Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ram Pai | 1026 | 69.09% | 20 | 52.63% |
Aneesh Kumar K.V | 449 | 30.24% | 15 | 39.47% |
Breno Leitão | 6 | 0.40% | 1 | 2.63% |
Michael Ellerman | 3 | 0.20% | 1 | 2.63% |
Anshuman Khandual | 1 | 0.07% | 1 | 2.63% |
Total | 1485 | 38 |
// SPDX-License-Identifier: GPL-2.0+ /* * PowerPC Memory Protection Keys management * * Copyright 2017, Ram Pai, IBM Corporation. */ #include <asm/mman.h> #include <asm/mmu_context.h> #include <asm/mmu.h> #include <asm/setup.h> #include <linux/pkeys.h> #include <linux/of_fdt.h> int num_pkey; /* Max number of pkeys supported */ /* * Keys marked in the reservation list cannot be allocated by userspace */ u32 reserved_allocation_mask __ro_after_init; /* Bits set for the initially allocated keys */ static u32 initial_allocation_mask __ro_after_init; /* * Even if we allocate keys with sys_pkey_alloc(), we need to make sure * other thread still find the access denied using the same keys. */ static u64 default_amr = ~0x0UL; static u64 default_iamr = 0x5555555555555555UL; u64 default_uamor __ro_after_init; /* * Key used to implement PROT_EXEC mmap. Denies READ/WRITE * We pick key 2 because 0 is special key and 1 is reserved as per ISA. */ static int execute_only_key = 2; static bool pkey_execute_disable_supported; #define AMR_BITS_PER_PKEY 2 #define AMR_RD_BIT 0x1UL #define AMR_WR_BIT 0x2UL #define IAMR_EX_BIT 0x1UL #define PKEY_REG_BITS (sizeof(u64) * 8) #define pkeyshift(pkey) (PKEY_REG_BITS - ((pkey+1) * AMR_BITS_PER_PKEY)) static int __init dt_scan_storage_keys(unsigned long node, const char *uname, int depth, void *data) { const char *type = of_get_flat_dt_prop(node, "device_type", NULL); const __be32 *prop; int *pkeys_total = (int *) data; /* We are scanning "cpu" nodes only */ if (type == NULL || strcmp(type, "cpu") != 0) return 0; prop = of_get_flat_dt_prop(node, "ibm,processor-storage-keys", NULL); if (!prop) return 0; *pkeys_total = be32_to_cpu(prop[0]); return 1; } static int scan_pkey_feature(void) { int ret; int pkeys_total = 0; /* * Pkey is not supported with Radix translation. */ if (early_radix_enabled()) return 0; ret = of_scan_flat_dt(dt_scan_storage_keys, &pkeys_total); if (ret == 0) { /* * Let's assume 32 pkeys on P8/P9 bare metal, if its not defined by device * tree. We make this exception since some version of skiboot forgot to * expose this property on power8/9. */ if (!firmware_has_feature(FW_FEATURE_LPAR)) { unsigned long pvr = mfspr(SPRN_PVR); if (PVR_VER(pvr) == PVR_POWER8 || PVR_VER(pvr) == PVR_POWER8E || PVR_VER(pvr) == PVR_POWER8NVL || PVR_VER(pvr) == PVR_POWER9) pkeys_total = 32; } } /* * Adjust the upper limit, based on the number of bits supported by * arch-neutral code. */ pkeys_total = min_t(int, pkeys_total, ((ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT) + 1)); return pkeys_total; } void __init pkey_early_init_devtree(void) { int pkeys_total, i; /* * We define PKEY_DISABLE_EXECUTE in addition to the arch-neutral * generic defines for PKEY_DISABLE_ACCESS and PKEY_DISABLE_WRITE. * Ensure that the bits a distinct. */ BUILD_BUG_ON(PKEY_DISABLE_EXECUTE & (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE)); /* * pkey_to_vmflag_bits() assumes that the pkey bits are contiguous * in the vmaflag. Make sure that is really the case. */ BUILD_BUG_ON(__builtin_clzl(ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT) + __builtin_popcountl(ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT) != (sizeof(u64) * BITS_PER_BYTE)); /* * Only P7 and above supports SPRN_AMR update with MSR[PR] = 1 */ if (!early_cpu_has_feature(CPU_FTR_ARCH_206)) return; /* scan the device tree for pkey feature */ pkeys_total = scan_pkey_feature(); if (!pkeys_total) goto out; /* Allow all keys to be modified by default */ default_uamor = ~0x0UL; cur_cpu_spec->mmu_features |= MMU_FTR_PKEY; /* * The device tree cannot be relied to indicate support for * execute_disable support. Instead we use a PVR check. */ if (pvr_version_is(PVR_POWER7) || pvr_version_is(PVR_POWER7p)) pkey_execute_disable_supported = false; else pkey_execute_disable_supported = true; #ifdef CONFIG_PPC_4K_PAGES /* * The OS can manage only 8 pkeys due to its inability to represent them * in the Linux 4K PTE. Mark all other keys reserved. */ num_pkey = min(8, pkeys_total); #else num_pkey = pkeys_total; #endif if (unlikely(num_pkey <= execute_only_key) || !pkey_execute_disable_supported) { /* * Insufficient number of keys to support * execute only key. Mark it unavailable. */ execute_only_key = -1; } else { /* * Mark the execute_only_pkey as not available for * user allocation via pkey_alloc. */ reserved_allocation_mask |= (0x1 << execute_only_key); /* * Deny READ/WRITE for execute_only_key. * Allow execute in IAMR. */ default_amr |= (0x3ul << pkeyshift(execute_only_key)); default_iamr &= ~(0x1ul << pkeyshift(execute_only_key)); /* * Clear the uamor bits for this key. */ default_uamor &= ~(0x3ul << pkeyshift(execute_only_key)); } /* * Allow access for only key 0. And prevent any other modification. */ default_amr &= ~(0x3ul << pkeyshift(0)); default_iamr &= ~(0x1ul << pkeyshift(0)); default_uamor &= ~(0x3ul << pkeyshift(0)); /* * key 0 is special in that we want to consider it an allocated * key which is preallocated. We don't allow changing AMR bits * w.r.t key 0. But one can pkey_free(key0) */ initial_allocation_mask |= (0x1 << 0); /* * key 1 is recommended not to be used. PowerISA(3.0) page 1015, * programming note. */ reserved_allocation_mask |= (0x1 << 1); default_uamor &= ~(0x3ul << pkeyshift(1)); /* * Prevent the usage of OS reserved keys. Update UAMOR * for those keys. Also mark the rest of the bits in the * 32 bit mask as reserved. */ for (i = num_pkey; i < 32 ; i++) { reserved_allocation_mask |= (0x1 << i); default_uamor &= ~(0x3ul << pkeyshift(i)); } /* * Prevent the allocation of reserved keys too. */ initial_allocation_mask |= reserved_allocation_mask; pr_info("Enabling pkeys with max key count %d\n", num_pkey); out: /* * Setup uamor on boot cpu */ mtspr(SPRN_UAMOR, default_uamor); return; } void pkey_mm_init(struct mm_struct *mm) { if (!mmu_has_feature(MMU_FTR_PKEY)) return; mm_pkey_allocation_map(mm) = initial_allocation_mask; mm->context.execute_only_pkey = execute_only_key; } static inline u64 read_amr(void) { return mfspr(SPRN_AMR); } static inline void write_amr(u64 value) { mtspr(SPRN_AMR, value); } static inline u64 read_iamr(void) { if (!likely(pkey_execute_disable_supported)) return 0x0UL; return mfspr(SPRN_IAMR); } static inline void write_iamr(u64 value) { if (!likely(pkey_execute_disable_supported)) return; mtspr(SPRN_IAMR, value); } static inline void init_amr(int pkey, u8 init_bits) { u64 new_amr_bits = (((u64)init_bits & 0x3UL) << pkeyshift(pkey)); u64 old_amr = read_amr() & ~((u64)(0x3ul) << pkeyshift(pkey)); write_amr(old_amr | new_amr_bits); } static inline void init_iamr(int pkey, u8 init_bits) { u64 new_iamr_bits = (((u64)init_bits & 0x1UL) << pkeyshift(pkey)); u64 old_iamr = read_iamr() & ~((u64)(0x1ul) << pkeyshift(pkey)); write_iamr(old_iamr | new_iamr_bits); } /* * Set the access rights in AMR IAMR and UAMOR registers for @pkey to that * specified in @init_val. */ int __arch_set_user_pkey_access(struct task_struct *tsk, int pkey, unsigned long init_val) { u64 new_amr_bits = 0x0ul; u64 new_iamr_bits = 0x0ul; u64 pkey_bits, uamor_pkey_bits; /* * Check whether the key is disabled by UAMOR. */ pkey_bits = 0x3ul << pkeyshift(pkey); uamor_pkey_bits = (default_uamor & pkey_bits); /* * Both the bits in UAMOR corresponding to the key should be set */ if (uamor_pkey_bits != pkey_bits) return -EINVAL; if (init_val & PKEY_DISABLE_EXECUTE) { if (!pkey_execute_disable_supported) return -EINVAL; new_iamr_bits |= IAMR_EX_BIT; } init_iamr(pkey, new_iamr_bits); /* Set the bits we need in AMR: */ if (init_val & PKEY_DISABLE_ACCESS) new_amr_bits |= AMR_RD_BIT | AMR_WR_BIT; else if (init_val & PKEY_DISABLE_WRITE) new_amr_bits |= AMR_WR_BIT; init_amr(pkey, new_amr_bits); return 0; } void thread_pkey_regs_save(struct thread_struct *thread) { if (!mmu_has_feature(MMU_FTR_PKEY)) return; /* * TODO: Skip saving registers if @thread hasn't used any keys yet. */ thread->amr = read_amr(); thread->iamr = read_iamr(); } void thread_pkey_regs_restore(struct thread_struct *new_thread, struct thread_struct *old_thread) { if (!mmu_has_feature(MMU_FTR_PKEY)) return; if (old_thread->amr != new_thread->amr) write_amr(new_thread->amr); if (old_thread->iamr != new_thread->iamr) write_iamr(new_thread->iamr); } void thread_pkey_regs_init(struct thread_struct *thread) { if (!mmu_has_feature(MMU_FTR_PKEY)) return; thread->amr = default_amr; thread->iamr = default_iamr; write_amr(default_amr); write_iamr(default_iamr); } int execute_only_pkey(struct mm_struct *mm) { return mm->context.execute_only_pkey; } static inline bool vma_is_pkey_exec_only(struct vm_area_struct *vma) { /* Do this check first since the vm_flags should be hot */ if ((vma->vm_flags & VM_ACCESS_FLAGS) != VM_EXEC) return false; return (vma_pkey(vma) == vma->vm_mm->context.execute_only_pkey); } /* * This should only be called for *plain* mprotect calls. */ int __arch_override_mprotect_pkey(struct vm_area_struct *vma, int prot, int pkey) { /* * If the currently associated pkey is execute-only, but the requested * protection is not execute-only, move it back to the default pkey. */ if (vma_is_pkey_exec_only(vma) && (prot != PROT_EXEC)) return 0; /* * The requested protection is execute-only. Hence let's use an * execute-only pkey. */ if (prot == PROT_EXEC) { pkey = execute_only_pkey(vma->vm_mm); if (pkey > 0) return pkey; } /* Nothing to override. */ return vma_pkey(vma); } static bool pkey_access_permitted(int pkey, bool write, bool execute) { int pkey_shift; u64 amr; pkey_shift = pkeyshift(pkey); if (execute) return !(read_iamr() & (IAMR_EX_BIT << pkey_shift)); amr = read_amr(); if (write) return !(amr & (AMR_WR_BIT << pkey_shift)); return !(amr & (AMR_RD_BIT << pkey_shift)); } bool arch_pte_access_permitted(u64 pte, bool write, bool execute) { if (!mmu_has_feature(MMU_FTR_PKEY)) return true; return pkey_access_permitted(pte_to_pkey_bits(pte), write, execute); } /* * We only want to enforce protection keys on the current thread because we * effectively have no access to AMR/IAMR for other threads or any way to tell * which AMR/IAMR in a threaded process we could use. * * So do not enforce things if the VMA is not from the current mm, or if we are * in a kernel thread. */ bool arch_vma_access_permitted(struct vm_area_struct *vma, bool write, bool execute, bool foreign) { if (!mmu_has_feature(MMU_FTR_PKEY)) return true; /* * Do not enforce our key-permissions on a foreign vma. */ if (foreign || vma_is_foreign(vma)) return true; return pkey_access_permitted(vma_pkey(vma), write, execute); } void arch_dup_pkeys(struct mm_struct *oldmm, struct mm_struct *mm) { if (!mmu_has_feature(MMU_FTR_PKEY)) return; /* Duplicate the oldmm pkey state in mm: */ mm_pkey_allocation_map(mm) = mm_pkey_allocation_map(oldmm); mm->context.execute_only_pkey = oldmm->context.execute_only_pkey; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1