flush_memslot(kvm, slot); } int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) { return 0; } static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer) { struct kvm_vcpu *vcpu; vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer); kvmppc_decrementer_func(vcpu); return HRTIMER_NORESTART; } int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) { int err; hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS); vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup; vcpu->arch.dec_expires = get_tb(); #ifdef CONFIG_KVM_EXIT_TIMING mutex_init(&vcpu->arch.exit_timing_lock); #endif err = kvmppc_subarch_vcpu_init(vcpu); if (err) return err; err = kvmppc_core_vcpu_create(vcpu); if (err) goto out_vcpu_uninit; vcpu->arch.waitp = &vcpu->wait; kvmppc_create_vcpu_debugfs(vcpu, vcpu->vcpu_id); return 0; out_vcpu_uninit: kvmppc_subarch_vcpu_uninit(vcpu); return err; } void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) { } void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) { /* Make sure we're not using the vcpu anymore */ hrtimer_cancel(&vcpu->arch.dec_timer); kvmppc_remove_vcpu_debugfs(vcpu); switch (vcpu->arch.irq_type) { case KVMPPC_IRQ_MPIC: kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu); break; case KVMPPC_IRQ_XICS: if (xics_on_xive()) kvmppc_xive_cleanup_vcpu(vcpu); else kvmppc_xics_free_icp(vcpu); break; case KVMPPC_IRQ_XIVE: kvmppc_xive_native_cleanup_vcpu(vcpu); break; } kvmppc_core_vcpu_free(vcpu); kvmppc_subarch_vcpu_uninit(vcpu); } int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) { return kvmppc_core_pending_dec(vcpu); } void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) { #ifdef CONFIG_BOOKE /* * vrsave (formerly usprg0) isn't used by Linux, but may * be used by the guest. * * On non-booke this is associated with Altivec and * is handled by code in book3s.c. */ mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); #endif kvmppc_core_vcpu_load(vcpu, cpu); } void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) { kvmppc_core_vcpu_put(vcpu); #ifdef CONFIG_BOOKE vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); #endif } /* * irq_bypass_add_producer and irq_bypass_del_producer are only * useful if the architecture supports PCI passthrough. * irq_bypass_stop and irq_bypass_start are not needed and so * kvm_ops are not defined for them. */ bool kvm_arch_has_irq_bypass(void) { return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) || (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer)); } int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, struct irq_bypass_producer *prod) { struct kvm_kernel_irqfd *irqfd = container_of(cons, struct kvm_kernel_irqfd, consumer); struct kvm *kvm = irqfd->kvm; if (kvm->arch.kvm_ops->irq_bypass_add_producer) return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod); return 0; } void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, struct irq_bypass_producer *prod) { struct kvm_kernel_irqfd *irqfd = container_of(cons, struct kvm_kernel_irqfd, consumer); struct kvm *kvm = irqfd->kvm; if (kvm->arch.kvm_ops->irq_bypass_del_producer) kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod); } #ifdef CONFIG_VSX static inline int kvmppc_get_vsr_dword_offset(int index) { int offset; if ((index != 0) && (index != 1)) return -1; #ifdef __BIG_ENDIAN offset = index; #else offset = 1 - index; #endif return offset; } static inline int kvmppc_get_vsr_word_offset(int index) { int offset; if ((index > 3) || (index < 0)) return -1; #ifdef __BIG_ENDIAN offset = index; #else offset = 3 - index; #endif return offset; } static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu, u64 gpr) { union kvmppc_one_reg val; int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; if (offset == -1) return; if (index >= 32) { val.vval = VCPU_VSX_VR(vcpu, index - 32); val.vsxval[offset] = gpr; VCPU_VSX_VR(vcpu, index - 32) = val.vval; } else { VCPU_VSX_FPR(vcpu, index, offset) = gpr; } } static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu, u64 gpr) { union kvmppc_one_reg val; int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; if (index >= 32) { val.vval = VCPU_VSX_VR(vcpu, index - 32); val.vsxval[0] = gpr; val.vsxval[1] = gpr; VCPU_VSX_VR(vcpu, index - 32) = val.vval; } else { VCPU_VSX_FPR(vcpu, index, 0) = gpr; VCPU_VSX_FPR(vcpu, index, 1) = gpr; } } static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu, u32 gpr) { union kvmppc_one_reg val; int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; if (index >= 32) { val.vsx32val[0] = gpr; val.vsx32val[1] = gpr; val.vsx32val[2] = gpr; val.vsx32val[3] = gpr; VCPU_VSX_VR(vcpu, index - 32) = val.vval; } else { val.vsx32val[0] = gpr; val.vsx32val[1] = gpr; VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0]; VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0]; } } static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu, u32 gpr32) { union kvmppc_one_reg val; int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; int dword_offset, word_offset; if (offset == -1) return; if (index >= 32) { val.vval = VCPU_VSX_VR(vcpu, index - 32); val.vsx32val[offset] = gpr32; VCPU_VSX_VR(vcpu, index - 32) = val.vval; } else { dword_offset = offset / 2; word_offset = offset % 2; val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset); val.vsx32val[word_offset] = gpr32; VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0]; } } #endif /* CONFIG_VSX */ #ifdef CONFIG_ALTIVEC static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu, int index, int element_size) { int offset; int elts = sizeof(vector128)/element_size; if ((index < 0) || (index >= elts)) return -1; if (kvmppc_need_byteswap(vcpu)) offset = elts - index - 1; else offset = index; return offset; } static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu, int index) { return kvmppc_get_vmx_offset_generic(vcpu, index, 8); } static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu, int index) { return kvmppc_get_vmx_offset_generic(vcpu, index, 4); } static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu, int index) { return kvmppc_get_vmx_offset_generic(vcpu, index, 2); } static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu, int index) { return kvmppc_get_vmx_offset_generic(vcpu, index, 1); } static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu, u64 gpr) { union kvmppc_one_reg val; int offset = kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset); int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; if (offset == -1) return; val.vval = VCPU_VSX_VR(vcpu, index); val.vsxval[offset] = gpr; VCPU_VSX_VR(vcpu, index) = val.vval; } static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu, u32 gpr32) { union kvmppc_one_reg val; int offset = kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset); int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; if (offset == -1) return; val.vval = VCPU_VSX_VR(vcpu, index); val.vsx32val[offset] = gpr32; VCPU_VSX_VR(vcpu, index) = val.vval; } static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu, u16 gpr16) { union kvmppc_one_reg val; int offset = kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset); int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; if (offset == -1) return; val.vval = VCPU_VSX_VR(vcpu, index); val.vsx16val[offset] = gpr16; VCPU_VSX_VR(vcpu, index) = val.vval; } static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu, u8 gpr8) { union kvmppc_one_reg val; int offset = kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset); int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; if (offset == -1) return; val.vval = VCPU_VSX_VR(vcpu, index); val.vsx8val[offset] = gpr8; VCPU_VSX_VR(vcpu, index) = val.vval; } #endif /* CONFIG_ALTIVEC */ #ifdef CONFIG_PPC_FPU static inline u64 sp_to_dp(u32 fprs) { u64 fprd; preempt_disable(); enable_kernel_fp(); asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs) : "fr0"); preempt_enable(); return fprd; } static inline u32 dp_to_sp(u64 fprd) { u32 fprs; preempt_disable(); enable_kernel_fp(); asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd) : "fr0"); preempt_enable(); return fprs; } #else #define sp_to_dp(x) (x) #define dp_to_sp(x) (x) #endif /* CONFIG_PPC_FPU */ static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu) { struct kvm_run *run = vcpu->run; u64 gpr; if (run->mmio.len > sizeof(gpr)) { printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len); return; } if (!vcpu->arch.mmio_host_swabbed) { switch (run->mmio.len) { case 8: gpr = *(u64 *)run->mmio.data; break; case 4: gpr = *(u32 *)run->mmio.data; break; case 2: gpr = *(u16 *)run->mmio.data; break; case 1: gpr = *(u8 *)run->mmio.data; break; } } else { switch (run->mmio.len) { case 8: gpr = swab64(*(u64 *)run->mmio.data); break; case 4: gpr = swab32(*(u32 *)run->mmio.data); break; case 2: gpr = swab16(*(u16 *)run->mmio.data); break; case 1: gpr = *(u8 *)run->mmio.data; break; } } /* conversion between single and double precision */ if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4)) gpr = sp_to_dp(gpr); if (vcpu->arch.mmio_sign_extend) { switch (run->mmio.len) { #ifdef CONFIG_PPC64 case 4: gpr = (s64)(s32)gpr; break; #endif case 2: gpr = (s64)(s16)gpr; break; case 1: gpr = (s64)(s8)gpr; break; } } switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) { case KVM_MMIO_REG_GPR: kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr); break; case KVM_MMIO_REG_FPR: if (vcpu->kvm->arch.kvm_ops->giveup_ext) vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP); VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; break; #ifdef CONFIG_PPC_BOOK3S case KVM_MMIO_REG_QPR: vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; break; case KVM_MMIO_REG_FQPR: VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; break; #endif #ifdef CONFIG_VSX case KVM_MMIO_REG_VSX: if (vcpu->kvm->arch.kvm_ops->giveup_ext) vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX); if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD) kvmppc_set_vsr_dword(vcpu, gpr); else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD) kvmppc_set_vsr_word(vcpu, gpr); else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD_LOAD_DUMP) kvmppc_set_vsr_dword_dump(vcpu, gpr); else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD_LOAD_DUMP) kvmppc_set_vsr_word_dump(vcpu, gpr); break; #endif #ifdef CONFIG_ALTIVEC case KVM_MMIO_REG_VMX: if (vcpu->kvm->arch.kvm_ops->giveup_ext) vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC); if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD) kvmppc_set_vmx_dword(vcpu, gpr); else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD) kvmppc_set_vmx_word(vcpu, gpr); else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_HWORD) kvmppc_set_vmx_hword(vcpu, gpr); else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_BYTE) kvmppc_set_vmx_byte(vcpu, gpr); break; #endif #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE case KVM_MMIO_REG_NESTED_GPR: if (kvmppc_need_byteswap(vcpu)) gpr = swab64(gpr); kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr, sizeof(gpr)); break; #endif default: BUG(); } } static int __kvmppc_handle_load(struct kvm_vcpu *vcpu, unsigned int rt, unsigned int bytes, int is_default_endian, int sign_extend) { struct kvm_run *run = vcpu->run; int idx, ret; bool host_swabbed; /* Pity C doesn't have a logical XOR operator */ if (kvmppc_need_byteswap(vcpu)) { host_swabbed = is_default_endian; } else { host_swabbed = !is_default_endian; } if (bytes > sizeof(run->mmio.data)) { printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, run->mmio.len); } run->mmio.phys_addr = vcpu->arch.paddr_accessed; run->mmio.len = bytes; run->mmio.is_write = 0; vcpu->arch.io_gpr = rt; vcpu->arch.mmio_host_swabbed = host_swabbed; vcpu->mmio_needed = 1; vcpu->mmio_is_write = 0; vcpu->arch.mmio_sign_extend = sign_extend; idx = srcu_read_lock(&vcpu->kvm->srcu); ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, bytes, &run->mmio.data); srcu_read_unlock(&vcpu->kvm->srcu, idx); if (!ret) { kvmppc_complete_mmio_load(vcpu); vcpu->mmio_needed = 0; return EMULATE_DONE; } return EMULATE_DO_MMIO; } int kvmppc_handle_load(struct kvm_vcpu *vcpu, unsigned int rt, unsigned int bytes, int is_default_endian) { return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 0); } EXPORT_SYMBOL_GPL(kvmppc_handle_load); /* Same as above, but sign extends */ int kvmppc_handle_loads(struct kvm_vcpu *vcpu, unsigned int rt, unsigned int bytes, int is_default_endian) { return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 1); } #ifdef CONFIG_VSX int kvmppc_handle_vsx_load(struct kvm_vcpu *vcpu, unsigned int rt, unsigned int bytes, int is_default_endian, int mmio_sign_extend) { enum emulation_result emulated = EMULATE_DONE; /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */ if (vcpu->arch.mmio_vsx_copy_nums > 4) return EMULATE_FAIL; while (vcpu->arch.mmio_vsx_copy_nums) { emulated = __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, mmio_sign_extend); if (emulated != EMULATE_DONE) break; vcpu->arch.paddr_accessed += vcpu->run->mmio.len; vcpu->arch.mmio_vsx_copy_nums--; vcpu->arch.mmio_vsx_offset++; } return emulated; } #endif /* CONFIG_VSX */ int kvmppc_handle_store(struct kvm_vcpu *vcpu, u64 val, unsigned int bytes, int is_default_endian) { struct kvm_run *run = vcpu->run; void *data = run->mmio.data; int idx, ret; bool host_swabbed; /* Pity C doesn't have a logical XOR operator */ if (kvmppc_need_byteswap(vcpu)) { host_swabbed = is_default_endian; } else { host_swabbed = !is_default_endian; } if (bytes > sizeof(run->mmio.data)) { printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, run->mmio.len); } run->mmio.phys_addr = vcpu->arch.paddr_accessed; run->mmio.len = bytes; run->mmio.is_write = 1; vcpu->mmio_needed = 1; vcpu->mmio_is_write = 1; if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4)) val = dp_to_sp(val); /* Store the value at the lowest bytes in 'data'. */ if (!host_swabbed) { switch (bytes) { case 8: *(u64 *)data = val; break; case 4: *(u32 *)data = val; break; case 2: *(u16 *)data = val; break; case 1: *(u8 *)data = val; break; } } else { switch (bytes) { case 8: *(u64 *)data = swab64(val); break; case 4: *(u32 *)data = swab32(val); break; case 2: *(u16 *)data = swab16(val); break; case 1: *(u8 *)data = val; break; } } idx = srcu_read_lock(&vcpu->kvm->srcu); ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, bytes, &run->mmio.data); srcu_read_unlock(&vcpu->kvm->srcu, idx); if (!ret) { vcpu->mmio_needed = 0; return EMULATE_DONE; } return EMULATE_DO_MMIO; } EXPORT_SYMBOL_GPL(kvmppc_handle_store); #ifdef CONFIG_VSX static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val) { u32 dword_offset, word_offset; union kvmppc_one_reg reg; int vsx_offset = 0; int copy_type = vcpu->arch.mmio_copy_type; int result = 0; switch (copy_type) { case KVMPPC_VSX_COPY_DWORD: vsx_offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); if (vsx_offset == -1) { result = -1; break; } if (rs < 32) { *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset); } else { reg.vval = VCPU_VSX_VR(vcpu, rs - 32); *val = reg.vsxval[vsx_offset]; } break; case KVMPPC_VSX_COPY_WORD: vsx_offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); if (vsx_offset == -1) { result = -1; break; } if (rs < 32) { dword_offset = vsx_offset / 2; word_offset = vsx_offset % 2; reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset); *val = reg.vsx32val[word_offset]; } else { reg.vval = VCPU_VSX_VR(vcpu, rs - 32); *val = reg.vsx32val[vsx_offset]; } break; default: result = -1; break; } return result; } int kvmppc_handle_vsx_store(struct kvm_vcpu *vcpu, int rs, unsigned int bytes, int is_default_endian) { u64 val; enum emulation_result emulated = EMULATE_DONE; vcpu->arch.io_gpr = rs; /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */ if (vcpu->arch.mmio_vsx_copy_nums > 4) return EMULATE_FAIL; while (vcpu->arch.mmio_vsx_copy_nums) { if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1) return EMULATE_FAIL; emulated = kvmppc_handle_store(vcpu, val, bytes, is_default_endian); if (emulated != EMULATE_DONE) break; vcpu->arch.paddr_accessed += vcpu->run->mmio.len; vcpu->arch.mmio_vsx_copy_nums--; vcpu->arch.mmio_vsx_offset++; } return emulated; } static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu) { struct kvm_run *run = vcpu->run; enum emulation_result emulated = EMULATE_FAIL; int r; vcpu->arch.paddr_accessed += run->mmio.len; if (!vcpu->mmio_is_write) { emulated = kvmppc_handle_vsx_load(vcpu, vcpu->arch.io_gpr, run->mmio.len, 1, vcpu->arch.mmio_sign_extend); } else { emulated = kvmppc_handle_vsx_store(vcpu, vcpu->arch.io_gpr, run->mmio.len, 1); } switch (emulated) { case EMULATE_DO_MMIO: run->exit_reason = KVM_EXIT_MMIO; r = RESUME_HOST; break; case EMULATE_FAIL: pr_info("KVM: MMIO emulation failed (VSX repeat)\n"); run->exit_reason = KVM_EXIT_INTERNAL_ERROR; run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; r = RESUME_HOST; break; default: r = RESUME_GUEST; break; } return r; } #endif /* CONFIG_VSX */ #ifdef CONFIG_ALTIVEC int kvmppc_handle_vmx_load(struct kvm_vcpu *vcpu, unsigned int rt, unsigned int bytes, int is_default_endian) { enum emulation_result emulated = EMULATE_DONE; if (vcpu->arch.mmio_vsx_copy_nums > 2) return EMULATE_FAIL; while (vcpu->arch.mmio_vmx_copy_nums) { emulated = __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 0); if (emulated != EMULATE_DONE) break; vcpu->arch.paddr_accessed += vcpu->run->mmio.len; vcpu->arch.mmio_vmx_copy_nums--; vcpu->arch.mmio_vmx_offset++; } return emulated; } int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val) { union kvmppc_one_reg reg; int vmx_offset = 0; int result = 0; vmx_offset = kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset); if (vmx_offset == -1) return -1; reg.vval = VCPU_VSX_VR(vcpu, index); *val = reg.vsxval[vmx_offset]; return result; } int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val) { union kvmppc_one_reg reg; int vmx_offset = 0; int result = 0; vmx_offset = kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset); if (vmx_offset == -1) return -1; reg.vval = VCPU_VSX_VR(vcpu, index); *val = reg.vsx32val[vmx_offset]; return result; } int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val) { union kvmppc_one_reg reg; int vmx_offset = 0; int result = 0; vmx_offset = kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset); if (vmx_offset == -1) return -1; reg.vval = VCPU_VSX_VR(vcpu, index); *val = reg.vsx16val[vmx_offset]; return result; } int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val) { union kvmppc_one_reg reg; int vmx_offset = 0; int result = 0; vmx_offset = kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset); if (vmx_offset == -1) return -1; reg.vval = VCPU_VSX_VR(vcpu, index); *val = reg.vsx8val[vmx_offset]; return result; } int kvmppc_handle_vmx_store(struct kvm_vcpu *vcpu, unsigned int rs, unsigned int bytes, int is_default_endian) { u64 val = 0; unsigned int index = rs & KVM_MMIO_REG_MASK; enum emulation_result emulated = EMULATE_DONE; if (vcpu->arch.mmio_vsx_copy_nums > 2) return EMULATE_FAIL; vcpu->arch.io_gpr = rs; while (vcpu->arch.mmio_vmx_copy_nums) { switch (vcpu->arch.mmio_copy_type) { case KVMPPC_VMX_COPY_DWORD: if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1) return EMULATE_FAIL; break; case KVMPPC_VMX_COPY_WORD: if (kvmppc_get_vmx_word(vcpu, index, &val) == -1) return EMULATE_FAIL; break; case KVMPPC_VMX_COPY_HWORD: if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1) return EMULATE_FAIL; break; case KVMPPC_VMX_COPY_BYTE: if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1) return EMULATE_FAIL; break; default: return EMULATE_FAIL; } emulated = kvmppc_handle_store(vcpu, val, bytes, is_default_endian); if (emulated != EMULATE_DONE) break; vcpu->arch.paddr_accessed += vcpu->run->mmio.len; vcpu->arch.mmio_vmx_copy_nums--; vcpu->arch.mmio_vmx_offset++; } return emulated; } static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu) { struct kvm_run *run = vcpu->run; enum emulation_result emulated = EMULATE_FAIL; int r; vcpu->arch.paddr_accessed += run->mmio.len; if (!vcpu->mmio_is_write) { emulated = kvmppc_handle_vmx_load(vcpu, vcpu->arch.io_gpr, run->mmio.len, 1); } else { emulated = kvmppc_handle_vmx_store(vcpu, vcpu->arch.io_gpr, run->mmio.len, 1); } switch (emulated) { case EMULATE_DO_MMIO: run->exit_reason = KVM_EXIT_MMIO; r = RESUME_HOST; break; case EMULATE_FAIL: pr_info("KVM: MMIO emulation failed (VMX repeat)\n"); run->exit_reason = KVM_EXIT_INTERNAL_ERROR; run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; r = RESUME_HOST; break; default: r = RESUME_GUEST; break; } return r; } #endif /* CONFIG_ALTIVEC */ int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) { int r = 0; union kvmppc_one_reg val; int size; size = one_reg_size(reg->id); if (size > sizeof(val)) return -EINVAL; r = kvmppc_get_one_reg(vcpu, reg->id, &val); if (r == -EINVAL) { r = 0; switch (reg->id) { #ifdef CONFIG_ALTIVEC case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { r = -ENXIO; break; } val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0]; break; case KVM_REG_PPC_VSCR: if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { r = -ENXIO; break; } val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]); break; case KVM_REG_PPC_VRSAVE: val = get_reg_val(reg->id, vcpu->arch.vrsave); break; #endif /* CONFIG_ALTIVEC */ default: r = -EINVAL; break; } } if (r) return r; if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size)) r = -EFAULT; return r; } int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) { int r; union kvmppc_one_reg val; int size; size = one_reg_size(reg->id); if (size > sizeof(val)) return -EINVAL; if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size)) return -EFAULT; r = kvmppc_set_one_reg(vcpu, reg->id, &val); if (r == -EINVAL) { r = 0; switch (reg->id) { #ifdef CONFIG_ALTIVEC case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { r = -ENXIO; break; } vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval; break; case KVM_REG_PPC_VSCR: if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { r = -ENXIO; break; } vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val); break; case KVM_REG_PPC_VRSAVE: if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { r = -ENXIO; break; } vcpu->arch.vrsave = set_reg_val(reg->id, val); break; #endif /* CONFIG_ALTIVEC */ default: r = -EINVAL; break; } } return r; } int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) { struct kvm_run *run = vcpu->run; int r; vcpu_load(vcpu); if (vcpu->mmio_needed) { vcpu->mmio_needed = 0; if (!vcpu->mmio_is_write) kvmppc_complete_mmio_load(vcpu); #ifdef CONFIG_VSX if (vcpu->arch.mmio_vsx_copy_nums > 0) { vcpu->arch.mmio_vsx_copy_nums--; vcpu->arch.mmio_vsx_offset++; } if (vcpu->arch.mmio_vsx_copy_nums > 0) { r = kvmppc_emulate_mmio_vsx_loadstore(vcpu); if (r == RESUME_HOST) { vcpu->mmio_needed = 1; goto out; } } #endif #ifdef CONFIG_ALTIVEC if (vcpu->arch.mmio_vmx_copy_nums > 0) { vcpu->arch.mmio_vmx_copy_nums--; vcpu->arch.mmio_vmx_offset++; } if (vcpu->arch.mmio_vmx_copy_nums > 0) { r = kvmppc_emulate_mmio_vmx_loadstore(vcpu); if (r == RESUME_HOST) { vcpu->mmio_needed = 1; goto out; } } #endif } else if (vcpu->arch.osi_needed) { u64 *gprs = run->osi.gprs; int i; for (i = 0; i < 32; i++) kvmppc_set_gpr(vcpu, i, gprs[i]); vcpu->arch.osi_needed = 0; } else if (vcpu->arch.hcall_needed) { int i; kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret); for (i = 0; i < 9; ++i) kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]); vcpu->arch.hcall_needed = 0; #ifdef CONFIG_BOOKE } else if (vcpu->arch.epr_needed) { kvmppc_set_epr(vcpu, run->epr.epr); vcpu->arch.epr_needed = 0; #endif } kvm_sigset_activate(vcpu); if (run->immediate_exit) r = -EINTR; else r = kvmppc_vcpu_run(vcpu); kvm_sigset_deactivate(vcpu); #ifdef CONFIG_ALTIVEC out: #endif vcpu_put(vcpu); return r; } int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq) { if (irq->irq == KVM_INTERRUPT_UNSET) { kvmppc_core_dequeue_external(vcpu); return 0; } kvmppc_core_queue_external(vcpu, irq); kvm_vcpu_kick(vcpu); return 0; } static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, struct kvm_enable_cap *cap) { int r; if (cap->flags) return -EINVAL; switch (cap->cap) { case KVM_CAP_PPC_OSI: r = 0; vcpu->arch.osi_enabled = true; break; case KVM_CAP_PPC_PAPR: r = 0; vcpu->arch.papr_enabled = true; break; case KVM_CAP_PPC_EPR: r = 0; if (cap->args[0]) vcpu->arch.epr_flags |= KVMPPC_EPR_USER; else vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER; break; #ifdef CONFIG_BOOKE case KVM_CAP_PPC_BOOKE_WATCHDOG: r = 0; vcpu->arch.watchdog_enabled = true; break; #endif #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) case KVM_CAP_SW_TLB: { struct kvm_config_tlb cfg; void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0]; r = -EFAULT; if (copy_from_user(&cfg, user_ptr, sizeof(cfg))) break; r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg); break; } #endif #ifdef CONFIG_KVM_MPIC case KVM_CAP_IRQ_MPIC: { struct fd f; struct kvm_device *dev; r = -EBADF; f = fdget(cap->args[0]); if (!f.file) break; r = -EPERM; dev = kvm_device_from_filp(f.file); if (dev) r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]); fdput(f); break; } #endif #ifdef CONFIG_KVM_XICS case KVM_CAP_IRQ_XICS: { struct fd f; struct kvm_device *dev; r = -EBADF; f = fdget(cap->args[0]); if (!f.file) break; r = -EPERM; dev = kvm_device_from_filp(f.file); if (dev) { if (xics_on_xive()) r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]); else r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]); } fdput(f); break; } #endif /* CONFIG_KVM_XICS */ #ifdef CONFIG_KVM_XIVE case KVM_CAP_PPC_IRQ_XIVE: { struct fd f; struct kvm_device *dev; r = -EBADF; f = fdget(cap->args[0]); if (!f.file) break; r = -ENXIO; if (!xive_enabled()) break; r = -EPERM; dev = kvm_device_from_filp(f.file); if (dev) r = kvmppc_xive_native_connect_vcpu(dev, vcpu, cap->args[1]); fdput(f); break; } #endif /* CONFIG_KVM_XIVE */ #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE case KVM_CAP_PPC_FWNMI: r = -EINVAL; if (!is_kvmppc_hv_enabled(vcpu->kvm)) break; r = 0; vcpu->kvm->arch.fwnmi_enabled = true; break; #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */ default: r = -EINVAL; break; } if (!r) r = kvmppc_sanity_check(vcpu); return r; } bool kvm_arch_intc_initialized(struct kvm *kvm) { #ifdef CONFIG_KVM_MPIC if (kvm->arch.mpic) return true; #endif #ifdef CONFIG_KVM_XICS if (kvm->arch.xics || kvm->arch.xive) return true; #endif return false; } int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state) { return -EINVAL; } int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state) { return -EINVAL; } long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { struct kvm_vcpu *vcpu = filp->private_data; void __user *argp = (void __user *)arg; if (ioctl == KVM_INTERRUPT) { struct kvm_interrupt irq; if (copy_from_user(&irq, argp, sizeof(irq))) return -EFAULT; return kvm_vcpu_ioctl_interrupt(vcpu, &irq); } return -ENOIOCTLCMD; } long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { struct kvm_vcpu *vcpu = filp->private_data; void __user *argp = (void __user *)arg; long r; switch (ioctl) { case KVM_ENABLE_CAP: { struct kvm_enable_cap cap; r = -EFAULT; vcpu_load(vcpu); if (copy_from_user(&cap, argp, sizeof(cap))) goto out; r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); vcpu_put(vcpu); break; } case KVM_SET_ONE_REG: case KVM_GET_ONE_REG: { struct kvm_one_reg reg; r = -EFAULT; if (copy_from_user(®, argp, sizeof(reg))) goto out; if (ioctl == KVM_SET_ONE_REG) r = kvm_vcpu_ioctl_set_one_reg(vcpu, ®); else r = kvm_vcpu_ioctl_get_one_reg(vcpu, ®); break; } #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) case KVM_DIRTY_TLB: { struct kvm_dirty_tlb dirty; r = -EFAULT; vcpu_load(vcpu); if (copy_from_user(&dirty, argp, sizeof(dirty))) goto out; r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty); vcpu_put(vcpu); break; } #endif default: r = -EINVAL; } out: return r; } vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) { return VM_FAULT_SIGBUS; } static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo) { u32 inst_nop = 0x60000000; #ifdef CONFIG_KVM_BOOKE_HV u32 inst_sc1 = 0x44000022; pvinfo->hcall[0] = cpu_to_be32(inst_sc1); pvinfo->hcall[1] = cpu_to_be32(inst_nop); pvinfo->hcall[2] = cpu_to_be32(inst_nop); pvinfo->hcall[3] = cpu_to_be32(inst_nop); #else u32 inst_lis = 0x3c000000; u32 inst_ori = 0x60000000; u32 inst_sc = 0x44000002; u32 inst_imm_mask = 0xffff; /* * The hypercall to get into KVM from within guest context is as * follows: * * lis r0, r0, KVM_SC_MAGIC_R0@h * ori r0, KVM_SC_MAGIC_R0@l * sc * nop */ pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask)); pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask)); pvinfo->hcall[2] = cpu_to_be32(inst_sc); pvinfo->hcall[3] = cpu_to_be32(inst_nop); #endif pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE; return 0; } int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, bool line_status) { if (!irqchip_in_kernel(kvm)) return -ENXIO; irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, irq_event->irq, irq_event->level, line_status); return 0; } int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap) { int r; if (cap->flags) return -EINVAL; switch (cap->cap) { #ifdef CONFIG_KVM_BOOK3S_64_HANDLER case KVM_CAP_PPC_ENABLE_HCALL: { unsigned long hcall = cap->args[0]; r = -EINVAL; if (hcall > MAX_HCALL_OPCODE || (hcall & 3) || cap->args[1] > 1) break; if (!kvmppc_book3s_hcall_implemented(kvm, hcall)) break; if (cap->args[1]) set_bit(hcall / 4, kvm->arch.enabled_hcalls); else clear_bit(hcall / 4, kvm->arch.enabled_hcalls); r = 0; break; } case KVM_CAP_PPC_SMT: { unsigned long mode = cap->args[0]; unsigned long flags = cap->args[1]; r = -EINVAL; if (kvm->arch.kvm_ops->set_smt_mode) r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags); break; } case KVM_CAP_PPC_NESTED_HV: r = -EINVAL; if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_nested) break; r = kvm->arch.kvm_ops->enable_nested(kvm); break; #endif #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE) case KVM_CAP_PPC_SECURE_GUEST: r = -EINVAL; if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_svm) break; r = kvm->arch.kvm_ops->enable_svm(kvm); break; #endif default: r = -EINVAL; break; } return r; } #ifdef CONFIG_PPC_BOOK3S_64 /* * These functions check whether the underlying hardware is safe * against attacks based on observing the effects of speculatively * executed instructions, and whether it supplies instructions for * use in workarounds. The information comes from firmware, either * via the device tree on powernv platforms or from an hcall on * pseries platforms. */ #ifdef CONFIG_PPC_PSERIES static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) { struct h_cpu_char_result c; unsigned long rc; if (!machine_is(pseries)) return -ENOTTY; rc = plpar_get_cpu_characteristics(&c); if (rc == H_SUCCESS) { cp->character = c.character; cp->behaviour = c.behaviour; cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | KVM_PPC_CPU_CHAR_BR_HINT_HONOURED | KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF | KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS | KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR | KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; } return 0; } #else static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) { return -ENOTTY; } #endif static inline bool have_fw_feat(struct device_node *fw_features, const char *state, const char *name) { struct device_node *np; bool r = false; np = of_get_child_by_name(fw_features, name); if (np) { r = of_property_read_bool(np, state); of_node_put(np); } return r; } static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp) { struct device_node *np, *fw_features; int r; memset(cp, 0, sizeof(*cp)); r = pseries_get_cpu_char(cp); if (r != -ENOTTY) return r; np = of_find_node_by_name(NULL, "ibm,opal"); if (np) { fw_features = of_get_child_by_name(np, "fw-features"); of_node_put(np); if (!fw_features) return 0; if (have_fw_feat(fw_features, "enabled", "inst-spec-barrier-ori31,31,0")) cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31; if (have_fw_feat(fw_features, "enabled", "fw-bcctrl-serialized")) cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED; if (have_fw_feat(fw_features, "enabled", "inst-l1d-flush-ori30,30,0")) cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30; if (have_fw_feat(fw_features, "enabled", "inst-l1d-flush-trig2")) cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2; if (have_fw_feat(fw_features, "enabled", "fw-l1d-thread-split")) cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV; if (have_fw_feat(fw_features, "enabled", "fw-count-cache-disabled")) cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS; if (have_fw_feat(fw_features, "enabled", "fw-count-cache-flush-bcctr2,0,0")) cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS | KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; if (have_fw_feat(fw_features, "enabled", "speculation-policy-favor-security")) cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY; if (!have_fw_feat(fw_features, "disabled", "needs-l1d-flush-msr-pr-0-to-1")) cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR; if (!have_fw_feat(fw_features, "disabled", "needs-spec-barrier-for-bound-checks")) cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR; if (have_fw_feat(fw_features, "enabled", "needs-count-cache-flush-on-context-switch")) cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR | KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; of_node_put(fw_features); } return 0; } #endif long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { struct kvm *kvm __maybe_unused = filp->private_data; void __user *argp = (void __user *)arg; long r; switch (ioctl) { case KVM_PPC_GET_PVINFO: { struct kvm_ppc_pvinfo pvinfo; memset(&pvinfo, 0, sizeof(pvinfo)); r = kvm_vm_ioctl_get_pvinfo(&pvinfo); if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) { r = -EFAULT; goto out; } break; } #ifdef CONFIG_SPAPR_TCE_IOMMU case KVM_CREATE_SPAPR_TCE_64: { struct kvm_create_spapr_tce_64 create_tce_64; r = -EFAULT; if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64))) goto out; if (create_tce_64.flags) { r = -EINVAL; goto out; } r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); goto out; } case KVM_CREATE_SPAPR_TCE: { struct kvm_create_spapr_tce create_tce; struct kvm_create_spapr_tce_64 create_tce_64; r = -EFAULT; if (copy_from_user(&create_tce, argp, sizeof(create_tce))) goto out; create_tce_64.liobn = create_tce.liobn; create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K; create_tce_64.offset = 0; create_tce_64.size = create_tce.window_size >> IOMMU_PAGE_SHIFT_4K; create_tce_64.flags = 0; r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); goto out; } #endif #ifdef CONFIG_PPC_BOOK3S_64 case KVM_PPC_GET_SMMU_INFO: { struct kvm_ppc_smmu_info info; struct kvm *kvm = filp->private_data; memset(&info, 0, sizeof(info)); r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info); if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) r = -EFAULT; break; } case KVM_PPC_RTAS_DEFINE_TOKEN: { struct kvm *kvm = filp->private_data; r = kvm_vm_ioctl_rtas_define_token(kvm, argp); break; } case KVM_PPC_CONFIGURE_V3_MMU: { struct kvm *kvm = filp->private_data; struct kvm_ppc_mmuv3_cfg cfg; r = -EINVAL; if (!kvm->arch.kvm_ops->configure_mmu) goto out; r = -EFAULT; if (copy_from_user(&cfg, argp, sizeof(cfg))) goto out; r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg); break; } case KVM_PPC_GET_RMMU_INFO: { struct kvm *kvm = filp->private_data; struct kvm_ppc_rmmu_info info; r = -EINVAL; if (!kvm->arch.kvm_ops->get_rmmu_info) goto out; r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info); if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) r = -EFAULT; break; } case KVM_PPC_GET_CPU_CHAR: { struct kvm_ppc_cpu_char cpuchar; r = kvmppc_get_cpu_char(&cpuchar); if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar))) r = -EFAULT; break; } case KVM_PPC_SVM_OFF: { struct kvm *kvm = filp->private_data; r = 0; if (!kvm->arch.kvm_ops->svm_off) goto out; r = kvm->arch.kvm_ops->svm_off(kvm); break; } default: { struct kvm *kvm = filp->private_data; r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg); } #else /* CONFIG_PPC_BOOK3S_64 */ default: r = -ENOTTY; #endif } out: return r; } static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)]; static unsigned long nr_lpids; long kvmppc_alloc_lpid(void) { long lpid; do { lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS); if (lpid >= nr_lpids) { pr_err("%s: No LPIDs free\n", __func__); return -ENOMEM; } } while (test_and_set_bit(lpid, lpid_inuse)); return lpid; } EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid); void kvmppc_claim_lpid(long lpid) { set_bit(lpid, lpid_inuse); } EXPORT_SYMBOL_GPL(kvmppc_claim_lpid); void kvmppc_free_lpid(long lpid) { clear_bit(lpid, lpid_inuse); } EXPORT_SYMBOL_GPL(kvmppc_free_lpid); void kvmppc_init_lpid(unsigned long nr_lpids_param) { nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param); memset(lpid_inuse, 0, sizeof(lpid_inuse)); } EXPORT_SYMBOL_GPL(kvmppc_init_lpid); int kvm_arch_init(void *opaque) { return 0; } EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1